本文整理匯總了Golang中cmd/compile/internal/gc.Afunclit函數的典型用法代碼示例。如果您正苦於以下問題:Golang Afunclit函數的具體用法?Golang Afunclit怎麽用?Golang Afunclit使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Afunclit函數的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: zerorange
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
cnt := hi - lo
if cnt == 0 {
return p
}
if cnt < int64(4*gc.Widthptr) {
for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
p = appendpp(p, ppc64.AMOVD, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGSP, 8+frame+lo+i)
}
} else if cnt <= int64(128*gc.Widthptr) {
p = appendpp(p, ppc64.AADD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, ppc64.REGRT1, 0)
p.Reg = ppc64.REGSP
p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
f := gc.Sysfunc("duffzero")
gc.Naddr(&p.To, f)
gc.Afunclit(&p.To, f)
p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
} else {
p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, ppc64.REGTMP, 0)
p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT1, 0)
p.Reg = ppc64.REGSP
p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, ppc64.REGTMP, 0)
p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
p.Reg = ppc64.REGRT1
p = appendpp(p, ppc64.AMOVDU, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGRT1, int64(gc.Widthptr))
p1 := p
p = appendpp(p, ppc64.ACMP, obj.TYPE_REG, ppc64.REGRT1, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
p = appendpp(p, ppc64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
gc.Patch(p, p1)
}
return p
}
示例2: zerorange
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
cnt := hi - lo
if cnt == 0 {
return p
}
if cnt < int64(4*gc.Widthptr) {
for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
p = appendpp(p, mips.AMOVV, obj.TYPE_REG, mips.REGZERO, 0, obj.TYPE_MEM, mips.REGSP, 8+frame+lo+i)
}
// TODO(dfc): https://golang.org/issue/12108
// If DUFFZERO is used inside a tail call (see genwrapper) it will
// overwrite the link register.
} else if false && cnt <= int64(128*gc.Widthptr) {
p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, mips.REGRT1, 0)
p.Reg = mips.REGSP
p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
f := gc.Sysfunc("duffzero")
gc.Naddr(&p.To, f)
gc.Afunclit(&p.To, f)
p.To.Offset = 8 * (128 - cnt/int64(gc.Widthptr))
} else {
// ADDV $(8+frame+lo-8), SP, r1
// ADDV $cnt, r1, r2
// loop:
// MOVV R0, (Widthptr)r1
// ADDV $Widthptr, r1
// BNE r1, r2, loop
p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, mips.REGRT1, 0)
p.Reg = mips.REGSP
p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, mips.REGRT2, 0)
p.Reg = mips.REGRT1
p = appendpp(p, mips.AMOVV, obj.TYPE_REG, mips.REGZERO, 0, obj.TYPE_MEM, mips.REGRT1, int64(gc.Widthptr))
p1 := p
p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, int64(gc.Widthptr), obj.TYPE_REG, mips.REGRT1, 0)
p = appendpp(p, mips.ABNE, obj.TYPE_REG, mips.REGRT1, 0, obj.TYPE_BRANCH, 0, 0)
p.Reg = mips.REGRT2
gc.Patch(p, p1)
}
return p
}
示例3: zerorange
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64, r0 *uint32) *obj.Prog {
cnt := hi - lo
if cnt == 0 {
return p
}
if *r0 == 0 {
p = appendpp(p, arm.AMOVW, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, arm.REG_R0, 0)
*r0 = 1
}
if cnt < int64(4*gc.Widthptr) {
for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REGSP, int32(4+frame+lo+i))
}
} else if !gc.Nacl && (cnt <= int64(128*gc.Widthptr)) {
p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0)
p.Reg = arm.REGSP
p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
f := gc.Sysfunc("duffzero")
gc.Naddr(&p.To, f)
gc.Afunclit(&p.To, f)
p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
} else {
p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0)
p.Reg = arm.REGSP
p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(cnt), obj.TYPE_REG, arm.REG_R2, 0)
p.Reg = arm.REG_R1
p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REG_R1, 4)
p1 := p
p.Scond |= arm.C_PBIT
p = appendpp(p, arm.ACMP, obj.TYPE_REG, arm.REG_R1, 0, obj.TYPE_NONE, 0, 0)
p.Reg = arm.REG_R2
p = appendpp(p, arm.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
gc.Patch(p, p1)
}
return p
}
示例4: zerorange
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
cnt := hi - lo
if cnt == 0 {
return p
}
if cnt < int64(4*gc.Widthptr) {
for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGZERO, 0, obj.TYPE_MEM, arm64.REGSP, 8+frame+lo+i)
}
} else if cnt <= int64(128*gc.Widthptr) && !darwin { // darwin ld64 cannot handle BR26 reloc with non-zero addend
p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGSP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
