本文整理匯總了Golang中cmd/compile/internal/gc.Uniqp函數的典型用法代碼示例。如果您正苦於以下問題:Golang Uniqp函數的具體用法?Golang Uniqp怎麽用?Golang Uniqp使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Uniqp函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: copyprop
// The idea is to remove redundant copies.
// v1->v2 F=0
// (use v2 s/v2/v1/)*
// set v1 F=1
// use v2 return fail (v1->v2 move must remain)
// -----------------
// v1->v2 F=0
// (use v2 s/v2/v1/)*
// set v1 F=1
// set v2 return success (caller can remove v1->v2 move)
func copyprop(r *gc.Flow) bool {
p := r.Prog
canSub := false
switch p.As {
case s390x.AFMOVS, s390x.AFMOVD, s390x.AMOVD:
canSub = true
default:
for rr := gc.Uniqp(r); rr != nil; rr = gc.Uniqp(rr) {
if gc.Uniqs(rr) == nil {
break
}
switch copyu(rr.Prog, &p.From, nil) {
case _Read, _None:
continue
}
// write
if rr.Prog.As == p.As {
canSub = true
}
break
}
}
if !canSub {
return false
}
if copyas(&p.From, &p.To) {
return true
}
gactive++
return copy1(&p.From, &p.To, r.S1, 0)
}
示例2: subprop
// the idea is to substitute
// one register for another
// from one MOV to another
// MOV a, R1
// ADD b, R1 / no use of R2
// MOV R1, R2
// would be converted to
// MOV a, R2
// ADD b, R2
// MOV R2, R1
// hopefully, then the former or latter MOV
// will be eliminated by copy propagation.
//
// r0 (the argument, not the register) is the MOV at the end of the
// above sequences. subprop returns true if it modified any instructions.
func subprop(r0 *gc.Flow) bool {
p := r0.Prog
v1 := &p.From
if !isReg(v1) {
return false
}
v2 := &p.To
if !isReg(v2) {
return false
}
cast := false
switch p.As {
case s390x.AMOVW, s390x.AMOVWZ,
s390x.AMOVH, s390x.AMOVHZ,
s390x.AMOVB, s390x.AMOVBZ:
cast = true
}
for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) {
if gc.Uniqs(r) == nil {
break
}
p = r.Prog
switch copyu(p, v1, nil) {
case _Write, _ReadWriteDiff:
if p.As == obj.ACALL {
return false
}
if (!cast || p.As == r0.Prog.As) && p.To.Type == v1.Type && p.To.Reg == v1.Reg {
copysub(&p.To, v1, v2)
for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) {
p = r.Prog
copysub(&p.From, v1, v2)
copysub1(p, v1, v2)
copysub(&p.To, v1, v2)
}
v1.Reg, v2.Reg = v2.Reg, v1.Reg
return true
}
if cast {
return false
}
case _ReadWriteSame:
if cast {
return false
}
}
if copyu(p, v2, nil) != _None {
return false
}
}
return false
}
示例3: prevl
// is reg guaranteed to be truncated by a previous L instruction?
func prevl(r0 *gc.Flow, reg int16) bool {
for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) {
p := r.Prog
if p.To.Type == obj.TYPE_REG && p.To.Reg == reg {
flags := progflags(p)
if flags&gc.RightWrite != 0 {
if flags&gc.SizeL != 0 {
return true
}
return false
}
}
}
return false
}
示例4: removeLoadHitStores
// removeLoadHitStores trys to remove loads that take place
// immediately after a store to the same location. Returns
// true if load-hit-stores were removed.
//
// For example:
// MOVD R1, 0(R15)
// MOVD 0(R15), R2
// Would become:
// MOVD R1, 0(R15)
// MOVD R1, R2
func removeLoadHitStores(r *gc.Flow) int {
n := 0
for ; r != nil; r = r.Link {
p := r.Prog
if !isStore(p) {
continue
}
for rr := gc.Uniqs(r); rr != nil; rr = gc.Uniqs(rr) {
pp := rr.Prog
if gc.Uniqp(rr) == nil {
break
}
if pp.As == obj.ANOP {
continue
}
if isLoad(pp) && sameStackMem(&p.To, &pp.From) {
if size(p.As) >= size(pp.As) && isGPR(&p.From) == isGPR(&pp.To) {
pp.From = p.From
}
}
if !isMove(pp) || isStore(pp) {
break
}
if copyau(&p.From, &pp.To) {
break
}
}
}
return n
}
示例5: findinc
/*
* findinc finds ADD instructions with a constant
* argument which falls within the immed_12 range.
