本文整理匯總了Golang中bootstrap/internal/obj.Addr.Type方法的典型用法代碼示例。如果您正苦於以下問題:Golang Addr.Type方法的具體用法?Golang Addr.Type怎麽用?Golang Addr.Type使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bootstrap/internal/obj.Addr
的用法示例。
在下文中一共展示了Addr.Type方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: setPseudoRegister
// setPseudoRegister sets the NAME field of addr for a pseudo-register reference such as (SB).
func (p *Parser) setPseudoRegister(addr *obj.Addr, reg string, isStatic bool, prefix rune) {
if addr.Reg != 0 {
p.errorf("internal error: reg %s already set in pseudo", reg)
}
switch reg {
case "FP":
addr.Name = obj.NAME_PARAM
case "PC":
if prefix != 0 {
p.errorf("illegal addressing mode for PC")
}
addr.Type = obj.TYPE_BRANCH // We set the type and leave NAME untouched. See asmJump.
case "SB":
addr.Name = obj.NAME_EXTERN
if isStatic {
addr.Name = obj.NAME_STATIC
}
case "SP":
addr.Name = obj.NAME_AUTO // The pseudo-stack.
default:
p.errorf("expected pseudo-register; found %s", reg)
}
if prefix == '$' {
addr.Type = obj.TYPE_ADDR
}
}
示例2: symbolReference
// symbolReference parses a symbol that is known not to be a register.
func (p *Parser) symbolReference(a *obj.Addr, name string, prefix rune) {
// Identifier is a name.
switch prefix {
case 0:
a.Type = obj.TYPE_MEM
case '$':
a.Type = obj.TYPE_ADDR
case '*':
a.Type = obj.TYPE_INDIR
}
// Weirdness with statics: Might now have "<>".
isStatic := 0 // TODO: Really a boolean, but Linklookup wants a "version" integer.
if p.peek() == '<' {
isStatic = 1
p.next()
p.get('>')
}
if p.peek() == '+' || p.peek() == '-' {
a.Offset = int64(p.expr())
}
a.Sym = obj.Linklookup(p.ctxt, name, isStatic)
if p.peek() == scanner.EOF {
if prefix == 0 && p.isJump {
// Symbols without prefix or suffix are jump labels.
return
}
p.errorf("illegal or missing addressing mode for symbol %s", name)
return
}
// Expect (SB), (FP), (PC), or (SP)
p.get('(')
reg := p.get(scanner.Ident).String()
p.get(')')
p.setPseudoRegister(a, reg, isStatic != 0, prefix)
}
示例3: datagostring
func datagostring(sval string, a *obj.Addr) {
symhdr, _ := stringsym(sval)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(symhdr)
a.Node = symhdr.Def
a.Offset = 0
a.Etype = uint8(TSTRING)
}
示例4: Datastring
func Datastring(s string, a *obj.Addr) {
_, symdata := stringsym(s)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(symdata)
a.Node = symdata.Def
a.Offset = 0
a.Etype = uint8(Simtype[TINT])
}
示例5: addreg
func addreg(a *obj.Addr, rn int) {
a.Sym = nil
a.Node = nil
a.Offset = 0
a.Type = obj.TYPE_REG
a.Reg = int16(rn)
a.Name = 0
Ostats.Ncvtreg++
}
示例6: registerList
// registerList parses an ARM register list expression, a list of registers in [].
// There may be comma-separated ranges or individual registers, as in
// [R1,R3-R5]. Only R0 through R15 may appear.
// The opening bracket has been consumed.
func (p *Parser) registerList(a *obj.Addr) {
// One range per loop.
const maxReg = 16
var bits uint16
ListLoop:
for {
tok := p.next()
switch tok.ScanToken {
case ']':
break ListLoop
case scanner.EOF:
p.errorf("missing ']' in register list")
return
}
// Parse the upper and lower bounds.
lo := p.registerNumber(tok.String())
hi := lo
if p.peek() == '-' {
p.next()
hi = p.registerNumber(p.next().String())
}
if hi < lo {
lo, hi = hi, lo
}
// Check there are no duplicates in the register list.
for i := 0; lo <= hi && i < maxReg; i++ {
if bits&(1<<lo) != 0 {
p.errorf("register R%d already in list", lo)
}
bits |= 1 << lo
lo++
}
if p.peek() != ']' {
p.get(',')
}
}
a.Type = obj.TYPE_REGLIST
a.Offset = int64(bits)
}
示例7: registerIndirect
// registerIndirect parses the general form of a register indirection.
// It is can be (R1), (R2*scale), or (R1)(R2*scale) where R1 may be a simple
// register or register pair R:R or (R, R) or (R+R).
// Or it might be a pseudo-indirection like (FP).
