本文整理匯總了Golang中cmd/compile/avail/gc.Gbranch函數的典型用法代碼示例。如果您正苦於以下問題:Golang Gbranch函數的具體用法?Golang Gbranch怎麽用?Golang Gbranch使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Gbranch函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: ginscmp
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if t.IsInteger() && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
// Reverse comparison to place constant last.
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if t.IsInteger() && gc.Isconst(n2, gc.CTINT) {
ginscon2(optoas(gc.OCMP, t), &r1, n2.Int64())
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gcmp(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例2: ginscmp
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if t.IsInteger() && n1.Op == gc.OLITERAL && n1.Int64() == 0 && n2.Op != gc.OLITERAL {
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if t.IsInteger() && n2.Op == gc.OLITERAL && n2.Int64() == 0 {
gins(arm.ACMP, &r1, n2)
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例3: cgenindex
/*
* generate array index into res.
* n might be any size; res is 32-bit.
* returns Prog* to patch to panic call.
*/
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
gc.Cgen(n, res)
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var n1 gc.Node
gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
var n2 gc.Node
gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gmove(&hi, &n1)
gmove(&zero, &n2)
gins(arm.ACMP, &n1, &n2)
gc.Regfree(&n2)
gc.Regfree(&n1)
splitclean()
return gc.Gbranch(arm.ABNE, nil, -1)
}
示例4: igenindex
/*
* generate an addressable node in res, containing the value of n.
* n is an array index, and might be any size; res width is <= 32-bit.
* returns Prog* to patch to panic call.
*/
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
if n.Addable && (gc.Simtype[n.Etype] == gc.TUINT32 || gc.Simtype[n.Etype] == gc.TINT32) {
// nothing to do.
*res = *n
} else {
gc.Tempname(res, gc.Types[gc.TUINT32])
gc.Cgen(n, res)
}
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gc.Tempname(res, gc.Types[gc.TUINT32])
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gins(x86.ACMPL, &hi, &zero)
splitclean()
return gc.Gbranch(x86.AJNE, nil, +1)
}
示例5: ginsbranch
// generate branch
// n1, n2 are registers
func ginsbranch(as obj.As, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
p := gc.Gbranch(as, t, likely)
gc.Naddr(&p.From, n1)
if n2 != nil {
p.Reg = n2.Reg
}
return p
}
示例6: cgen_float
/*
* generate floating-point operation.
*/
func cgen_float(n *gc.Node, res *gc.Node) {
nl := n.Left
switch n.Op {
case gc.OEQ,
gc.ONE,
gc.OLT,
gc.OLE,
gc.OGE:
p1 := gc.Gbranch(obj.AJMP, nil, 0)
p2 := gc.Pc
gmove(gc.Nodbool(true), res)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Bgen(n, true, 0, p2)
gmove(gc.Nodbool(false), res)
gc.Patch(p3, gc.Pc)
return
case gc.OPLUS:
gc.Cgen(nl, res)
return
case gc.OCONV:
if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
gc.Cgen(nl, res)
return
}
var n2 gc.Node
gc.Tempname(&n2, n.Type)
var n1 gc.Node
gc.Mgen(nl, &n1, res)
gmove(&n1, &n2)
gmove(&n2, res)
gc.Mfree(&n1)
return
}
if gc.Thearch.Use387 {
cgen_float387(n, res)
} else {
cgen_floatsse(n, res)
}
}
示例7: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
gc.Dump("\nclearfat", nl)
}
w := uint32(nl.Type.Width)
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := w % 4 // bytes
q := w / 4 // quads
if nl.Type.Align < 4 {
q = 0
c = w
}
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R1
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1)
gc.Agen(nl, &dst)
var nc gc.Node
gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0)
var nz gc.Node
gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0)
gc.Cgen(&nc, &nz)
if q > 128 {
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q) * 4
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
} else if q >= 4 && !gc.Nacl {
f := gc.Sysfunc("duffzero")
p := gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 4 * (128 - int64(q))
} else {
var p *obj.Prog
for q > 0 {
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
//print("1. %v\n", p);
q--
}
}
if c > 4 {
// Loop to zero unaligned memory.