*/
func findinc(r *gc.Flow, r2 *gc.Flow, v *obj.Addr) *gc.Flow {
var r1 *gc.Flow
var p *obj.Prog
for r1 = gc.Uniqs(r); r1 != nil && r1 != r2; r, r1 = r1, gc.Uniqs(r1) {
if gc.Uniqp(r1) != r {
return nil
}
switch copyu(r1.Prog, v, nil) {
case 0: /* not touched */
continue
case 4: /* set and used */
p = r1.Prog
if p.As == arm.AADD {
if isdconst(&p.From) {
if p.From.Offset > -4096 && p.From.Offset < 4096 {
return r1
}
}
}
fallthrough
default:
return nil
}
}
return nil
}
示例6: findpre
/*
* findpre returns the last instruction mentioning v
* before r. It must be a set, and there must be
* a unique path from that instruction to r.
*/
func findpre(r *gc.Flow, v *obj.Addr) *gc.Flow {
var r1 *gc.Flow
for r1 = gc.Uniqp(r); r1 != nil; r, r1 = r1, gc.Uniqp(r1) {
if gc.Uniqs(r1) != r {
return nil
}
switch copyu(r1.Prog, v, nil) {
case 1, /* used */
2: /* read-alter-rewrite */
return nil
case 3, /* set */
4: /* set and used */
return r1
}
}
return nil
}
示例7: conprop
func conprop(r0 *gc.Flow) {
var p *obj.Prog
var t int
p0 := (*obj.Prog)(r0.Prog)
v0 := (*obj.Addr)(&p0.To)
r := (*gc.Flow)(r0)
loop:
r = gc.Uniqs(r)
if r == nil || r == r0 {
return
}
if gc.Uniqp(r) == nil {
return
}
p = r.Prog
t = copyu(p, v0, nil)
switch t {
case 0, // miss
1: // use
goto loop
case 2, // rar
4: // use and set
break
case 3: // set
if p.As == p0.As {
if p.From.Type == p0.From.Type {
if p.From.Reg == p0.From.Reg {
if p.From.Node == p0.From.Node {
if p.From.Offset == p0.From.Offset {
if p.From.Scale == p0.From.Scale {
if p.From.Type == obj.TYPE_FCONST && p.From.Val.(float64) == p0.From.Val.(float64) {
if p.From.Index == p0.From.Index {
excise(r)
goto loop
}
}
}
}
}
}
}
}
}
}
示例8: copy1
// copy1 replaces uses of v2 with v1 starting at r and returns true if
// all uses were rewritten.
func copy1(v1 *obj.Addr, v2 *obj.Addr, r *gc.Flow, f int) bool {
if uint32(r.Active) == gactive {
return true
}
r.Active = int32(gactive)
for ; r != nil; r = r.S1 {
p := r.Prog
if f == 0 && gc.Uniqp(r) == nil {
// Multiple predecessors; conservatively
// assume v1 was set on other path
f = 1
}
t := copyu(p, v2, nil)
switch t {
case _ReadWriteSame:
return false
case _Write:
return true
case _Read, _ReadWriteDiff:
if f != 0 {
return false
}
if copyu(p, v2, v1) != 0 {
return false
}
if t == _ReadWriteDiff {
return true
}
}
if f == 0 {
switch copyu(p, v1, nil) {
case _ReadWriteSame, _ReadWriteDiff, _Write:
f = 1
}
}
if r.S2 != nil {
if !copy1(v1, v2, r.S2, f) {
return false
}
}
}
return true
}
示例9: constprop
/*
* The idea is to remove redundant constants.