// We are sitting on the opening parenthesis.
func (p *Parser) registerIndirect(a *obj.Addr, prefix rune) {
p.get('(')
tok := p.next()
name := tok.String()
r1, r2, scale, ok := p.register(name, 0)
if !ok {
p.errorf("indirect through non-register %s", tok)
}
p.get(')')
a.Type = obj.TYPE_MEM
if r1 < 0 {
// Pseudo-register reference.
if r2 != 0 {
p.errorf("cannot use pseudo-register in pair")
return
}
// For SB, SP, and FP, there must be a name here. 0(FP) is not legal.
if name != "PC" && a.Name == obj.NAME_NONE {
p.errorf("cannot reference %s without a symbol", name)
}
p.setPseudoRegister(a, name, false, prefix)
return
}
a.Reg = r1
if r2 != 0 {
// TODO: Consistency in the encoding would be nice here.
if p.arch.Thechar == '5' || p.arch.Thechar == '7' {
// Special form
// ARM: destination register pair (R1, R2).
// ARM64: register pair (R1, R2) for LDP/STP.
if prefix != 0 || scale != 0 {
p.errorf("illegal address mode for register pair")
return
}
a.Type = obj.TYPE_REGREG
a.Offset = int64(r2)
// Nothing may follow
return
}
if p.arch.Thechar == '9' {
// Special form for PPC64: (R1+R2); alias for (R1)(R2*1).
if prefix != 0 || scale != 0 {
p.errorf("illegal address mode for register+register")
return
}
a.Type = obj.TYPE_MEM
a.Scale = 1
a.Index = r2
// Nothing may follow.
return
}
}
if r2 != 0 {
p.errorf("indirect through register pair")
}
if prefix == '$' {
a.Type = obj.TYPE_ADDR
}
if r1 == arch.RPC && prefix != 0 {
p.errorf("illegal addressing mode for PC")
}
if scale == 0 && p.peek() == '(' {
// General form (R)(R*scale).
p.next()
tok := p.next()
r1, r2, scale, ok = p.register(tok.String(), 0)
if !ok {
p.errorf("indirect through non-register %s", tok)
}
if r2 != 0 {
p.errorf("unimplemented two-register form")
}
a.Index = r1
a.Scale = int16(scale)
p.get(')')
} else if scale != 0 {
// First (R) was missing, all we have is (R*scale).
a.Reg = 0
a.Index = r1
a.Scale = int16(scale)
}
}
示例8: operand
// operand parses a general operand and stores the result in *a.
func (p *Parser) operand(a *obj.Addr) bool {
//fmt.Printf("Operand: %v\n", p.input)
if len(p.input) == 0 {
p.errorf("empty operand: cannot happen")
return false
}
// General address (with a few exceptions) looks like
// $sym±offset(SB)(reg)(index*scale)
// Exceptions are:
//
// R1
// offset
// $offset
// Every piece is optional, so we scan left to right and what
// we discover tells us where we are.
// Prefix: $.
var prefix rune
switch tok := p.peek(); tok {
case '$', '*':
prefix = rune(tok)
p.next()
}
// Symbol: sym±offset(SB)
tok := p.next()
name := tok.String()
if tok.ScanToken == scanner.Ident && !p.atStartOfRegister(name) {
// We have a symbol. Parse $sym±offset(symkind)
p.symbolReference(a, name, prefix)
// fmt.Printf("SYM %s\n", obj.Dconv(&emptyProg, 0, a))
if p.peek() == scanner.EOF {
return true
}
}
// Special register list syntax for arm: [R1,R3-R7]
if tok.ScanToken == '[' {
if prefix != 0 {
p.errorf("illegal use of register list")
}
p.registerList(a)
p.expect(scanner.EOF)
return true
}
// Register: R1
if tok.ScanToken == scanner.Ident && p.atStartOfRegister(name) {
if p.atRegisterShift() {
// ARM shifted register such as R1<<R2 or R1>>2.
a.Type = obj.TYPE_SHIFT
a.Offset = p.registerShift(tok.String(), prefix)
if p.peek() == '(' {
// Can only be a literal register here.
p.next()
tok := p.next()
name := tok.String()
if !p.atStartOfRegister(name) {
p.errorf("expected register; found %s", name)
}
a.Reg, _ = p.registerReference(name)
p.get(')')
}
} else if r1, r2, scale, ok := p.register(tok.String(), prefix); ok {
if scale != 0 {
p.errorf("expected simple register reference")
}
a.Type = obj.TYPE_REG
a.Reg = r1
if r2 != 0 {
// Form is R1:R2. It is on RHS and the second register
// needs to go into the LHS.
panic("cannot happen (Addr.Reg2)")
}
}
// fmt.Printf("REG %s\n", obj.Dconv(&emptyProg, 0, a))
p.expect(scanner.EOF)
return true
}
// Constant.
haveConstant := false
switch tok.ScanToken {
case scanner.Int, scanner.Float, scanner.String, scanner.Char, '+', '-', '~':
haveConstant = true
case '(':
// Could be parenthesized expression or (R). Must be something, though.
tok := p.next()
if tok.ScanToken == scanner.EOF {
p.errorf("missing right parenthesis")
return false
}
rname := tok.String()
p.back()
haveConstant = !p.atStartOfRegister(rname)
if !haveConstant {
p.back() // Put back the '('.