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(c)
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 1
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
c = 0
}
var p *obj.Prog
for c > 0 {
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
//.........這裏部分代碼省略.........
示例8: cgen_shift
//.........這裏部分代碼省略.........
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
tr := nr.Type
var t gc.Node
var n1 gc.Node
var n2 gc.Node
var n3 gc.Node
if tr.Width > 4 {
var nt gc.Node
gc.Tempname(&nt, nr.Type)
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Cgen(nr, &nt)
n1 = nt
} else {
gc.Cgen(nr, &nt)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
var hi gc.Node
var lo gc.Node
split64(&nt, &lo, &hi)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
gmove(&lo, &n1)
gmove(&hi, &n3)
splitclean()
gins(arm.ATST, &n3, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
p1 := gins(arm.AMOVW, &t, &n1)
p1.Scond = arm.C_SCOND_NE
tr = gc.Types[gc.TUINT32]
gc.Regfree(&n3)
} else {
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Regalloc(&n1, nr.Type, nil)
gc.Cgen(nr, &n1)
} else {
gc.Regalloc(&n1, nr.Type, nil)
gc.Cgen(nr, &n1)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
}
// test for shift being 0
gins(arm.ATST, &n1, nil)
p3 := gc.Gbranch(arm.ABEQ, nil, -1)
// test and fix up large shifts
// TODO: if(!bounded), don't emit some of this.
gc.Regalloc(&n3, tr, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
gmove(&t, &n3)
gins(arm.ACMP, &n1, &n3)
if op == gc.ORSH {
var p1 *obj.Prog
var p2 *obj.Prog
if nl.Type.IsSigned() {
p1 = gshift(arm.AMOVW, &n2, arm.SHIFT_AR, int32(w)-1, &n2)
p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_AR, &n1, &n2)
} else {
p1 = gins(arm.AEOR, &n2, &n2)
p2 = gregshift(arm.AMOVW, &n2, arm.SHIFT_LR, &n1, &n2)
}
p1.Scond = arm.C_SCOND_HS
p2.Scond = arm.C_SCOND_LO
} else {
p1 := gins(arm.AEOR, &n2, &n2)
p2 := gregshift(arm.AMOVW, &n2, arm.SHIFT_LL, &n1, &n2)
p1.Scond = arm.C_SCOND_HS
p2.Scond = arm.C_SCOND_LO
}
gc.Regfree(&n3)
gc.Patch(p3, gc.Pc)
// Left-shift of smaller word must be sign/zero-extended.
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n2, &n2)
}
gmove(&n2, res)
gc.Regfree(&n1)
gc.Regfree(&n2)
}
示例9: floatmove
//.........這裏部分代碼省略.........
gins(x86.AFMOVLP, &r1, t)
} else {
gins(x86.AFMOVVP, &r1, t)
}
gins(x86.AFLDCW, &t1, nil)
return
case gc.TFLOAT32<<16 | gc.TUINT64,
gc.TFLOAT64<<16 | gc.TUINT64:
if !gc.Ismem(f) {
cvt = f.Type
goto hardmem
}
bignodes()
var f0 gc.Node
gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0)
var f1 gc.Node
gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1)
var ax gc.Node
gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)
if ft == gc.TFLOAT32 {
gins(x86.AFMOVF, f, &f0)
} else {
gins(x86.AFMOVD, f, &f0)
}
// if 0 > v { answer = 0 }
gins(x86.AFMOVD, &zerof, &f0)
gins(x86.AFUCOMP, &f0, &f1)
gins(x86.AFSTSW, nil, &ax)
