本文整理匯總了Golang中cmd/compile/avail/gc.Cgen函數的典型用法代碼示例。如果您正苦於以下問題:Golang Cgen函數的具體用法?Golang Cgen怎麽用?Golang Cgen使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Cgen函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: cgenindex
/*
* generate array index into res.
* n might be any size; res is 32-bit.
* returns Prog* to patch to panic call.
*/
func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
gc.Cgen(n, res)
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var n1 gc.Node
gc.Regalloc(&n1, gc.Types[gc.TINT32], nil)
var n2 gc.Node
gc.Regalloc(&n2, gc.Types[gc.TINT32], nil)
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gmove(&hi, &n1)
gmove(&zero, &n2)
gins(arm.ACMP, &n1, &n2)
gc.Regfree(&n2)
gc.Regfree(&n1)
splitclean()
return gc.Gbranch(arm.ABNE, nil, -1)
}
示例2: dodiv
/*
* generate division.
* generates one of:
* res = nl / nr
* res = nl % nr
* according to op.
*/
func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
t := nl.Type
t0 := t
if t.Width < 8 {
if t.IsSigned() {
t = gc.Types[gc.TINT64]
} else {
t = gc.Types[gc.TUINT64]
}
}
a := optoas(gc.ODIV, t)
var tl gc.Node
gc.Regalloc(&tl, t0, nil)
var tr gc.Node
gc.Regalloc(&tr, t0, nil)
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &tl)
gc.Cgen(nr, &tr)
} else {
gc.Cgen(nr, &tr)
gc.Cgen(nl, &tl)
}
if t != t0 {
// Convert
tl2 := tl
tr2 := tr
tl.Type = t
tr.Type = t
gmove(&tl2, &tl)
gmove(&tr2, &tr)
}
// Handle divide-by-zero panic.
p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0)
if panicdiv == nil {
panicdiv = gc.Sysfunc("panicdivide")
}
gc.Ginscall(panicdiv, -1)
gc.Patch(p1, gc.Pc)
gins3(a, &tr, &tl, nil)
gc.Regfree(&tr)
if op == gc.ODIV {
var lo gc.Node
gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO)
gins(mips.AMOVV, &lo, &tl)
} else { // remainder in REG_HI
var hi gc.Node
gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI)
gins(mips.AMOVV, &hi, &tl)
}
gmove(&tl, res)
gc.Regfree(&tl)
}
示例3: igenindex
/*
* generate an addressable node in res, containing the value of n.
* n is an array index, and might be any size; res width is <= 32-bit.
* returns Prog* to patch to panic call.
*/
func igenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog {
if !gc.Is64(n.Type) {
if n.Addable && (gc.Simtype[n.Etype] == gc.TUINT32 || gc.Simtype[n.Etype] == gc.TINT32) {
// nothing to do.
*res = *n
} else {
gc.Tempname(res, gc.Types[gc.TUINT32])
gc.Cgen(n, res)
}
return nil
}
var tmp gc.Node
gc.Tempname(&tmp, gc.Types[gc.TINT64])
gc.Cgen(n, &tmp)
var lo gc.Node
var hi gc.Node
split64(&tmp, &lo, &hi)
gc.Tempname(res, gc.Types[gc.TUINT32])
gmove(&lo, res)
if bounded {
splitclean()
return nil
}
var zero gc.Node
gc.Nodconst(&zero, gc.Types[gc.TINT32], 0)
gins(x86.ACMPL, &hi, &zero)
splitclean()
return gc.Gbranch(x86.AJNE, nil, +1)
}
示例4: ginscmp
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if t.IsInteger() && n1.Op == gc.OLITERAL && n1.Int64() == 0 && n2.Op != gc.OLITERAL {
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if t.IsInteger() && n2.Op == gc.OLITERAL && n2.Int64() == 0 {
gins(arm.ACMP, &r1, n2)
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gins(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例5: ginscmp
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog {
if t.IsInteger() && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL {
// Reverse comparison to place constant last.