}
}
//.........這裏部分代碼省略.........
示例9: xtramodes
/*
* xtramodes enables the ARM post increment and
* shift offset addressing modes to transform
* MOVW 0(R3),R1
* ADD $4,R3,R3
* into
* MOVW.P 4(R3),R1
* and
* ADD R0,R1
* MOVBU 0(R1),R0
* into
* MOVBU R0<<0(R1),R0
*/
func xtramodes(g *gc.Graph, r *gc.Flow, a *obj.Addr) bool {
p := (*obj.Prog)(r.Prog)
v := obj.Addr(*a)
v.Type = obj.TYPE_REG
r1 := (*gc.Flow)(findpre(r, &v))
if r1 != nil {
p1 := r1.Prog
if p1.To.Type == obj.TYPE_REG && p1.To.Reg == v.Reg {
switch p1.As {
case arm.AADD:
if p1.Scond&arm.C_SBIT != 0 {
// avoid altering ADD.S/ADC sequences.
break
}
if p1.From.Type == obj.TYPE_REG || (p1.From.Type == obj.TYPE_SHIFT && p1.From.Offset&(1<<4) == 0 && ((p.As != arm.AMOVB && p.As != arm.AMOVBS) || (a == &p.From && p1.From.Offset&^0xf == 0))) || ((p1.From.Type == obj.TYPE_ADDR || p1.From.Type == obj.TYPE_CONST) && p1.From.Offset > -4096 && p1.From.Offset < 4096) {
if nochange(gc.Uniqs(r1), r, p1) {
if a != &p.From || v.Reg != p.To.Reg {
if finduse(g, r.S1, &v) {
if p1.Reg == 0 || p1.Reg == v.Reg {
/* pre-indexing */
p.Scond |= arm.C_WBIT
} else {
return false
}
}
}
switch p1.From.Type {
/* register offset */
case obj.TYPE_REG:
if gc.Nacl {
return false
}
*a = obj.Addr{}
a.Type = obj.TYPE_SHIFT
a.Offset = int64(p1.From.Reg) & 15
/* scaled register offset */
case obj.TYPE_SHIFT:
if gc.Nacl {
return false
}
*a = obj.Addr{}
a.Type = obj.TYPE_SHIFT
fallthrough
/* immediate offset */
case obj.TYPE_CONST,
obj.TYPE_ADDR:
a.Offset = p1.From.Offset
}
if p1.Reg != 0 {
a.Reg = p1.Reg
}
excise(r1)
return true
}
}
case arm.AMOVW:
if p1.From.Type == obj.TYPE_REG {
r2 := (*gc.Flow)(findinc(r1, r, &p1.From))
if r2 != nil {
var r3 *gc.Flow
for r3 = gc.Uniqs(r2); r3.Prog.As == obj.ANOP; r3 = gc.Uniqs(r3) {
}
if r3 == r {
/* post-indexing */
p1 := r2.Prog
a.Reg = p1.To.Reg
a.Offset = p1.From.Offset
p.Scond |= arm.C_PBIT
if !finduse(g, r, &r1.Prog.To) {
excise(r1)
}
excise(r2)
return true
}
}
}
}
}
}
//.........這裏部分代碼省略.........
示例10: sudoaddable
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
if n.Type == nil {
return false
}
*a = obj.Addr{}
switch n.Op {
case gc.OLITERAL:
if !gc.Isconst(n, gc.CTINT) {
break
}
v := n.Int()
if v >= 32000 || v <= -32000 {
break
}
switch as {
default:
return false
case x86.AADDB,
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
//.........這裏部分代碼省略.........
示例11: mkvar
func mkvar(f *Flow, a *obj.Addr) Bits {
// mark registers used
if a.Type == obj.TYPE_NONE {
return zbits
}
r := f.Data.(*Reg)
r.use1.b[0] |= Thearch.Doregbits(int(a.Index)) // TODO: Use RtoB
var n int
switch a.Type {
default:
regu := Thearch.Doregbits(int(a.Reg)) | Thearch.RtoB(int(a.Reg)) // TODO: Use RtoB
if regu == 0 {
return zbits
}
bit := zbits
bit.b[0] = regu
return bit
// TODO(rsc): Remove special case here.
case obj.TYPE_ADDR:
var bit Bits
if Thearch.Thechar == '0' || Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' {
goto memcase
}
a.Type = obj.TYPE_MEM
bit = mkvar(f, a)
setaddrs(bit)
a.Type = obj.TYPE_ADDR
Ostats.Naddr++
return zbits
memcase:
fallthrough
case obj.TYPE_MEM:
if r != nil {
r.use1.b[0] |= Thearch.RtoB(int(a.Reg))
}
/* NOTE: 5g did
if(r->f.prog->scond & (C_PBIT|C_WBIT))
r->set.b[0] |= RtoB(a->reg);
*/
switch a.Name {
default:
// Note: This case handles NAME_EXTERN and NAME_STATIC.