* $c1->v1
* ($c1->v2 s/$c1/v1)*
* set v1 return
* The v1->v2 should be eliminated by copy propagation.
*/
func constprop(c1 *obj.Addr, v1 *obj.Addr, r *gc.Flow) {
if gc.Debug['P'] != 0 {
fmt.Printf("constprop %v->%v\n", gc.Ctxt.Dconv(c1), gc.Ctxt.Dconv(v1))
}
var p *obj.Prog
for ; r != nil; r = r.S1 {
p = r.Prog
if gc.Debug['P'] != 0 {
fmt.Printf("%v", p)
}
if gc.Uniqp(r) == nil {
if gc.Debug['P'] != 0 {
fmt.Printf("; merge; return\n")
}
return
}
if p.As == arm.AMOVW && copyas(&p.From, c1) {
if gc.Debug['P'] != 0 {
fmt.Printf("; sub%v/%v", gc.Ctxt.Dconv(&p.From), gc.Ctxt.Dconv(v1))
}
p.From = *v1
} else if copyu(p, v1, nil) > 1 {
if gc.Debug['P'] != 0 {
fmt.Printf("; %vset; return\n", gc.Ctxt.Dconv(v1))
}
return
}
if gc.Debug['P'] != 0 {
fmt.Printf("\n")
}
if r.S2 != nil {
constprop(c1, v1, r.S2)
}
}
}
示例10: subprop
/*
* the idea is to substitute
* one register for another
* from one MOV to another
* MOV a, R0
* ADD b, R0 / no use of R1
* MOV R0, R1
* would be converted to
* MOV a, R1
* ADD b, R1
* MOV R1, R0
* hopefully, then the former or latter MOV
* will be eliminated by copy propagation.
*/
func subprop(r0 *gc.Flow) bool {
p := r0.Prog
v1 := &p.From
if !regtyp(v1) {
return false
}
v2 := &p.To
if !regtyp(v2) {
return false
}
for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\t? %v\n", r.Prog)
}
if gc.Uniqs(r) == nil {
break
}
p = r.Prog
if p.As == obj.AVARDEF || p.As == obj.AVARKILL {
continue
}
if p.Info.Flags&gc.Call != 0 {
return false
}
if p.Info.Reguse|p.Info.Regset != 0 {
return false
}
if (p.Info.Flags&gc.Move != 0) && (p.Info.Flags&(gc.SizeL|gc.SizeQ|gc.SizeF|gc.SizeD) != 0) && p.To.Type == v1.Type && p.To.Reg == v1.Reg {
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog)
if p.From.Type == v2.Type && p.From.Reg == v2.Reg {
fmt.Printf(" excise")
}
fmt.Printf("\n")
}
for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) {
p = r.Prog
copysub(&p.From, v1, v2, 1)
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("%v\n", r.Prog)
}
}
t := int(v1.Reg)
v1.Reg = v2.Reg
v2.Reg = int16(t)
if gc.Debug['P'] != 0 {
fmt.Printf("%v last\n", r.Prog)
}
return true
}
if copyau(&p.From, v2) || copyau(&p.To, v2) {
break
}
if copysub(&p.From, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 {
break
}
}
return false
}
示例11: shiftprop
/*
* ASLL x,y,w
* .. (not use w, not set x y w)
* AXXX w,a,b (a != w)
* .. (not use w)
* (set w)
* ----------- changed to
* ..
* AXXX (x<<y),a,b
* ..