op = gc.Brrev(op)
n1, n2 = n2, n1
}
var r1, r2, g1, g2 gc.Node
gc.Regalloc(&r1, t, n1)
gc.Regalloc(&g1, n1.Type, &r1)
gc.Cgen(n1, &g1)
gmove(&g1, &r1)
if t.IsInteger() && gc.Isconst(n2, gc.CTINT) {
ginscon2(optoas(gc.OCMP, t), &r1, n2.Int64())
} else {
gc.Regalloc(&r2, t, n2)
gc.Regalloc(&g2, n1.Type, &r2)
gc.Cgen(n2, &g2)
gmove(&g2, &r2)
gcmp(optoas(gc.OCMP, t), &r1, &r2)
gc.Regfree(&g2)
gc.Regfree(&r2)
}
gc.Regfree(&g1)
gc.Regfree(&r1)
return gc.Gbranch(optoas(op, t), nil, likely)
}
示例6: cgen_bmul
/*
* generate byte multiply:
* res = nl * nr
* there is no 2-operand byte multiply instruction so
* we do a full-width multiplication and truncate afterwards.
*/
func cgen_bmul(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) bool {
if optoas(op, nl.Type) != x86.AIMULB {
return false
}
// copy from byte to full registers
t := gc.Types[gc.TUINT32]
if nl.Type.IsSigned() {
t = gc.Types[gc.TINT32]
}
// largest ullman on left.
if nl.Ullman < nr.Ullman {
nl, nr = nr, nl
}
var nt gc.Node
gc.Tempname(&nt, nl.Type)
gc.Cgen(nl, &nt)
var n1 gc.Node
gc.Regalloc(&n1, t, res)
gc.Cgen(nr, &n1)
var n2 gc.Node
gc.Regalloc(&n2, t, nil)
gmove(&nt, &n2)
a := optoas(op, t)
gins(a, &n2, &n1)
gc.Regfree(&n2)
gmove(&n1, res)
gc.Regfree(&n1)
return true
}
示例7: cgen_hmul
/*
* generate high multiply
* res = (nl * nr) >> wordsize
*/
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
if nl.Ullman < nr.Ullman {
nl, nr = nr, nl
}
t := nl.Type
w := t.Width * 8
var n1 gc.Node
gc.Regalloc(&n1, t, res)
gc.Cgen(nl, &n1)
var n2 gc.Node
gc.Regalloc(&n2, t, nil)
gc.Cgen(nr, &n2)
switch gc.Simtype[t.Etype] {
case gc.TINT8,
gc.TINT16:
gins(optoas(gc.OMUL, t), &n2, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)
case gc.TUINT8,
gc.TUINT16:
gins(optoas(gc.OMUL, t), &n2, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1)
// perform a long multiplication.
case gc.TINT32,
gc.TUINT32:
var p *obj.Prog
if t.IsSigned() {
p = gins(arm.AMULL, &n2, nil)
} else {
p = gins(arm.AMULLU, &n2, nil)
}
// n2 * n1 -> (n1 n2)
p.Reg = n1.Reg
p.To.Type = obj.TYPE_REGREG
p.To.Reg = n1.Reg
p.To.Offset = int64(n2.Reg)
default:
gc.Fatalf("cgen_hmul %v", t)
}
gc.Cgen(&n1, res)
gc.Regfree(&n1)
gc.Regfree(&n2)
}
示例8: cgen_float
/*
* generate floating-point operation.
