本文整理匯總了Golang中cmd/internal/gc.Gbranch函數的典型用法代碼示例。如果您正苦於以下問題:Golang Gbranch函數的具體用法?Golang Gbranch怎麽用?Golang Gbranch使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Gbranch函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: ginscmp
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
// Reverse comparison to place constant last.
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) {
ginscon2(optoas(gc.OCMP, t), &r1, n2.Int())
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
rawgins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例2: cgenindex
/*
* generate array index into res.
* n might be any size; res is 32-bit.
* returns Prog* to patch to panic call.
*/
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
gc.Cgen(n, res)
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var n1 gc.Node
gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
var n2 gc.Node
gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gmove(&hi, &n1)
gmove(&zero, &n2)
gins(arm.ACMP, &n1, &n2)
gc.Regfree(&n2)
gc.Regfree(&n1)
splitclean()
return gc.Gbranch(arm.ABNE, nil, -1)
}
示例3: ginscmp
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL {
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 {
gins(arm.ACMP, &r1, n2)
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例4: igenindex
/*
* generate an addressable node in res, containing the value of n.
* n is an array index, and might be any size; res width is <= 32-bit.
* returns Prog* to patch to panic call.
*/
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
if n.Addable != 0 {
// nothing to do.
*res = *n
} else {
gc.Tempname(res, gc.Types[gc.TUINT32])
gc.Cgen(n, res)
}
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gc.Tempname(res, gc.Types[gc.TUINT32])
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gins(x86.ACMPL, &hi, &zero)
splitclean()
return gc.Gbranch(x86.AJNE, nil, +1)
}
示例5: cgen_float
/*
* generate floating-point operation.
*/
func cgen_float(n *gc.Node, res *gc.Node) {
nl := n.Left
switch n.Op {
case gc.OEQ,
gc.ONE,
gc.OLT,
gc.OLE,
gc.OGE:
p1 := gc.Gbranch(obj.AJMP, nil, 0)
p2 := gc.Pc
gmove(gc.Nodbool(true), res)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Bgen(n, true, 0, p2)
gmove(gc.Nodbool(false), res)
gc.Patch(p3, gc.Pc)
return
case gc.OPLUS:
gc.Cgen(nl, res)
return
case gc.OCONV:
if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
gc.Cgen(nl, res)
return
}
var n2 gc.Node
gc.Tempname(&n2, n.Type)
var n1 gc.Node
gc.Mgen(nl, &n1, res)
gmove(&n1, &n2)
gmove(&n2, res)
gc.Mfree(&n1)
return
}
if gc.Thearch.Use387 {
cgen_float387(n, res)
} else {
cgen_floatsse(n, res)
}
}
示例6: gencmp0
func gencmp0(n *gc.Node, t *gc.Type, o int, likely int, to *obj.Prog) {
var n1 gc.Node
gc.Regalloc(&n1, t, nil)
gc.Cgen(n, &n1)
a := optoas(gc.OCMP, t)
if a != arm.ACMP {
var n2 gc.Node
gc.Nodconst(&n2, t, 0)
var n3 gc.Node
gc.Regalloc(&n3, t, nil)
gmove(&n2, &n3)
gins(a, &n1, &n3)
gc.Regfree(&n3)
} else {
gins(arm.ATST, &n1, nil)
}
a = optoas(o, t)
gc.Patch(gc.Gbranch(a, t, likely), to)
gc.Regfree(&n1)
}
示例7: agenr
/*
* allocate a register (reusing res if possible) and generate
* a = &n
* The caller must call regfree(a).
* The generated code checks that the result is not nil.
*/
func agenr(n *gc.Node, a *gc.Node, res *gc.Node) {
if gc.Debug['g'] != 0 {
gc.Dump("agenr-n", n)
}
nl := n.Left
nr := n.Right
switch n.Op {
case gc.ODOT,
gc.ODOTPTR,
gc.OCALLFUNC,
gc.OCALLMETH,
gc.OCALLINTER:
var n1 gc.Node
igen(n, &n1, res)
regalloc(a, gc.Types[gc.Tptr], &n1)
agen(&n1, a)
regfree(&n1)
case gc.OIND:
cgenr(n.Left, a, res)
gc.Cgen_checknil(a)
case gc.OINDEX:
var p2 *obj.Prog // to be patched to panicindex.