p = appendpp(p, arm64.AADD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, arm64.REGRT1, 0)
p.Reg = arm64.REGRT1
p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
f := gc.Sysfunc("duffzero")
gc.Naddr(&p.To, f)
gc.Afunclit(&p.To, f)
p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
} else {
p = appendpp(p, arm64.AMOVD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, arm64.REGTMP, 0)
p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGSP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
p = appendpp(p, arm64.AADD, obj.TYPE_REG, arm64.REGTMP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
p.Reg = arm64.REGRT1
p = appendpp(p, arm64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, arm64.REGTMP, 0)
p = appendpp(p, arm64.AADD, obj.TYPE_REG, arm64.REGTMP, 0, obj.TYPE_REG, arm64.REGRT2, 0)
p.Reg = arm64.REGRT1
p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGZERO, 0, obj.TYPE_MEM, arm64.REGRT1, int64(gc.Widthptr))
p.Scond = arm64.C_XPRE
p1 := p
p = appendpp(p, arm64.ACMP, obj.TYPE_REG, arm64.REGRT1, 0, obj.TYPE_NONE, 0, 0)
p.Reg = arm64.REGRT2
p = appendpp(p, arm64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
gc.Patch(p, p1)
}
return p
}
示例5: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width)
}
w := uint64(uint64(nl.Type.Width))
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := uint64(w % 8) // bytes
q := uint64(w / 8) // dwords
if gc.Reginuse(ppc64.REGRT1) {
gc.Fatal("%v in use during clearfat", obj.Rconv(ppc64.REGRT1))
}
var r0 gc.Node
gc.Nodreg(&r0, gc.Types[gc.TUINT64], ppc64.REGZERO)
var dst gc.Node
gc.Nodreg(&dst, gc.Types[gc.Tptr], ppc64.REGRT1)
gc.Regrealloc(&dst)
gc.Agen(nl, &dst)
var boff uint64
if q > 128 {
p := gins(ppc64.ASUB, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p = gins(ppc64.AMOVD, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q * 8)
p = gins(ppc64.AMOVDU, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 8
pl := (*obj.Prog)(p)
p = gins(ppc64.ACMP, &dst, &end)
gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), pl)
gc.Regfree(&end)
// The loop leaves R3 on the last zeroed dword
boff = 8
} else if q >= 4 {
p := gins(ppc64.ASUB, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
f := (*gc.Node)(gc.Sysfunc("duffzero"))
p = gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_ppc64x.s
p.To.Offset = int64(4 * (128 - q))
// duffzero leaves R3 on the last zeroed dword
boff = 8
} else {
var p *obj.Prog
for t := uint64(0); t < q; t++ {
p = gins(ppc64.AMOVD, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(8 * t)
}
boff = 8 * q
}
var p *obj.Prog
for t := uint64(0); t < c; t++ {
p = gins(ppc64.AMOVB, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(t + boff)
}
gc.Regfree(&dst)
}
示例6: blockcopy
func blockcopy(n, res *gc.Node, osrc, odst, w int64) {
// determine alignment.
// want to avoid unaligned access, so have to use
// smaller operations for less aligned types.
// for example moving [4]byte must use 4 MOVB not 1 MOVW.
align := int(n.Type.Align)
var op int
switch align {
default:
gc.Fatalf("sgen: invalid alignment %d for %v", align, n.Type)
case 1:
op = arm.AMOVB
case 2:
op = arm.AMOVH
case 4:
op = arm.AMOVW
}
if w%int64(align) != 0 {
gc.Fatalf("sgen: unaligned size %d (align=%d) for %v", w, align, n.Type)
}
c := int32(w / int64(align))
if osrc%int64(align) != 0 || odst%int64(align) != 0 {
gc.Fatalf("sgen: unaligned offset src %d or dst %d (align %d)", osrc, odst, align)
}
// if we are copying forward on the stack and
// the src and dst overlap, then reverse direction
dir := align
if osrc < odst && int64(odst) < int64(osrc)+w {
dir = -dir
}
if op == arm.AMOVW && !gc.Nacl && dir > 0 && c >= 4 && c <= 128 {
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R0 + 1
var r2 gc.Node
r2.Op = gc.OREGISTER
r2.Reg = arm.REG_R0 + 2
var src gc.Node
gc.Regalloc(&src, gc.Types[gc.Tptr], &r1)
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r2)
if n.Ullman >= res.Ullman {
// eval n first
gc.Agen(n, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
// eval res first
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
gc.Agen(n, &src)
}
var tmp gc.Node
gc.Regalloc(&tmp, gc.Types[gc.Tptr], &r0)
f := gc.Sysfunc("duffcopy")
p := gins(obj.ADUFFCOPY, nil, f)
gc.Afunclit(&p.To, f)
// 8 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 8 * (128 - int64(c))
gc.Regfree(&tmp)
gc.Regfree(&src)
gc.Regfree(&dst)
return
}
var dst gc.Node
var src gc.Node
if n.Ullman >= res.Ullman {
gc.Agenr(n, &dst, res) // temporarily use dst
gc.Regalloc(&src, gc.Types[gc.Tptr], nil)
gins(arm.AMOVW, &dst, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agenr(res, &dst, res)
//.........這裏部分代碼省略.........