*/
func cgen_float(n *gc.Node, res *gc.Node) {
nl := n.Left
switch n.Op {
case gc.OEQ,
gc.ONE,
gc.OLT,
gc.OLE,
gc.OGE:
p1 := gc.Gbranch(obj.AJMP, nil, 0)
p2 := gc.Pc
gmove(gc.Nodbool(true), res)
p3 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
gc.Bgen(n, true, 0, p2)
gmove(gc.Nodbool(false), res)
gc.Patch(p3, gc.Pc)
return
case gc.OPLUS:
gc.Cgen(nl, res)
return
case gc.OCONV:
if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) {
gc.Cgen(nl, res)
return
}
var n2 gc.Node
gc.Tempname(&n2, n.Type)
var n1 gc.Node
gc.Mgen(nl, &n1, res)
gmove(&n1, &n2)
gmove(&n2, res)
gc.Mfree(&n1)
return
}
if gc.Thearch.Use387 {
cgen_float387(n, res)
} else {
cgen_floatsse(n, res)
}
}
示例9: cgen_float387
// floating-point. 387 (not SSE2)
func cgen_float387(n *gc.Node, res *gc.Node) {
var f0 gc.Node
var f1 gc.Node
nl := n.Left
nr := n.Right
gc.Nodreg(&f0, nl.Type, x86.REG_F0)
gc.Nodreg(&f1, n.Type, x86.REG_F0+1)
if nr != nil {
// binary
if nl.Ullman >= nr.Ullman {
gc.Cgen(nl, &f0)
if nr.Addable {
gins(foptoas(n.Op, n.Type, 0), nr, &f0)
} else {
gc.Cgen(nr, &f0)
gins(foptoas(n.Op, n.Type, Fpop), &f0, &f1)
}
} else {
gc.Cgen(nr, &f0)
if nl.Addable {
gins(foptoas(n.Op, n.Type, Frev), nl, &f0)
} else {
gc.Cgen(nl, &f0)
gins(foptoas(n.Op, n.Type, Frev|Fpop), &f0, &f1)
}
}
gmove(&f0, res)
return
}
// unary
gc.Cgen(nl, &f0)
if n.Op != gc.OCONV && n.Op != gc.OPLUS {
gins(foptoas(n.Op, n.Type, 0), nil, nil)
}
gmove(&f0, res)
return
}
示例10: cgen64
/*
* attempt to generate 64-bit
* res = n
* return 1 on success, 0 if op not handled.
*/
func cgen64(n *gc.Node, res *gc.Node) {
if res.Op != gc.OINDREG && res.Op != gc.ONAME {
gc.Dump("n", n)
gc.Dump("res", res)
gc.Fatalf("cgen64 %v of %v", n.Op, res.Op)
}
l := n.Left
var t1 gc.Node
if !l.Addable {
gc.Tempname(&t1, l.Type)
gc.Cgen(l, &t1)
l = &t1
}
var hi1 gc.Node
var lo1 gc.Node
split64(l, &lo1, &hi1)
switch n.Op {
default:
gc.Fatalf("cgen64 %v", n.Op)
case gc.OMINUS:
var lo2 gc.Node
var hi2 gc.Node
split64(res, &lo2, &hi2)
gc.Regalloc(&t1, lo1.Type, nil)
var al gc.Node
gc.Regalloc(&al, lo1.Type, nil)
var ah gc.Node
gc.Regalloc(&ah, hi1.Type, nil)
gins(arm.AMOVW, &lo1, &al)
gins(arm.AMOVW, &hi1, &ah)
gmove(ncon(0), &t1)
p1 := gins(arm.ASUB, &al, &t1)
p1.Scond |= arm.C_SBIT
gins(arm.AMOVW, &t1, &lo2)
gmove(ncon(0), &t1)
gins(arm.ASBC, &ah, &t1)
gins(arm.AMOVW, &t1, &hi2)
gc.Regfree(&t1)
gc.Regfree(&al)
gc.Regfree(&ah)
splitclean()
splitclean()
return
case gc.OCOM:
gc.Regalloc(&t1, lo1.Type, nil)
gmove(ncon(^uint32(0)), &t1)
var lo2 gc.Node
var hi2 gc.Node
split64(res, &lo2, &hi2)
var n1 gc.Node
gc.Regalloc(&n1, lo1.Type, nil)
gins(arm.AMOVW, &lo1, &n1)
gins(arm.AEOR, &t1, &n1)
gins(arm.AMOVW, &n1, &lo2)
gins(arm.AMOVW, &hi1, &n1)
gins(arm.AEOR, &t1, &n1)
gins(arm.AMOVW, &n1, &hi2)
gc.Regfree(&t1)
gc.Regfree(&n1)
splitclean()
splitclean()
return
// binary operators.
