本文整理匯總了Golang中cmd/compile/internal/gc.SSAGenState.Pc方法的典型用法代碼示例。如果您正苦於以下問題:Golang SSAGenState.Pc方法的具體用法?Golang SSAGenState.Pc怎麽用?Golang SSAGenState.Pc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cmd/compile/internal/gc.SSAGenState
的用法示例。
在下文中一共展示了SSAGenState.Pc方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: ssaGenValue
//.........這裏部分代碼省略.........
c := gc.Prog(x86.AXORQ)
c.From.Type = obj.TYPE_REG
c.From.Reg = x86.REG_DX
c.To.Type = obj.TYPE_REG
c.To.Reg = x86.REG_DX
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = x
// signed division, rest of the check for -1 case
if j != nil {
j2 := gc.Prog(obj.AJMP)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.OpAMD64DIVQ || v.Op == ssa.OpAMD64DIVL ||
v.Op == ssa.OpAMD64DIVW {
// n * -1 = -n
n = gc.Prog(x86.ANEGQ)
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_AX
} else {
// n % -1 == 0
n = gc.Prog(x86.AXORQ)
n.From.Type = obj.TYPE_REG
n.From.Reg = x86.REG_DX
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_DX
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.OpAMD64HMULQ, ssa.OpAMD64HMULL, ssa.OpAMD64HMULW, ssa.OpAMD64HMULB,
ssa.OpAMD64HMULQU, ssa.OpAMD64HMULLU, ssa.OpAMD64HMULWU, ssa.OpAMD64HMULBU:
// the frontend rewrites constant division by 8/16/32 bit integers into
// HMUL by a constant
// SSA rewrites generate the 64 bit versions
// Arg[0] is already in AX as it's the only register we allow
// and DX is the only output we care about (the high bits)
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
// IMULB puts the high portion in AH instead of DL,
// so move it to DL for consistency
if v.Type.Size() == 1 {
m := gc.Prog(x86.AMOVB)
m.From.Type = obj.TYPE_REG
m.From.Reg = x86.REG_AH
m.To.Type = obj.TYPE_REG
m.To.Reg = x86.REG_DX
}
case ssa.OpAMD64AVGQU:
// compute (x+y)/2 unsigned.
// Do a 64-bit add, the overflow goes into the carry.
// Shift right once and pull the carry back into the 63rd bit.
r := gc.SSARegNum(v)
x := gc.SSARegNum(v.Args[0])
y := gc.SSARegNum(v.Args[1])
if x != r && y != r {
示例2: ssaGenValue
//.........這裏部分代碼省略.........
v.Op == ssa.Op386DIVWU || v.Op == ssa.Op386MODWU {
c := gc.Prog(x86.AXORL)
c.From.Type = obj.TYPE_REG
c.From.Reg = x86.REG_DX
c.To.Type = obj.TYPE_REG
c.To.Reg = x86.REG_DX
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = x
// signed division, rest of the check for -1 case
if j != nil {
j2 := gc.Prog(obj.AJMP)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.Op386DIVL || v.Op == ssa.Op386DIVW {
// n * -1 = -n
n = gc.Prog(x86.ANEGL)
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_AX
} else {
// n % -1 == 0
n = gc.Prog(x86.AXORL)
n.From.Type = obj.TYPE_REG
n.From.Reg = x86.REG_DX
n.To.Type = obj.TYPE_REG
n.To.Reg = x86.REG_DX
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.Op386HMULL, ssa.Op386HMULW, ssa.Op386HMULB,
ssa.Op386HMULLU, ssa.Op386HMULWU, ssa.Op386HMULBU:
// the frontend rewrites constant division by 8/16/32 bit integers into
// HMUL by a constant
// SSA rewrites generate the 64 bit versions
// Arg[0] is already in AX as it's the only register we allow
// and DX is the only output we care about (the high bits)
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
// IMULB puts the high portion in AH instead of DL,
// so move it to DL for consistency
if v.Type.Size() == 1 {
m := gc.Prog(x86.AMOVB)
m.From.Type = obj.TYPE_REG
m.From.Reg = x86.REG_AH
m.To.Type = obj.TYPE_REG
m.To.Reg = x86.REG_DX
}
case ssa.Op386MULLQU:
// AX * args[1], high 32 bits in DX (result[0]), low 32 bits in AX (result[1]).
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
case ssa.Op386ADDLconst:
r := gc.SSARegNum(v)
示例3: ssaGenValue
//.........這裏部分代碼省略.........
gc.Prog(x86.ACQO)
case ssa.OpAMD64DIVL:
gc.Prog(x86.ACDQ)
case ssa.OpAMD64DIVW:
gc.Prog(x86.ACWD)
}
// Issue divide.
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r
// Skip over -1 fixup code.
j2 := gc.Prog(obj.AJMP)
j2.To.Type = obj.TYPE_BRANCH
// Issue -1 fixup code.
// n / -1 = -n
n1 := gc.Prog(x86.ANEGQ)
n1.To.Type = obj.TYPE_REG
n1.To.Reg = x86.REG_AX
// n % -1 == 0
n2 := gc.Prog(x86.AXORL)
n2.From.Type = obj.TYPE_REG
n2.From.Reg = x86.REG_DX
n2.To.Type = obj.TYPE_REG
n2.To.Reg = x86.REG_DX
// TODO(khr): issue only the -1 fixup code we need.