gins(x86.ASAHF, nil, nil)
p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
// if 1<<64 <= v { answer = 0 too }
gins(x86.AFMOVD, &two64f, &f0)
gins(x86.AFUCOMP, &f0, &f1)
gins(x86.AFSTSW, nil, &ax)
gins(x86.ASAHF, nil, nil)
p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0)
gc.Patch(p1, gc.Pc)
gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack
var thi gc.Node
var tlo gc.Node
split64(t, &tlo, &thi)
gins(x86.AMOVL, ncon(0), &tlo)
gins(x86.AMOVL, ncon(0), &thi)
splitclean()
p1 = gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p2, gc.Pc)
// in range; algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(x86.AFSTCW, nil, &t1)
gins(x86.AMOVW, ncon(0xf7f), &t2)
gins(x86.AFLDCW, &t2, nil)
示例10: blockcopy
// blockcopy copies w bytes from &n to &res
func blockcopy(n, res *gc.Node, osrc, odst, w int64) {
var dst gc.Node
var src gc.Node
if n.Ullman >= res.Ullman {
gc.Agenr(n, &dst, res) // temporarily use dst
gc.Regalloc(&src, gc.Types[gc.Tptr], nil)
gins(s390x.AMOVD, &dst, &src)
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agen(res, &dst)
} else {
if res.Op == gc.ONAME {
gc.Gvardef(res)
}
gc.Agenr(res, &dst, res)
gc.Agenr(n, &src, nil)
}
defer gc.Regfree(&src)
defer gc.Regfree(&dst)
var tmp gc.Node
gc.Regalloc(&tmp, gc.Types[gc.Tptr], nil)
defer gc.Regfree(&tmp)
offset := int64(0)
dir := _FORWARDS
if osrc < odst && odst < osrc+w {
// Reverse. Can't use MVC, fall back onto basic moves.
dir = _BACKWARDS
const copiesPerIter = 2
if w >= 8*copiesPerIter {
cnt := w - (w % (8 * copiesPerIter))
ginscon(s390x.AADD, w, &src)
ginscon(s390x.AADD, w, &dst)
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(s390x.ASUB, nil, &end)
p.From.Type = obj.TYPE_CONST
p.From.Offset = cnt
p.Reg = src.Reg
var label *obj.Prog
for i := 0; i < copiesPerIter; i++ {
offset := int64(-8 * (i + 1))
p := gins(s390x.AMOVD, &src, &tmp)
p.From.Type = obj.TYPE_MEM
p.From.Offset = offset
if i == 0 {
label = p
}
p = gins(s390x.AMOVD, &tmp, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = offset
}
ginscon(s390x.ASUB, 8*copiesPerIter, &src)
ginscon(s390x.ASUB, 8*copiesPerIter, &dst)
gins(s390x.ACMP, &src, &end)
gc.Patch(gc.Gbranch(s390x.ABNE, nil, 0), label)
gc.Regfree(&end)
w -= cnt
} else {
offset = w
}
}
if dir == _FORWARDS && w > 1024 {
// Loop over MVCs
cnt := w - (w % 256)
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
add := gins(s390x.AADD, nil, &end)
add.From.Type = obj.TYPE_CONST
add.From.Offset = cnt
add.Reg = src.Reg
mvc := gins(s390x.AMVC, &src, &dst)
mvc.From.Type = obj.TYPE_MEM
mvc.From.Offset = 0
mvc.To.Type = obj.TYPE_MEM
mvc.To.Offset = 0
mvc.From3 = new(obj.Addr)
mvc.From3.Type = obj.TYPE_CONST
mvc.From3.Offset = 256
ginscon(s390x.AADD, 256, &src)
ginscon(s390x.AADD, 256, &dst)
gins(s390x.ACMP, &src, &end)
gc.Patch(gc.Gbranch(s390x.ABNE, nil, 0), mvc)
gc.Regfree(&end)
w -= cnt
}
for w > 0 {
//.........這裏部分代碼省略.........