示例7: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width)
}
w := uint64(uint64(nl.Type.Width))
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := uint64(w % 8) // bytes
q := uint64(w / 8) // dwords
var r0 gc.Node
gc.Nodreg(&r0, gc.Types[gc.TUINT64], arm64.REGZERO)
var dst gc.Node
// REGRT1 is reserved on arm64, see arm64/gsubr.go.
gc.Nodreg(&dst, gc.Types[gc.Tptr], arm64.REGRT1)
gc.Agen(nl, &dst)
var boff uint64
if q > 128 {
p := gins(arm64.ASUB, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p = gins(arm64.AMOVD, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q * 8)
p = gins(arm64.AMOVD, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 8
p.Scond = arm64.C_XPRE
pl := (*obj.Prog)(p)
p = gcmp(arm64.ACMP, &dst, &end)
gc.Patch(gc.Gbranch(arm64.ABNE, nil, 0), pl)
gc.Regfree(&end)
// The loop leaves R16 on the last zeroed dword
boff = 8
} else if q >= 4 && !darwin { // darwin ld64 cannot handle BR26 reloc with non-zero addend
p := gins(arm64.ASUB, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
f := (*gc.Node)(gc.Sysfunc("duffzero"))
p = gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_arm64x.s
p.To.Offset = int64(4 * (128 - q))
// duffzero leaves R16 on the last zeroed dword
boff = 8
} else {
var p *obj.Prog
for t := uint64(0); t < q; t++ {
p = gins(arm64.AMOVD, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(8 * t)
}
boff = 8 * q
}
var p *obj.Prog
for t := uint64(0); t < c; t++ {
p = gins(arm64.AMOVB, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(t + boff)
}
}
示例8: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width)
}
w := uint64(nl.Type.Width)
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := w % 8 // bytes
q := w / 8 // dwords
if gc.Reginuse(mips.REGRT1) {
gc.Fatalf("%v in use during clearfat", obj.Rconv(mips.REGRT1))
}
var r0 gc.Node
gc.Nodreg(&r0, gc.Types[gc.TUINT64], mips.REGZERO)
var dst gc.Node
gc.Nodreg(&dst, gc.Types[gc.Tptr], mips.REGRT1)
gc.Regrealloc(&dst)
gc.Agen(nl, &dst)
var boff uint64
if q > 128 {
p := gins(mips.ASUBV, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p = gins(mips.AMOVV, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q * 8)
p = gins(mips.AMOVV, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 8
pl := p
p = gins(mips.AADDV, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
gc.Patch(ginsbranch(mips.ABNE, nil, &dst, &end, 0), pl)
gc.Regfree(&end)
// The loop leaves R1 on the last zeroed dword
boff = 8
// TODO(dfc): https://golang.org/issue/12108
// If DUFFZERO is used inside a tail call (see genwrapper) it will
// overwrite the link register.
} else if false && q >= 4 {
p := gins(mips.ASUBV, nil, &dst)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
f := gc.Sysfunc("duffzero")
p = gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 8 and 128 = magic constants: see ../../runtime/asm_mips64x.s
p.To.Offset = int64(8 * (128 - q))
// duffzero leaves R1 on the last zeroed dword
boff = 8
} else {
var p *obj.Prog
for t := uint64(0); t < q; t++ {
p = gins(mips.AMOVV, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(8 * t)
}
boff = 8 * q
}
var p *obj.Prog
for t := uint64(0); t < c; t++ {
p = gins(mips.AMOVB, &r0, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = int64(t + boff)
}
gc.Regfree(&dst)
}
示例9: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
gc.Dump("\nclearfat", nl)
}
w := uint32(nl.Type.Width)
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := w % 4 // bytes
q := w / 4 // quads
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R1
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1)
gc.Agen(nl, &dst)
var nc gc.Node
gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0)
var nz gc.Node
gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0)
gc.Cgen(&nc, &nz)
if q > 128 {
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q) * 4
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
} else if q >= 4 && !gc.Nacl {
f := gc.Sysfunc("duffzero")
p := gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 4 * (128 - int64(q))
} else {
var p *obj.Prog
for q > 0 {
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
//print("1. %v\n", p);
q--
}
}
var p *obj.Prog
for c > 0 {
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 1
p.Scond |= arm.C_PBIT
//print("2. %v\n", p);
c--
}
gc.Regfree(&dst)
gc.Regfree(&nz)
}