w := uint32(n.Type.Width)
//bounded = debug['B'] || n->bounded;
var n3 gc.Node
var n1 gc.Node
if nr.Addable != 0 {
var tmp gc.Node
if !gc.Isconst(nr, gc.CTINT) {
gc.Tempname(&tmp, gc.Types[gc.TINT64])
}
if !gc.Isconst(nl, gc.CTSTR) {
agenr(nl, &n3, res)
}
if !gc.Isconst(nr, gc.CTINT) {
cgen(nr, &tmp)
regalloc(&n1, tmp.Type, nil)
gmove(&tmp, &n1)
}
} else if nl.Addable != 0 {
if !gc.Isconst(nr, gc.CTINT) {
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
cgen(nr, &tmp)
regalloc(&n1, tmp.Type, nil)
gmove(&tmp, &n1)
}
if !gc.Isconst(nl, gc.CTSTR) {
agenr(nl, &n3, res)
}
} else {
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
cgen(nr, &tmp)
nr = &tmp
if !gc.Isconst(nl, gc.CTSTR) {
agenr(nl, &n3, res)
}
regalloc(&n1, tmp.Type, nil)
gins(optoas(gc.OAS, tmp.Type), &tmp, &n1)
}
// &a is in &n3 (allocated in res)
// i is in &n1 (if not constant)
// w is width
// constant index
if gc.Isconst(nr, gc.CTINT) {
if gc.Isconst(nl, gc.CTSTR) {
gc.Fatal("constant string constant index")
}
v := uint64(gc.Mpgetfix(nr.Val.U.Xval))
if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING {
if gc.Debug['B'] == 0 && !n.Bounded {
n1 = n3
n1.Op = gc.OINDREG
n1.Type = gc.Types[gc.Tptr]
n1.Xoffset = int64(gc.Array_nel)
var n4 gc.Node
regalloc(&n4, n1.Type, nil)
gmove(&n1, &n4)
ginscon2(optoas(gc.OCMP, gc.Types[gc.TUINT64]), &n4, int64(v))
regfree(&n4)
p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TUINT64]), nil, +1)
ginscall(gc.Panicindex, 0)
gc.Patch(p1, gc.Pc)
}
//.........這裏部分代碼省略.........
示例8: floatmove
//.........這裏部分代碼省略.........
} else if tt == gc.TINT32 {
gins(x86.AFMOVLP, &r1, t)
} else {
gins(x86.AFMOVVP, &r1, t)
}
gins(x86.AFLDCW, &t1, nil)
return
case gc.TFLOAT32<<16 | gc.TUINT64,
gc.TFLOAT64<<16 | gc.TUINT64:
if !gc.Ismem(f) {
cvt = f.Type
goto hardmem
}
bignodes()
var f0 gc.Node
gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0)
var f1 gc.Node
gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1)
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)
if ft == gc.TFLOAT32 {
gins(x86.AFMOVF, f, &f0)
} else {
gins(x86.AFMOVD, f, &f0)
}
// if 0 > v { answer = 0 }
gins(x86.AFMOVD, &zerof, &f0)
gins(x86.AFUCOMIP, &f0, &f1)
p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
// if 1<<64 <= v { answer = 0 too }
gins(x86.AFMOVD, &two64f, &f0)
gins(x86.AFUCOMIP, &f0, &f1)
p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
gc.Patch(p1, gc.Pc)
gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack
var thi gc.Node
var tlo gc.Node
split64(t, &tlo, &thi)
gins(x86.AMOVL, ncon(0), &tlo)
gins(x86.AMOVL, ncon(0), &thi)
splitclean()
p1 = gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p2, gc.Pc)
// in range; algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(x86.AFSTCW, nil, &t1)
gins(x86.AMOVW, ncon(0xf7f), &t2)
gins(x86.AFLDCW, &t2, nil)
// actual work
示例9: sgen
//.........這裏部分代碼省略.........
var dst gc.Node
var src gc.Node
if n.Ullman >= res.Ullman {
agenr(n, &dst, res) // temporarily use dst
regalloc(&src, gc.Types[gc.Tptr], nil)
gins(ppc64.AMOVD, &dst, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
agen(res, &dst)
} else {
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
agenr(res, &dst, res)
agenr(n, &src, nil)
}
var tmp gc.Node
regalloc(&tmp, gc.Types[gc.Tptr], nil)
// set up end marker
var nend gc.Node
// move src and dest to the end of block if necessary
if dir < 0 {
if c >= 4 {
regalloc(&nend, gc.Types[gc.Tptr], nil)
gins(ppc64.AMOVD, &src, &nend)
}
p := gins(ppc64.AADD, nil, &src)
p.From.Type = obj.TYPE_CONST
p.From.Offset = w
p = gins(ppc64.AADD, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = w
} else {
p := gins(ppc64.AADD, nil, &src)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(-dir)
p = gins(ppc64.AADD, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(-dir)
if c >= 4 {
regalloc(&nend, gc.Types[gc.Tptr], nil)
p := gins(ppc64.AMOVD, &src, &nend)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = w
}
}
// move
// TODO: enable duffcopy for larger copies.