示例11: cgen64
//.........這裏部分代碼省略.........
case gc.OADD:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
gins(x86.AADDL, &lo2, &ax)
gins(x86.AADCL, &hi2, &dx)
// TODO: Constants.
case gc.OSUB:
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
gins(x86.ASUBL, &lo2, &ax)
gins(x86.ASBBL, &hi2, &dx)
case gc.OMUL:
// let's call the next three EX, FX and GX
var ex, fx, gx gc.Node
gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil)
gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil)
gc.Regalloc(&gx, gc.Types[gc.TPTR32], nil)
// load args into DX:AX and EX:GX.
gins(x86.AMOVL, &lo1, &ax)
gins(x86.AMOVL, &hi1, &dx)
gins(x86.AMOVL, &lo2, &gx)
gins(x86.AMOVL, &hi2, &ex)
// if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply.
gins(x86.AMOVL, &dx, &fx)
gins(x86.AORL, &ex, &fx)
p1 := gc.Gbranch(x86.AJNE, nil, 0)
gins(x86.AMULL, &gx, nil) // implicit &ax
p2 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
// full 64x64 -> 64, from 32x32 -> 64.
gins(x86.AIMULL, &gx, &dx)
gins(x86.AMOVL, &ax, &fx)
gins(x86.AIMULL, &ex, &fx)
gins(x86.AADDL, &dx, &fx)
gins(x86.AMOVL, &gx, &dx)
gins(x86.AMULL, &dx, nil) // implicit &ax
gins(x86.AADDL, &fx, &dx)
gc.Patch(p2, gc.Pc)
gc.Regfree(&ex)
gc.Regfree(&fx)
gc.Regfree(&gx)
// We only rotate by a constant c in [0,64).
// if c >= 32:
// lo, hi = hi, lo
// c -= 32
// if c == 0:
// no-op
// else:
// t = hi
// shld hi:lo, c
// shld lo:t, c
case gc.OLROT:
v := uint64(r.Int64())
示例12: floatmove_387
func floatmove_387(f *gc.Node, t *gc.Node) {
var r1 gc.Node
var a obj.As
ft := gc.Simsimtype(f.Type)
tt := gc.Simsimtype(t.Type)
cvt := t.Type
switch uint32(ft)<<16 | uint32(tt) {
default:
goto fatal
/*
* float to integer
*/
case gc.TFLOAT32<<16 | gc.TINT16,
gc.TFLOAT32<<16 | gc.TINT32,
gc.TFLOAT32<<16 | gc.TINT64,
gc.TFLOAT64<<16 | gc.TINT16,
gc.TFLOAT64<<16 | gc.TINT32,
gc.TFLOAT64<<16 | gc.TINT64:
if t.Op == gc.OREGISTER {
goto hardmem
}
var r1 gc.Node
gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0)
if f.Op != gc.OREGISTER {
if ft == gc.TFLOAT32 {
gins(x86.AFMOVF, f, &r1)
} else {
gins(x86.AFMOVD, f, &r1)
}
}
// set round to zero mode during conversion
var t1 gc.Node
memname(&t1, gc.Types[gc.TUINT16])
var t2 gc.Node
memname(&t2, gc.Types[gc.TUINT16])
gins(x86.AFSTCW, nil, &t1)
gins(x86.AMOVW, ncon(0xf7f), &t2)
gins(x86.AFLDCW, &t2, nil)
if tt == gc.TINT16 {
gins(x86.AFMOVWP, &r1, t)
} else if tt == gc.TINT32 {
gins(x86.AFMOVLP, &r1, t)
} else {
gins(x86.AFMOVVP, &r1, t)
}
gins(x86.AFLDCW, &t1, nil)
return
// convert via int32.
case gc.TFLOAT32<<16 | gc.TINT8,
gc.TFLOAT32<<16 | gc.TUINT16,
gc.TFLOAT32<<16 | gc.TUINT8,
gc.TFLOAT64<<16 | gc.TINT8,
gc.TFLOAT64<<16 | gc.TUINT16,
gc.TFLOAT64<<16 | gc.TUINT8:
var t1 gc.Node
gc.Tempname(&t1, gc.Types[gc.TINT32])
gmove(f, &t1)
switch tt {
default:
gc.Fatalf("gmove %v", t)
case gc.TINT8:
gins(x86.ACMPL, &t1, ncon(-0x80&(1<<32-1)))
p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1)
gins(x86.ACMPL, &t1, ncon(0x7f))
p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Patch(p2, gc.Pc)
gmove(ncon(-0x80&(1<<32-1)), &t1)
gc.Patch(p3, gc.Pc)
gmove(&t1, t)
case gc.TUINT8:
gins(x86.ATESTL, ncon(0xffffff00), &t1)
p1 := gc.Gbranch(x86.AJEQ, nil, +1)
gins(x86.AMOVL, ncon(0), &t1)
gc.Patch(p1, gc.Pc)
gmove(&t1, t)
case gc.TUINT16:
gins(x86.ATESTL, ncon(0xffff0000), &t1)
p1 := gc.Gbranch(x86.AJEQ, nil, +1)
gins(x86.AMOVL, ncon(0), &t1)
gc.Patch(p1, gc.Pc)
gmove(&t1, t)
}
return
// convert via int64.