// common setup below.
case gc.OADD,
gc.OSUB,
gc.OMUL,
gc.OLSH,
gc.ORSH,
gc.OAND,
gc.OOR,
gc.OXOR,
gc.OLROT:
break
}
// setup for binary operators
r := n.Right
if r != nil && !r.Addable {
var t2 gc.Node
//.........這裏部分代碼省略.........
示例11: clearfat
func clearfat(nl *gc.Node) {
/* clear a fat object */
if gc.Debug['g'] != 0 {
gc.Dump("\nclearfat", nl)
}
w := uint32(nl.Type.Width)
// Avoid taking the address for simple enough types.
if gc.Componentgen(nil, nl) {
return
}
c := w % 4 // bytes
q := w / 4 // quads
if nl.Type.Align < 4 {
q = 0
c = w
}
var r0 gc.Node
r0.Op = gc.OREGISTER
r0.Reg = arm.REG_R0
var r1 gc.Node
r1.Op = gc.OREGISTER
r1.Reg = arm.REG_R1
var dst gc.Node
gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1)
gc.Agen(nl, &dst)
var nc gc.Node
gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0)
var nz gc.Node
gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0)
gc.Cgen(&nc, &nz)
if q > 128 {
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(q) * 4
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
} else if q >= 4 && !gc.Nacl {
f := gc.Sysfunc("duffzero")
p := gins(obj.ADUFFZERO, nil, f)
gc.Afunclit(&p.To, f)
// 4 and 128 = magic constants: see ../../runtime/asm_arm.s
p.To.Offset = 4 * (128 - int64(q))
} else {
var p *obj.Prog
for q > 0 {
p = gins(arm.AMOVW, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 4
p.Scond |= arm.C_PBIT
//print("1. %v\n", p);
q--
}
}
if c > 4 {
// Loop to zero unaligned memory.
var end gc.Node
gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
p := gins(arm.AMOVW, &dst, &end)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = int64(c)
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 1
p.Scond |= arm.C_PBIT
pl := p
p = gins(arm.ACMP, &dst, nil)
raddr(&end, p)
gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl)
gc.Regfree(&end)
c = 0
}
var p *obj.Prog
for c > 0 {
p = gins(arm.AMOVB, &nz, &dst)
p.To.Type = obj.TYPE_MEM
//.........這裏部分代碼省略.........
示例12: cgen_shift
/*
* generate shift according to op, one of:
* res = nl << nr
* res = nl >> nr
*/
func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
if nl.Type.Width > 4 {
gc.Fatalf("cgen_shift %v", nl.Type)
}
w := int(nl.Type.Width * 8)
if op == gc.OLROT {
v := nr.Int64()
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
if w == 32 {
gc.Cgen(nl, &n1)
gshift(arm.AMOVW, &n1, arm.SHIFT_RR, int32(w)-int32(v), &n1)
} else {
var n2 gc.Node
gc.Regalloc(&n2, nl.Type, nil)
gc.Cgen(nl, &n2)
gshift(arm.AMOVW, &n2, arm.SHIFT_LL, int32(v), &n1)
gshift(arm.AORR, &n2, arm.SHIFT_LR, int32(w)-int32(v), &n1)
gc.Regfree(&n2)
// Ensure sign/zero-extended result.