if c >= 4 {
p := gins(op, &src, &tmp)
p.From.Type = obj.TYPE_MEM
p.From.Offset = int64(dir)
ploop := p
p = gins(op, &tmp, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(dir)
p = gins(ppc64.ACMP, &src, &nend)
gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), ploop)
regfree(&nend)
} else {
// TODO(austin): Instead of generating ADD $-8,R8; ADD
// $-8,R7; n*(MOVDU 8(R8),R9; MOVDU R9,8(R7);) just
// generate the offsets directly and eliminate the
// ADDs. That will produce shorter, more
// pipeline-able code.
var p *obj.Prog
for {
tmp14 := c
c--
if tmp14 <= 0 {
break
}
p = gins(op, &src, &tmp)
p.From.Type = obj.TYPE_MEM
p.From.Offset = int64(dir)
p = gins(op, &tmp, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(dir)
}
}
regfree(&dst)
regfree(&src)
regfree(&tmp)
}
示例10: cgen
//.........這裏部分代碼省略.........
var n2 gc.Node
regalloc(&n2, n.Type, nil)
p1 := gins(a, nil, &n2)
p1.From = addr
gins(a, &n2, res)
regfree(&n2)
}
sudoclean()
return
}
}
// TODO(minux): we shouldn't reverse FP comparisons, but then we need to synthesize
// OGE, OLE, and ONE ourselves.
// if(nl != N && isfloat[n->type->etype] && isfloat[nl->type->etype]) goto flt;
var a int
switch n.Op {
default:
gc.Dump("cgen", n)
gc.Fatal("cgen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign))
// these call bgen to get a bool value
case gc.OOROR,
gc.OANDAND,
gc.OEQ,
gc.ONE,
gc.OLT,
gc.OLE,
gc.OGE,
gc.OGT,
gc.ONOT:
p1 := gc.Gbranch(ppc64.ABR, nil, 0)
p2 := gc.Pc
gmove(gc.Nodbool(true), res)
p3 := gc.Gbranch(ppc64.ABR, nil, 0)
gc.Patch(p1, gc.Pc)
bgen(n, true, 0, p2)
gmove(gc.Nodbool(false), res)
gc.Patch(p3, gc.Pc)
return
case gc.OPLUS:
cgen(nl, res)
return
// unary
case gc.OCOM:
a := optoas(gc.OXOR, nl.Type)
var n1 gc.Node
regalloc(&n1, nl.Type, nil)
cgen(nl, &n1)
var n2 gc.Node
gc.Nodconst(&n2, nl.Type, -1)
gins(a, &n2, &n1)
gmove(&n1, res)
regfree(&n1)
return
case gc.OMINUS:
if gc.Isfloat[nl.Type.Etype] {
nr = gc.Nodintconst(-1)
gc.Convlit(&nr, n.Type)
示例11: dodiv
/*
* generate division.
* caller must set:
* ax = allocated AX register
* dx = allocated DX register
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) {
// Have to be careful about handling
// most negative int divided by -1 correctly.
// The hardware will trap.
// Also the byte divide instruction needs AH,
// which we otherwise don't have to deal with.
// Easiest way to avoid for int8, int16: use int32.
// For int32 and int64, use explicit test.
// Could use int64 hw for int32.
t := nl.Type
t0 := t
check := 0
if gc.Issigned[t.Etype] {
check = 1
if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -1<<uint64(t.Width*8-1) {
check = 0
} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
check = 0
}
}
if t.Width < 4 {
if gc.Issigned[t.Etype] {
t = gc.Types[gc.TINT32]
} else {
t = gc.Types[gc.TUINT32]
}
check = 0
}
var t1 gc.Node
gc.Tempname(&t1, t)
var t2 gc.Node
gc.Tempname(&t2, t)
if t0 != t {
var t3 gc.Node
gc.Tempname(&t3, t0)
var t4 gc.Node
gc.Tempname(&t4, t0)
gc.Cgen(nl, &t3)
gc.Cgen(nr, &t4)
// Convert.
gmove(&t3, &t1)
gmove(&t4, &t2)
} else {
gc.Cgen(nl, &t1)
gc.Cgen(nr, &t2)
}
var n1 gc.Node
if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) {
gc.Regalloc(&n1, t, res)
} else {
gc.Regalloc(&n1, t, nil)
}
gmove(&t2, &n1)
gmove(&t1, ax)
var p2 *obj.Prog
var n4 gc.Node
if gc.Nacl {
// Native Client does not relay the divide-by-zero trap
// to the executing program, so we must insert a check
// for ourselves.
gc.Nodconst(&n4, t, 0)
gins(optoas(gc.OCMP, t), &n1, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
}
if check != 0 {
gc.Nodconst(&n4, t, -1)
gins(optoas(gc.OCMP, t), &n1, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if op == gc.ODIV {
// a / (-1) is -a.
gins(optoas(gc.OMINUS, t), nil, ax)
gmove(ax, res)
} else {
// a % (-1) is 0.
gc.Nodconst(&n4, t, 0)
//.........這裏部分代碼省略.........