*/
func shiftprop(r *gc.Flow) bool {
p := (*obj.Prog)(r.Prog)
if p.To.Type != obj.TYPE_REG {
if gc.Debug['P'] != 0 {
fmt.Printf("\tBOTCH: result not reg; FAILURE\n")
}
return false
}
n := int(int(p.To.Reg))
a := obj.Addr(obj.Addr{})
if p.Reg != 0 && p.Reg != p.To.Reg {
a.Type = obj.TYPE_REG
a.Reg = p.Reg
}
if gc.Debug['P'] != 0 {
fmt.Printf("shiftprop\n%v", p)
}
r1 := (*gc.Flow)(r)
var p1 *obj.Prog
for {
/* find first use of shift result; abort if shift operands or result are changed */
r1 = gc.Uniqs(r1)
if r1 == nil {
if gc.Debug['P'] != 0 {
fmt.Printf("\tbranch; FAILURE\n")
}
return false
}
if gc.Uniqp(r1) == nil {
if gc.Debug['P'] != 0 {
fmt.Printf("\tmerge; FAILURE\n")
}
return false
}
p1 = r1.Prog
if gc.Debug['P'] != 0 {
fmt.Printf("\n%v", p1)
}
switch copyu(p1, &p.To, nil) {
case 0: /* not used or set */
if (p.From.Type == obj.TYPE_REG && copyu(p1, &p.From, nil) > 1) || (a.Type == obj.TYPE_REG && copyu(p1, &a, nil) > 1) {
if gc.Debug['P'] != 0 {
fmt.Printf("\targs modified; FAILURE\n")
}
return false
}
continue
case 3: /* set, not used */
{
if gc.Debug['P'] != 0 {
fmt.Printf("\tBOTCH: noref; FAILURE\n")
}
return false
}
}
break
}
/* check whether substitution can be done */
switch p1.As {
default:
if gc.Debug['P'] != 0 {
fmt.Printf("\tnon-dpi; FAILURE\n")
}
return false
case arm.AAND,
arm.AEOR,
arm.AADD,
arm.AADC,
arm.AORR,
arm.ASUB,
arm.ASBC,
arm.ARSB,
arm.ARSC:
if int(p1.Reg) == n || (p1.Reg == 0 && p1.To.Type == obj.TYPE_REG && int(p1.To.Reg) == n) {
if p1.From.Type != obj.TYPE_REG {
if gc.Debug['P'] != 0 {
fmt.Printf("\tcan't swap; FAILURE\n")
}
return false
}
//.........這裏部分代碼省略.........
示例12: copy1
func copy1(v1 *obj.Addr, v2 *obj.Addr, r *gc.Flow, f int) bool {
if uint32(r.Active) == gactive {
if gc.Debug['P'] != 0 {
fmt.Printf("act set; return 1\n")
}
return true
}
r.Active = int32(gactive)
if gc.Debug['P'] != 0 {
fmt.Printf("copy %v->%v f=%d\n", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), f)
}
var t int
var p *obj.Prog
for ; r != nil; r = r.S1 {
p = r.Prog
if gc.Debug['P'] != 0 {
fmt.Printf("%v", p)
}
if f == 0 && gc.Uniqp(r) == nil {
f = 1
if gc.Debug['P'] != 0 {
fmt.Printf("; merge; f=%d", f)
}
}
t = copyu(p, v2, nil)
switch t {
case 2: /* rar, can't split */
if gc.Debug['P'] != 0 {
fmt.Printf("; %vrar; return 0\n", gc.Ctxt.Dconv(v2))
}
return false
case 3: /* set */
if gc.Debug['P'] != 0 {
fmt.Printf("; %vset; return 1\n", gc.Ctxt.Dconv(v2))
}
return true
case 1, /* used, substitute */
4: /* use and set */
if f != 0 {
if gc.Debug['P'] == 0 {
return false
}
if t == 4 {
fmt.Printf("; %vused+set and f=%d; return 0\n", gc.Ctxt.Dconv(v2), f)
} else {
fmt.Printf("; %vused and f=%d; return 0\n", gc.Ctxt.Dconv(v2), f)
}
return false
}
if copyu(p, v2, v1) != 0 {
if gc.Debug['P'] != 0 {
fmt.Printf("; sub fail; return 0\n")
}
return false
}
if gc.Debug['P'] != 0 {
fmt.Printf("; sub%v/%v", gc.Ctxt.Dconv(v2), gc.Ctxt.Dconv(v1))
}
if t == 4 {
if gc.Debug['P'] != 0 {
fmt.Printf("; %vused+set; return 1\n", gc.Ctxt.Dconv(v2))
}
return true
}
}
if f == 0 {
t = copyu(p, v1, nil)
if f == 0 && (t == 2 || t == 3 || t == 4) {
f = 1
if gc.Debug['P'] != 0 {
fmt.Printf("; %vset and !f; f=%d", gc.Ctxt.Dconv(v1), f)
}
}
}
if gc.Debug['P'] != 0 {
fmt.Printf("\n")
}
if r.S2 != nil {
if !copy1(v1, v2, r.S2, f) {
return false
}
}
}
return true
}
示例13: subprop
/*
* the idea is to substitute
* one register for another
* from one MOV to another
* MOV a, R0
* ADD b, R0 / no use of R1
* MOV R0, R1
* would be converted to
* MOV a, R1
* ADD b, R1
* MOV R1, R0
* hopefully, then the former or latter MOV
* will be eliminated by copy propagation.