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
if nr.Op == gc.OLITERAL {
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gc.Cgen(nl, &n1)
sc := uint64(nr.Int64())
if sc == 0 {
} else // nothing to do
if sc >= uint64(nl.Type.Width*8) {
if op == gc.ORSH && nl.Type.IsSigned() {
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)
} else {
gins(arm.AEOR, &n1, &n1)
}
} else {
if op == gc.ORSH && nl.Type.IsSigned() {
gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(sc), &n1)
} else if op == gc.ORSH {
gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(sc), &n1) // OLSH
} else {
gshift(arm.AMOVW, &n1, arm.SHIFT_LL, int32(sc), &n1)
}
}
if w < 32 && op == gc.OLSH {
gins(optoas(gc.OAS, nl.Type), &n1, &n1)
}
gmove(&n1, res)
gc.Regfree(&n1)
return
}
tr := nr.Type
var t gc.Node
var n1 gc.Node
var n2 gc.Node
var n3 gc.Node
if tr.Width > 4 {
var nt gc.Node
gc.Tempname(&nt, nr.Type)
if nl.Ullman >= nr.Ullman {
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
gc.Cgen(nr, &nt)
n1 = nt
} else {
gc.Cgen(nr, &nt)
gc.Regalloc(&n2, nl.Type, res)
gc.Cgen(nl, &n2)
}
var hi gc.Node
var lo gc.Node
split64(&nt, &lo, &hi)
gc.Regalloc(&n1, gc.Types[gc.TUINT32], nil)
gc.Regalloc(&n3, gc.Types[gc.TUINT32], nil)
gmove(&lo, &n1)
gmove(&hi, &n3)
splitclean()
gins(arm.ATST, &n3, nil)
gc.Nodconst(&t, gc.Types[gc.TUINT32], int64(w))
p1 := gins(arm.AMOVW, &t, &n1)
p1.Scond = arm.C_SCOND_NE
tr = gc.Types[gc.TUINT32]
gc.Regfree(&n3)
//.........這裏部分代碼省略.........
示例13: sudoaddable
//.........這裏部分代碼省略.........
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
n1 := *reg
n1.Op = gc.OINDREG
if oary[0] >= 0 {
gc.Agen(nn, reg)
n1.Xoffset = oary[0]
} else {
gc.Cgen(nn, reg)
gc.Cgen_checknil(reg)
n1.Xoffset = -(oary[0] + 1)
}
for i := 1; i < o; i++ {
if oary[i] >= 0 {
gc.Fatalf("can't happen")
}
gins(movptr, &n1, reg)
gc.Cgen_checknil(reg)
n1.Xoffset = -(oary[i] + 1)
}
a.Type = obj.TYPE_NONE
a.Index = x86.REG_NONE
gc.Fixlargeoffset(&n1)
gc.Naddr(a, &n1)
return true
case gc.OINDEX:
return false
}
return false
}
示例14: cgen_floatsse
func cgen_floatsse(n *gc.Node, res *gc.Node) {
var a obj.As
nl := n.Left
nr := n.Right
switch n.Op {
default:
gc.Dump("cgen_floatsse", n)
gc.Fatalf("cgen_floatsse %v", n.Op)
return
case gc.OMINUS,
gc.OCOM:
nr = gc.NegOne(n.Type)
a = foptoas(gc.OMUL, nl.Type, 0)
goto sbop
// symmetric binary
case gc.OADD,
gc.OMUL:
a = foptoas(n.Op, nl.Type, 0)
goto sbop
// asymmetric binary
case gc.OSUB,
gc.OMOD,
gc.ODIV:
a = foptoas(n.Op, nl.Type, 0)
goto abop
}
sbop: // symmetric binary
if nl.Ullman < nr.Ullman || nl.Op == gc.OLITERAL {
nl, nr = nr, nl
}
abop: // asymmetric binary
if nl.Ullman >= nr.Ullman {
var nt gc.Node
gc.Tempname(&nt, nl.Type)
gc.Cgen(nl, &nt)
var n2 gc.Node
gc.Mgen(nr, &n2, nil)
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, res)
gmove(&nt, &n1)
gins(a, &n2, &n1)
gmove(&n1, res)
gc.Regfree(&n1)
gc.Mfree(&n2)
} else {
var n2 gc.Node
gc.Regalloc(&n2, nr.Type, res)
gc.Cgen(nr, &n2)
var n1 gc.Node
gc.Regalloc(&n1, nl.Type, nil)
gc.Cgen(nl, &n1)
gins(a, &n2, &n1)
gc.Regfree(&n2)
gmove(&n1, res)
gc.Regfree(&n1)
}
return
}
示例15: bgen_float
func bgen_float(n *gc.Node, wantTrue bool, likely int, to *obj.Prog) {
nl := n.Left
nr := n.Right
op := n.Op
if !wantTrue {
// brcom is not valid on floats when NaN is involved.