示例12: cgen_shift
//.........這裏部分代碼省略.........
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
tr := nr.Type
var t gc.Node
var n1 gc.Node
var n2 gc.Node
var n3 gc.Node
if tr.Width > 4 {
var nt gc.Node
gc.Tempname(&nt, nr.Type)
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Cgen(nr, &nt)
n1 = nt
} else {
gc.Cgen(nr, &nt)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
var hi gc.Node
var lo gc.Node
split64(&nt, &lo, &hi)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
gmove(&lo, &n1)
gmove(&hi, &n3)
splitclean()
gins(arm.ATST, &n3, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
p1 := gins(arm.AMOVW, &t, &n1)
p1.Scond = arm.C_SCOND_NE
tr = gc.Types[gc.TUINT32]
gc.Regfree(&n3)
} else {
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Regalloc(&n1, nr.Type, nil)
gc.Cgen(nr, &n1)
} else {
gc.Regalloc(&n1, nr.Type, nil)
gc.Cgen(nr, &n1)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
}
// test for shift being 0
gins(arm.ATST, &n1, nil)
p3 := gc.Gbranch(arm.ABEQ, nil, -1)
// test and fix up large shifts
// TODO: if(!bounded), don't emit some of this.
gc.Regalloc(&n3, tr, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
gmove(&t, &n3)
gins(arm.ACMP, &n1, &n3)
if op == gc.ORSH {
var p1 *obj.Prog
var p2 *obj.Prog
if gc.Issigned[nl.Type.Etype] {
p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2)
p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2)
} else {
p1 = gins(arm.AEOR, &n2, &n2)
p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2)
}
p1.Scond = arm.C_SCOND_HS
p2.Scond = arm.C_SCOND_LO
} else {
p1 := gins(arm.AEOR, &n2, &n2)
p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2)
p1.Scond = arm.C_SCOND_HS
p2.Scond = arm.C_SCOND_LO
}
gc.Regfree(&n3)
gc.Patch(p3, gc.Pc)
// Left-shift of smaller word must be sign/zero-extended.
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n2, &n2)
}
gmove(&n2, res)
gc.Regfree(&n1)
gc.Regfree(&n2)
}
示例13: cgen_shift
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
a := int(optoas(op, nl.Type))
if nr.Op == gc.OLITERAL {
var n1 gc.Node
regalloc(&n1, nl.Type, res)
cgen(nl, &n1)
sc := uint64(uint64(gc.Mpgetfix(nr.Val.U.Xval)))
if sc >= uint64(nl.Type.Width*8) {
// large shift gets 2 shifts by width-1
var n3 gc.Node
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n1)
gins(a, &n3, &n1)
} else {
gins(a, nr, &n1)
}
gmove(&n1, res)
regfree(&n1)
return
}
if nl.Ullman >= gc.UINF {
var n4 gc.Node
gc.Tempname(&n4, nl.Type)
cgen(nl, &n4)
nl = &n4
}
if nr.Ullman >= gc.UINF {
var n5 gc.Node
gc.Tempname(&n5, nr.Type)
cgen(nr, &n5)
nr = &n5
}
// Allow either uint32 or uint64 as shift type,
// to avoid unnecessary conversion from uint32 to uint64
// just to do the comparison.
tcount := gc.Types[gc.Simtype[nr.Type.Etype]]
if tcount.Etype < gc.TUINT32 {
tcount = gc.Types[gc.TUINT32]
}
var n1 gc.Node
regalloc(&n1, nr.Type, nil) // to hold the shift type in CX
var n3 gc.Node
regalloc(&n3, tcount, &n1) // to clear high bits of CX
var n2 gc.Node
regalloc(&n2, nl.Type, res)
if nl.Ullman >= nr.Ullman {
cgen(nl, &n2)
cgen(nr, &n1)
gmove(&n1, &n3)
} else {
cgen(nr, &n1)
gmove(&n1, &n3)
cgen(nl, &n2)
}
regfree(&n3)
// test and fix up large shifts
if !bounded {
gc.Nodconst(&n3, tcount, nl.Type.Width*8)
gins(optoas(gc.OCMP, tcount), &n1, &n3)
p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1))
if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
gins(a, &n3, &n2)
} else {
gc.Nodconst(&n3, nl.Type, 0)
gmove(&n3, &n2)
}
gc.Patch(p1, gc.Pc)
}
gins(a, &n1, &n2)
gmove(&n2, res)
regfree(&n1)
regfree(&n2)
}
示例14: dodiv
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) {
// Have to be careful about handling
// most negative int divided by -1 correctly.