// We treat these as requiring eager writes to memory, due to
// the possibility of a fault handler looking at them, so there is
// not much point in registerizing the loads.
// If we later choose the set of candidate variables from a
// larger list, these cases could be deprioritized instead of
// removed entirely.
return zbits
case obj.NAME_PARAM,
obj.NAME_AUTO:
n = int(a.Name)
}
}
node, _ := a.Node.(*Node)
if node == nil || node.Op != ONAME || node.Orig == nil {
return zbits
}
node = node.Orig
if node.Orig != node {
Fatalf("%v: bad node", Ctxt.Dconv(a))
}
if node.Sym == nil || node.Sym.Name[0] == '.' {
return zbits
}
et := EType(a.Etype)
o := a.Offset
w := a.Width
if w < 0 {
Fatalf("bad width %d for %v", w, Ctxt.Dconv(a))
}
flag := 0
var v *Var
for i := 0; i < nvar; i++ {
v = &vars[i]
if v.node == node && int(v.name) == n {
if v.offset == o {
if v.etype == et {
if int64(v.width) == w {
// TODO(rsc): Remove special case for arm here.
if flag == 0 || Thearch.Thechar != '5' {
return blsh(uint(i))
}
}
}
}
// if they overlap, disable both
if overlap_reg(v.offset, v.width, o, int(w)) {
// print("disable overlap %s %d %d %d %d, %E != %E\n", s->name, v->offset, v->width, o, w, v->etype, et);
v.addr = 1
//.........這裏部分代碼省略.........
示例12: Naddr
// Naddr rewrites a to refer to n.
// It assumes that a is zeroed on entry.
func Naddr(a *obj.Addr, n *Node) {
if n == nil {
return
}
if n.Type != nil && n.Type.Etype != TIDEAL {
// TODO(rsc): This is undone by the selective clearing of width below,
// to match architectures that were not as aggressive in setting width
// during naddr. Those widths must be cleared to avoid triggering
// failures in gins when it detects real but heretofore latent (and one
// hopes innocuous) type mismatches.
// The type mismatches should be fixed and the clearing below removed.
dowidth(n.Type)
a.Width = n.Type.Width
}
switch n.Op {
default:
a := a // copy to let escape into Ctxt.Dconv
Debug['h'] = 1
Dump("naddr", n)
Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a))
case OREGISTER:
a.Type = obj.TYPE_REG
a.Reg = n.Reg
a.Sym = nil
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
case OINDREG:
a.Type = obj.TYPE_MEM
a.Reg = n.Reg
a.Sym = Linksym(n.Sym)
a.Offset = n.Xoffset
if a.Offset != int64(int32(a.Offset)) {
Yyerror("offset %d too large for OINDREG", a.Offset)
}
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
case OPARAM:
a.Etype = uint8(Simtype[n.Left.Type.Etype])
a.Width = n.Left.Type.Width
a.Offset = n.Xoffset
a.Sym = Linksym(n.Left.Sym)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_PARAM
a.Node = n.Left.Orig
case OCLOSUREVAR:
if !Curfn.Func.Needctxt {
Fatalf("closurevar without needctxt")
}
a.Type = obj.TYPE_MEM
a.Reg = int16(Thearch.REGCTXT)
a.Sym = nil
a.Offset = n.Xoffset
case OCFUNC:
Naddr(a, n.Left)
a.Sym = Linksym(n.Left.Sym)
case ONAME:
a.Etype = 0
if n.Type != nil {
a.Etype = uint8(Simtype[n.Type.Etype])
}
a.Offset = n.Xoffset
s := n.Sym
a.Node = n.Orig
//if(a->node >= (Node*)&n)
// fatal("stack node");
if s == nil {
s = Lookup(".noname")
}
if n.Name.Method {
if n.Type != nil {
if n.Type.Sym != nil {
if n.Type.Sym.Pkg != nil {
s = Pkglookup(s.Name, n.Type.Sym.Pkg)
}
}
}
}
a.Type = obj.TYPE_MEM
switch n.Class {
default:
Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class)
//.........這裏部分代碼省略.........
示例13: Afunclit
func Afunclit(a *obj.Addr, n *Node) {
if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN {
a.Type = obj.TYPE_MEM
a.Sym = Linksym(n.Sym)
}
}