case gc.TFLOAT32<<16 | gc.TUINT32,
gc.TFLOAT64<<16 | gc.TUINT32:
//.........這裏部分代碼省略.........
示例13: dodiv
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
// Have to be careful about handling
// most negative int divided by -1 correctly.
// The hardware will trap.
// Also the byte divide instruction needs AH,
// which we otherwise don't have to deal with.
// Easiest way to avoid for int8, int16: use int32.
// For int32 and int64, use explicit test.
// Could use int64 hw for int32.
t := nl.Type
t0 := t
check := false
if t.IsSigned() {
check = true
if gc.Isconst(nl, gc.CTINT) && nl.Int64() != -(1<<uint64(t.Width*8-1)) {
check = false
} else if gc.Isconst(nr, gc.CTINT) && nr.Int64() != -1 {
check = false
}
}
if t.Width < 4 {
if t.IsSigned() {
t = gc.Types[gc.TINT32]
} else {
t = gc.Types[gc.TUINT32]
}
check = false
}
a := optoas(op, t)
var n3 gc.Node
gc.Regalloc(&n3, t0, nil)
var ax gc.Node
var oldax gc.Node
if nl.Ullman >= nr.Ullman {
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen
gc.Cgen(nr, &n3)
gc.Regfree(&ax)
} else {
gc.Cgen(nr, &n3)
savex(x86.REG_AX, &ax, &oldax, res, t0)
gc.Cgen(nl, &ax)
}
if t != t0 {
// Convert
ax1 := ax
n31 := n3
ax.Type = t
n3.Type = t
gmove(&ax1, &ax)
gmove(&n31, &n3)
}
var n4 gc.Node
if gc.Nacl {
// Native Client does not relay the divide-by-zero trap
// to the executing program, so we must insert a check
// for ourselves.
gc.Nodconst(&n4, t, 0)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
}
var p2 *obj.Prog
if check {
gc.Nodconst(&n4, t, -1)
gins(optoas(gc.OCMP, t), &n3, &n4)
p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
if op == gc.ODIV {
// a / (-1) is -a.
gins(optoas(gc.OMINUS, t), nil, &ax)
gmove(&ax, res)
} else {
// a % (-1) is 0.
gc.Nodconst(&n4, t, 0)
gmove(&n4, res)
}
//.........這裏部分代碼省略.........
示例14: gmove
//.........這裏部分代碼省略.........