*/
func subprop(r0 *gc.Flow) bool {
p := (*obj.Prog)(r0.Prog)
v1 := (*obj.Addr)(&p.From)
if !regtyp(v1) {
return false
}
v2 := (*obj.Addr)(&p.To)
if !regtyp(v2) {
return false
}
for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) {
if gc.Uniqs(r) == nil {
break
}
p = r.Prog
if p.As == obj.AVARDEF || p.As == obj.AVARKILL {
continue
}
if p.Info.Flags&gc.Call != 0 {
return false
}
// TODO(rsc): Whatever invalidated the info should have done this call.
proginfo(p)
if (p.Info.Flags&gc.CanRegRead != 0) && p.To.Type == obj.TYPE_REG {
p.Info.Flags |= gc.RegRead
p.Info.Flags &^= (gc.CanRegRead | gc.RightRead)
p.Reg = p.To.Reg
}
switch p.As {
case arm.AMULLU,
arm.AMULA,
arm.AMVN:
return false
}
if p.Info.Flags&(gc.RightRead|gc.RightWrite) == gc.RightWrite {
if p.To.Type == v1.Type {
if p.To.Reg == v1.Reg {
if p.Scond == arm.C_SCOND_NONE {
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog)
if p.From.Type == v2.Type {
fmt.Printf(" excise")
}
fmt.Printf("\n")
}
for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) {
p = r.Prog
copysub(&p.From, v1, v2, 1)
copysub1(p, v1, v2, 1)
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("%v\n", r.Prog)
}
}
t := int(int(v1.Reg))
v1.Reg = v2.Reg
v2.Reg = int16(t)
if gc.Debug['P'] != 0 {
fmt.Printf("%v last\n", r.Prog)
}
return true
}
}
}
}
if copyau(&p.From, v2) || copyau1(p, v2) || copyau(&p.To, v2) {
break
}
if copysub(&p.From, v1, v2, 0) != 0 || copysub1(p, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 {
break
}
}
return false
}
示例14: subprop
/*
* the idea is to substitute
* one register for another
* from one MOV to another
* MOV a, R0
* ADD b, R0 / no use of R1
* MOV R0, R1
* would be converted to
* MOV a, R1
* ADD b, R1
* MOV R1, R0
* hopefully, then the former or latter MOV
* will be eliminated by copy propagation.