p1 := gc.Gbranch(obj.AJMP, nil, 0)
p2 := gc.Gbranch(obj.AJMP, nil, 0)
gc.Patch(p1, gc.Pc)
// No need to avoid re-genning ninit.
bgen_float(n, true, -likely, p2)
gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
gc.Patch(p2, gc.Pc)
return
}
if gc.Thearch.Use387 {
op = gc.Brrev(op) // because the args are stacked
if op == gc.OGE || op == gc.OGT {
// only < and <= work right with NaN; reverse if needed
nl, nr = nr, nl
op = gc.Brrev(op)
}
var ax, n2, tmp gc.Node
gc.Nodreg(&tmp, nr.Type, x86.REG_F0)
gc.Nodreg(&n2, nr.Type, x86.REG_F0+1)
gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX)
if gc.Simsimtype(nr.Type) == gc.TFLOAT64 {
if nl.Ullman > nr.Ullman {
gc.Cgen(nl, &tmp)
gc.Cgen(nr, &tmp)
gins(x86.AFXCHD, &tmp, &n2)
} else {
gc.Cgen(nr, &tmp)
gc.Cgen(nl, &tmp)
}
gins(x86.AFUCOMPP, &tmp, &n2)
} else {
// TODO(rsc): The moves back and forth to memory
// here are for truncating the value to 32 bits.
// This handles 32-bit comparison but presumably
// all the other ops have the same problem.
// We need to figure out what the right general
// solution is, besides telling people to use float64.
var t1 gc.Node
gc.Tempname(&t1, gc.Types[gc.TFLOAT32])
var t2 gc.Node
gc.Tempname(&t2, gc.Types[gc.TFLOAT32])
gc.Cgen(nr, &t1)
gc.Cgen(nl, &t2)
gmove(&t2, &tmp)
gins(x86.AFCOMFP, &t1, &tmp)
}
gins(x86.AFSTSW, nil, &ax)
gins(x86.ASAHF, nil, nil)
} else {
// Not 387
if !nl.Addable {
nl = gc.CgenTemp(nl)
}
if !nr.Addable {
nr = gc.CgenTemp(nr)
}
var n2 gc.Node
gc.Regalloc(&n2, nr.Type, nil)
gmove(nr, &n2)
nr = &n2
if nl.Op != gc.OREGISTER {
var n3 gc.Node
gc.Regalloc(&n3, nl.Type, nil)
gmove(nl, &n3)
nl = &n3
}
if op == gc.OGE || op == gc.OGT {
// only < and <= work right with NopN; reverse if needed
nl, nr = nr, nl
op = gc.Brrev(op)
}
gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr)
if nl.Op == gc.OREGISTER {
gc.Regfree(nl)
}
gc.Regfree(nr)
}
switch op {
case gc.OEQ:
// neither NE nor P
p1 := gc.Gbranch(x86.AJNE, nil, -likely)
p2 := gc.Gbranch(x86.AJPS, nil, -likely)
gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to)
gc.Patch(p1, gc.Pc)
//.........這裏部分代碼省略.........