//warn("gmove: convert float to int not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
/*
* float to integer
*/
case gc.TFLOAT32<<16 | gc.TINT32,
gc.TFLOAT64<<16 | gc.TINT32,
gc.TFLOAT32<<16 | gc.TINT64,
gc.TFLOAT64<<16 | gc.TINT64,
gc.TFLOAT32<<16 | gc.TINT16,
gc.TFLOAT32<<16 | gc.TINT8,
gc.TFLOAT32<<16 | gc.TUINT16,
gc.TFLOAT32<<16 | gc.TUINT8,
gc.TFLOAT64<<16 | gc.TINT16,
gc.TFLOAT64<<16 | gc.TINT8,
gc.TFLOAT64<<16 | gc.TUINT16,
gc.TFLOAT64<<16 | gc.TUINT8,
gc.TFLOAT32<<16 | gc.TUINT32,
gc.TFLOAT64<<16 | gc.TUINT32,
gc.TFLOAT32<<16 | gc.TUINT64,
gc.TFLOAT64<<16 | gc.TUINT64:
bignodes()
gc.Regalloc(&r1, gc.Types[gc.TFLOAT64], nil)
gmove(f, &r1)
if tt == gc.TUINT64 {
gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], nil)
gmove(&bigf, &r2)
gins3(mips.ACMPGED, &r1, &r2, nil)
p1 := gc.Gbranch(mips.ABFPF, nil, 0)
gins(mips.ASUBD, &r2, &r1)
gc.Patch(p1, gc.Pc)
gc.Regfree(&r2)
}
gc.Regalloc(&r2, gc.Types[gc.TINT64], t)
gins(mips.ATRUNCDV, &r1, &r1)
gins(mips.AMOVV, &r1, &r2)
gc.Regfree(&r1)
if tt == gc.TUINT64 {
p1 := gc.Gbranch(mips.ABFPF, nil, 0) // use FCR0 here again
gc.Nodreg(&r1, gc.Types[gc.TINT64], mips.REGTMP)
gmove(&bigi, &r1)
gins(mips.AADDVU, &r1, &r2)
gc.Patch(p1, gc.Pc)
}
gmove(&r2, t)
gc.Regfree(&r2)
return
//warn("gmove: convert int to float not implemented: %N -> %N\n", f, t);
//return;
// algorithm is:
// if small enough, use native int64 -> float64 conversion.
// otherwise, halve (x -> (x>>1)|(x&1)), convert, and double.
/*
* integer to float
*/
case gc.TINT32<<16 | gc.TFLOAT32,
gc.TINT32<<16 | gc.TFLOAT64,
示例15: cmp64
/*
* generate comparison of nl, nr, both 64-bit.
* nl is memory; nr is constant or memory.
*/
func cmp64(nl *gc.Node, nr *gc.Node, op gc.Op, likely int, to *obj.Prog) {
var lo1 gc.Node
var hi1 gc.Node
var lo2 gc.Node
var hi2 gc.Node
var rr gc.Node
split64(nl, &lo1, &hi1)
split64(nr, &lo2, &hi2)
// compare most significant word;
// if they differ, we're done.
t := hi1.Type
if nl.Op == gc.OLITERAL || nr.Op == gc.OLITERAL {
gins(x86.ACMPL, &hi1, &hi2)
} else {
gc.Regalloc(&rr, gc.Types[gc.TINT32], nil)
gins(x86.AMOVL, &hi1, &rr)
gins(x86.ACMPL, &rr, &hi2)
gc.Regfree(&rr)
}
var br *obj.Prog
switch op {
default:
gc.Fatalf("cmp64 %v %v", op, t)
// cmp hi
// jne L
// cmp lo
// jeq to
// L:
case gc.OEQ:
br = gc.Gbranch(x86.AJNE, nil, -likely)
// cmp hi
// jne to
// cmp lo
// jne to
case gc.ONE:
gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to)
// cmp hi
// jgt to
// jlt L
// cmp lo
// jge to (or jgt to)
// L:
case gc.OGE,
gc.OGT:
gc.Patch(gc.Gbranch(optoas(gc.OGT, t), nil, likely), to)
br = gc.Gbranch(optoas(gc.OLT, t), nil, -likely)
// cmp hi
// jlt to
// jgt L
// cmp lo
// jle to (or jlt to)
// L:
case gc.OLE,
gc.OLT:
gc.Patch(gc.Gbranch(optoas(gc.OLT, t), nil, likely), to)
br = gc.Gbranch(optoas(gc.OGT, t), nil, -likely)
}
// compare least significant word
t = lo1.Type
if nl.Op == gc.OLITERAL || nr.Op == gc.OLITERAL {
gins(x86.ACMPL, &lo1, &lo2)
} else {
gc.Regalloc(&rr, gc.Types[gc.TINT32], nil)
gins(x86.AMOVL, &lo1, &rr)
gins(x86.ACMPL, &rr, &lo2)
gc.Regfree(&rr)
}
// jump again
gc.Patch(gc.Gbranch(optoas(op, t), nil, likely), to)
// point first branch down here if appropriate
if br != nil {
gc.Patch(br, gc.Pc)
}
splitclean()
splitclean()
}