// The hardware will trap.
// Also the byte divide instruction needs AH,
// which we otherwise don't have to deal with.
// Easiest way to avoid for int8, int16: use int32.
// For int32 and int64, use explicit test.
// Could use int64 hw for int32.
t := nl.Type
t0 := t
check := 0
if gc.Issigned[t.Etype] {
check = 1
if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) {
check = 0
} else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 {
check = 0
}
}
if t.Width < 4 {
if gc.Issigned[t.Etype] {
t = gc.Types[gc.TINT32]
} else {
t = gc.Types[gc.TUINT32]
}
check = 0
}
a := optoas(op, t)
var n3 gc.Node
gc.Regalloc(&n3, t0, nil)
var ax gc.Node
var oldax gc.Node
if nl.Ullman >= nr.Ullman {
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
gc.Cgen(nr, &n3)
gc.Regfree(&ax)
} else {
gc.Cgen(nr, &n3)
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
}
if t != t0 {
// Convert
ax1 := ax
n31 := n3
ax.Type = t
n3.Type = t
gmove(&ax1, &ax)
gmove(&n31, &n3)
}
var n4 gc.Node
if gc.Nacl {
// Native Client does not relay the divide-by-zero trap
// to the executing program, so we must insert a check
// for ourselves.
gc.Nodconst(&n4, t, 0)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
}
var p2 *obj.Prog
if check != 0 {
gc.Nodconst(&n4, t, -1)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if op == gc.ODIV {
// a / (-1) is -a.
gins(optoas(gc.OMINUS, t), nil, &ax)
gmove(&ax, res)
} else {
// a % (-1) is 0.
gc.Nodconst(&n4, t, 0)
gmove(&n4, res)
}
//.........這裏部分代碼省略.........
示例15: blockcopy
//.........這裏部分代碼省略.........
var dst gc.Node
var src gc.Node
if n.Ullman >= res.Ullman {
gc.Agenr(n, &dst, res) // temporarily use dst
gc.Regalloc(&src, gc.Types[gc.Tptr], nil)
gins(ppc64.AMOVD, &dst, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agenr(res, &dst, res)
gc.Agenr(n, &src, nil)
}
var tmp gc.Node
gc.Regalloc(&tmp, gc.Types[gc.Tptr], nil)
// set up end marker
var nend gc.Node
// move src and dest to the end of block if necessary
if dir < 0 {
if c >= 4 {
gc.Regalloc(&nend, gc.Types[gc.Tptr], nil)
gins(ppc64.AMOVD, &src, &nend)
}
p := gins(ppc64.AADD, nil, &src)
p.From.Type = obj.TYPE_CONST
p.From.Offset = w
p = gins(ppc64.AADD, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = w
} else {
p := gins(ppc64.AADD, nil, &src)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(-dir)
p = gins(ppc64.AADD, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(-dir)
if c >= 4 {
gc.Regalloc(&nend, gc.Types[gc.Tptr], nil)
p := gins(ppc64.AMOVD, &src, &nend)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = w
}
}
// move
// TODO: enable duffcopy for larger copies.
if c >= 4 {
p := gins(op, &src, &tmp)
p.From.Type = obj.TYPE_MEM
p.From.Offset = int64(dir)
ploop := p
p = gins(op, &tmp, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(dir)
p = gins(ppc64.ACMP, &src, &nend)
gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), ploop)
gc.Regfree(&nend)
} else {
// TODO(austin): Instead of generating ADD $-8,R8; ADD
// $-8,R7; n*(MOVDU 8(R8),R9; MOVDU R9,8(R7);) just
// generate the offsets directly and eliminate the
// ADDs. That will produce shorter, more
// pipeline-able code.
var p *obj.Prog
for {
tmp14 := c
c--
if tmp14 <= 0 {
break
}
p = gins(op, &src, &tmp)
p.From.Type = obj.TYPE_MEM
p.From.Offset = int64(dir)
p = gins(op, &tmp, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(dir)
}
}
gc.Regfree(&dst)
gc.Regfree(&src)
gc.Regfree(&tmp)
}