*/
func subprop(r0 *gc.Flow) bool {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("subprop %v\n", r0.Prog)
}
p := (*obj.Prog)(r0.Prog)
v1 := (*obj.Addr)(&p.From)
if !regtyp(v1) {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tnot regtype %v; return 0\n", gc.Ctxt.Dconv(v1))
}
return false
}
v2 := (*obj.Addr)(&p.To)
if !regtyp(v2) {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tnot regtype %v; return 0\n", gc.Ctxt.Dconv(v2))
}
return false
}
for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\t? %v\n", r.Prog)
}
if gc.Uniqs(r) == nil {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tno unique successor\n")
}
break
}
p = r.Prog
if p.As == obj.AVARDEF || p.As == obj.AVARKILL {
continue
}
if p.Info.Flags&gc.Call != 0 {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tfound %v; return 0\n", p)
}
return false
}
if p.Info.Reguse|p.Info.Regset != 0 {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tfound %v; return 0\n", p)
}
return false
}
if (p.Info.Flags&gc.Move != 0) && (p.Info.Flags&(gc.SizeL|gc.SizeQ|gc.SizeF|gc.SizeD) != 0) && p.To.Type == v1.Type && p.To.Reg == v1.Reg {
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog)
if p.From.Type == v2.Type && p.From.Reg == v2.Reg {
fmt.Printf(" excise")
}
fmt.Printf("\n")
}
for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) {
p = r.Prog
copysub(&p.From, v1, v2, 1)
copysub(&p.To, v1, v2, 1)
if gc.Debug['P'] != 0 {
fmt.Printf("%v\n", r.Prog)
}
}
t := int(int(v1.Reg))
v1.Reg = v2.Reg
v2.Reg = int16(t)
if gc.Debug['P'] != 0 {
fmt.Printf("%v last\n", r.Prog)
}
return true
}
if copyau(&p.From, v2) || copyau(&p.To, v2) {
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
fmt.Printf("\tcopyau %v failed\n", gc.Ctxt.Dconv(v2))
}
break
}
if copysub(&p.From, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 {
//.........這裏部分代碼省略.........
示例15: fuseMultiple
// fuseMultiple merges memory loads and stores into load multiple and
// store multiple operations.
//
// Looks for this pattern (sequence of loads or stores):
// MOVD R1, 0(R15)
// MOVD R2, 8(R15)
// MOVD R3, 16(R15)
// Replaces with:
// STMG R1, R3, 0(R15)
func fuseMultiple(r *gc.Flow) int {
n := 0
var fused *obj.Prog
for ; r != nil; r = r.Link {
// If there is a branch into the instruction stream then
// we can't fuse into previous instructions.
if gc.Uniqp(r) == nil {
fused = nil
}
p := r.Prog
isStore := isGPR(&p.From) && isBDMem(&p.To)
isLoad := isGPR(&p.To) && isBDMem(&p.From)
// are we a candidate?
size := int64(0)
switch p.As {
default:
fused = nil
continue
case obj.ANOP:
// skip over nops
continue
case s390x.AMOVW, s390x.AMOVWZ:
size = 4
// TODO(mundaym): 32-bit load multiple is currently not supported
// as it requires sign/zero extension.
if !isStore {
fused = nil
continue
}
case s390x.AMOVD:
size = 8
if !isLoad && !isStore {
fused = nil
continue
}
}
// If we merge two loads/stores with different source/destination Nodes
// then we will lose a reference the second Node which means that the
// compiler might mark the Node as unused and free its slot on the stack.
// TODO(mundaym): allow this by adding a dummy reference to the Node.
if fused == nil ||
fused.From.Node != p.From.Node ||
fused.From.Type != p.From.Type ||
fused.To.Node != p.To.Node ||
fused.To.Type != p.To.Type {
fused = p
continue
}
// check two addresses
ca := func(a, b *obj.Addr, offset int64) bool {
return a.Reg == b.Reg && a.Offset+offset == b.Offset &&
a.Sym == b.Sym && a.Name == b.Name
}
switch fused.As {
default:
fused = p
case s390x.AMOVW, s390x.AMOVWZ:
if size == 4 && fused.From.Reg+1 == p.From.Reg && ca(&fused.To, &p.To, 4) {
fused.As = s390x.ASTMY
fused.Reg = p.From.Reg
excise(r)
n++
} else {
fused = p
}
case s390x.AMOVD:
if size == 8 && fused.From.Reg+1 == p.From.Reg && ca(&fused.To, &p.To, 8) {
fused.As = s390x.ASTMG
fused.Reg = p.From.Reg
excise(r)
n++
} else if size == 8 && fused.To.Reg+1 == p.To.Reg && ca(&fused.From, &p.From, 8) {
fused.As = s390x.ALMG
fused.Reg = fused.To.Reg
fused.To.Reg = p.To.Reg
excise(r)
n++
} else {
fused = p
}
case s390x.ASTMG, s390x.ASTMY:
if (fused.As == s390x.ASTMY && size != 4) ||
(fused.As == s390x.ASTMG && size != 8) {
fused = p
continue
//.........這裏部分代碼省略.........