// For instance, if only the quotient is used, no point in zeroing the remainder.
j1.To.Val = n1
j2.To.Val = s.Pc()
case ssa.OpAMD64HMULQ, ssa.OpAMD64HMULL, ssa.OpAMD64HMULW, ssa.OpAMD64HMULB,
ssa.OpAMD64HMULQU, ssa.OpAMD64HMULLU, ssa.OpAMD64HMULWU, ssa.OpAMD64HMULBU:
// the frontend rewrites constant division by 8/16/32 bit integers into
// HMUL by a constant
// SSA rewrites generate the 64 bit versions
// Arg[0] is already in AX as it's the only register we allow
// and DX is the only output we care about (the high bits)
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
// IMULB puts the high portion in AH instead of DL,
// so move it to DL for consistency
if v.Type.Size() == 1 {
m := gc.Prog(x86.AMOVB)
m.From.Type = obj.TYPE_REG
m.From.Reg = x86.REG_AH
m.To.Type = obj.TYPE_REG
m.To.Reg = x86.REG_DX
}
case ssa.OpAMD64AVGQU:
// compute (x+y)/2 unsigned.
// Do a 64-bit add, the overflow goes into the carry.
// Shift right once and pull the carry back into the 63rd bit.
r := gc.SSARegNum(v)
if r != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
p := gc.Prog(x86.AADDQ)
示例4: ssaGenValue
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpS390XSLD, ssa.OpS390XSLW,
ssa.OpS390XSRD, ssa.OpS390XSRW,
ssa.OpS390XSRAD, ssa.OpS390XSRAW:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
if r2 == s390x.REG_R0 {
v.Fatalf("cannot use R0 as shift value %s", v.LongString())
}
p := opregreg(v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
case ssa.OpS390XADD, ssa.OpS390XADDW,
ssa.OpS390XSUB, ssa.OpS390XSUBW,
ssa.OpS390XAND, ssa.OpS390XANDW,
ssa.OpS390XOR, ssa.OpS390XORW,
ssa.OpS390XXOR, ssa.OpS390XXORW:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := opregreg(v.Op.Asm(), r, r2)
if r != r1 {
p.Reg = r1
}
// 2-address opcode arithmetic
case ssa.OpS390XMULLD, ssa.OpS390XMULLW,
ssa.OpS390XMULHD, ssa.OpS390XMULHDU,
ssa.OpS390XFADDS, ssa.OpS390XFADD, ssa.OpS390XFSUBS, ssa.OpS390XFSUB,
ssa.OpS390XFMULS, ssa.OpS390XFMUL, ssa.OpS390XFDIVS, ssa.OpS390XFDIV:
r := v.Reg()
if r != v.Args[0].Reg() {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
opregreg(v.Op.Asm(), r, v.Args[1].Reg())
case ssa.OpS390XDIVD, ssa.OpS390XDIVW,
ssa.OpS390XDIVDU, ssa.OpS390XDIVWU,
ssa.OpS390XMODD, ssa.OpS390XMODW,
ssa.OpS390XMODDU, ssa.OpS390XMODWU:
// TODO(mundaym): use the temp registers every time like x86 does with AX?
dividend := v.Args[0].Reg()
divisor := v.Args[1].Reg()
// CPU faults upon signed overflow, which occurs when most
// negative int is divided by -1.
var j *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW ||
v.Op == ssa.OpS390XMODD || v.Op == ssa.OpS390XMODW {
var c *obj.Prog
c = gc.Prog(s390x.ACMP)
j = gc.Prog(s390x.ABEQ)
c.From.Type = obj.TYPE_REG
c.From.Reg = divisor
c.To.Type = obj.TYPE_CONST
c.To.Offset = -1
j.To.Type = obj.TYPE_BRANCH
}
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = divisor
p.Reg = 0
p.To.Type = obj.TYPE_REG
p.To.Reg = dividend
// signed division, rest of the check for -1 case
if j != nil {
j2 := gc.Prog(s390x.ABR)
j2.To.Type = obj.TYPE_BRANCH
var n *obj.Prog
if v.Op == ssa.OpS390XDIVD || v.Op == ssa.OpS390XDIVW {
// n * -1 = -n
n = gc.Prog(s390x.ANEG)
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
} else {
// n % -1 == 0
n = gc.Prog(s390x.AXOR)
n.From.Type = obj.TYPE_REG
n.From.Reg = dividend
n.To.Type = obj.TYPE_REG
n.To.Reg = dividend
}
j.To.Val = n
j2.To.Val = s.Pc()
}
case ssa.OpS390XADDconst, ssa.OpS390XADDWconst:
opregregimm(v.Op.Asm(), v.Reg(), v.Args[0].Reg(), v.AuxInt)
case ssa.OpS390XMULLDconst, ssa.OpS390XMULLWconst,
ssa.OpS390XSUBconst, ssa.OpS390XSUBWconst,
//.........這裏部分代碼省略.........