當前位置: 首頁>>代碼示例>>C#>>正文


C# Otri.Lnext方法代碼示例

本文整理匯總了C#中TriangleNet.Data.Otri.Lnext方法的典型用法代碼示例。如果您正苦於以下問題:C# Otri.Lnext方法的具體用法?C# Otri.Lnext怎麽用?C# Otri.Lnext使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在TriangleNet.Data.Otri的用法示例。


在下文中一共展示了Otri.Lnext方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Flip

        /// <summary>
        /// Transform two triangles to two different triangles by flipping an edge 
        /// counterclockwise within a quadrilateral.
        /// </summary>
        /// <param name="flipedge">Handle to the edge that will be flipped.</param>
        /// <remarks>Imagine the original triangles, abc and bad, oriented so that the
        /// shared edge ab lies in a horizontal plane, with the vertex b on the left
        /// and the vertex a on the right. The vertex c lies below the edge, and
        /// the vertex d lies above the edge. The 'flipedge' handle holds the edge
        /// ab of triangle abc, and is directed left, from vertex a to vertex b.
        ///
        /// The triangles abc and bad are deleted and replaced by the triangles cdb
        /// and dca.  The triangles that represent abc and bad are NOT deallocated;
        /// they are reused for dca and cdb, respectively.  Hence, any handles that
        /// may have held the original triangles are still valid, although not
        /// directed as they were before.
        ///
        /// Upon completion of this routine, the 'flipedge' handle holds the edge
        /// dc of triangle dca, and is directed down, from vertex d to vertex c.
        /// (Hence, the two triangles have rotated counterclockwise.)
        ///
        /// WARNING:  This transformation is geometrically valid only if the
        /// quadrilateral adbc is convex.  Furthermore, this transformation is
        /// valid only if there is not a subsegment between the triangles abc and
        /// bad.  This routine does not check either of these preconditions, and
        /// it is the responsibility of the calling routine to ensure that they are
        /// met.  If they are not, the streets shall be filled with wailing and
        /// gnashing of teeth.
        /// 
        /// Terminology
        ///
        /// A "local transformation" replaces a small set of triangles with another
        /// set of triangles.  This may or may not involve inserting or deleting a
        /// vertex.
        ///
        /// The term "casing" is used to describe the set of triangles that are
        /// attached to the triangles being transformed, but are not transformed
        /// themselves.  Think of the casing as a fixed hollow structure inside
        /// which all the action happens.  A "casing" is only defined relative to
        /// a single transformation; each occurrence of a transformation will
        /// involve a different casing.
        /// </remarks>
        internal void Flip(ref Otri flipedge)
        {
            Otri botleft = default(Otri), botright = default(Otri);
            Otri topleft = default(Otri), topright = default(Otri);
            Otri top = default(Otri);
            Otri botlcasing = default(Otri), botrcasing = default(Otri);
            Otri toplcasing = default(Otri), toprcasing = default(Otri);
            Osub botlsubseg = default(Osub), botrsubseg = default(Osub);
            Osub toplsubseg = default(Osub), toprsubseg = default(Osub);
            Vertex leftvertex, rightvertex, botvertex;
            Vertex farvertex;

            // Identify the vertices of the quadrilateral.
            rightvertex = flipedge.Org();
            leftvertex = flipedge.Dest();
            botvertex = flipedge.Apex();
            flipedge.Sym(ref top);

            // SELF CHECK

            //if (top.triangle == dummytri)
            //{
            //    logger.Error("Attempt to flip on boundary.", "Mesh.Flip()");
            //    flipedge.LnextSelf();
            //    return;
            //}

            //if (checksegments)
            //{
            //    flipedge.SegPivot(ref toplsubseg);
            //    if (toplsubseg.ss != dummysub)
            //    {
            //        logger.Error("Attempt to flip a segment.", "Mesh.Flip()");
            //        flipedge.LnextSelf();
            //        return;
            //    }
            //}

            farvertex = top.Apex();

            // Identify the casing of the quadrilateral.
            top.Lprev(ref topleft);
            topleft.Sym(ref toplcasing);
            top.Lnext(ref topright);
            topright.Sym(ref toprcasing);
            flipedge.Lnext(ref botleft);
            botleft.Sym(ref botlcasing);
            flipedge.Lprev(ref botright);
            botright.Sym(ref botrcasing);
            // Rotate the quadrilateral one-quarter turn counterclockwise.
            topleft.Bond(ref botlcasing);
            botleft.Bond(ref botrcasing);
            botright.Bond(ref toprcasing);
            topright.Bond(ref toplcasing);

            if (checksegments)
            {
                // Check for subsegments and rebond them to the quadrilateral.
//.........這裏部分代碼省略.........
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:101,代碼來源:Mesh.cs

示例2: DelaunayFixup

        /// <summary>
        /// Enforce the Delaunay condition at an edge, fanning out recursively from 
        /// an existing vertex. Pay special attention to stacking inverted triangles.
        /// </summary>
        /// <param name="fixuptri"></param>
        /// <param name="leftside">Indicates whether or not fixuptri is to the left of 
        /// the segment being inserted. (Imagine that the segment is pointing up from
        /// endpoint1 to endpoint2.)</param>
        /// <remarks>
        /// This is a support routine for inserting segments into a constrained
        /// Delaunay triangulation.
        ///
        /// The origin of fixuptri is treated as if it has just been inserted, and
        /// the local Delaunay condition needs to be enforced. It is only enforced
        /// in one sector, however, that being the angular range defined by
        /// fixuptri.
        ///
        /// This routine also needs to make decisions regarding the "stacking" of
        /// triangles. (Read the description of ConstrainedEdge() below before
        /// reading on here, so you understand the algorithm.) If the position of
        /// the new vertex (the origin of fixuptri) indicates that the vertex before
        /// it on the polygon is a reflex vertex, then "stack" the triangle by
        /// doing nothing.  (fixuptri is an inverted triangle, which is how stacked
        /// triangles are identified.)
        ///
        /// Otherwise, check whether the vertex before that was a reflex vertex.
        /// If so, perform an edge flip, thereby eliminating an inverted triangle
        /// (popping it off the stack). The edge flip may result in the creation
        /// of a new inverted triangle, depending on whether or not the new vertex
        /// is visible to the vertex three edges behind on the polygon.
        ///
        /// If neither of the two vertices behind the new vertex are reflex
        /// vertices, fixuptri and fartri, the triangle opposite it, are not
        /// inverted; hence, ensure that the edge between them is locally Delaunay.
        /// </remarks>
        private void DelaunayFixup(ref Otri fixuptri, bool leftside)
        {
            Otri neartri = default(Otri);
            Otri fartri = default(Otri);
            Osub faredge = default(Osub);
            Vertex nearvertex, leftvertex, rightvertex, farvertex;

            fixuptri.Lnext(ref neartri);
            neartri.Sym(ref fartri);
            // Check if the edge opposite the origin of fixuptri can be flipped.
            if (fartri.triangle == Mesh.dummytri)
            {
                return;
            }
            neartri.SegPivot(ref faredge);
            if (faredge.seg != Mesh.dummysub)
            {
                return;
            }
            // Find all the relevant vertices.
            nearvertex = neartri.Apex();
            leftvertex = neartri.Org();
            rightvertex = neartri.Dest();
            farvertex = fartri.Apex();
            // Check whether the previous polygon vertex is a reflex vertex.
            if (leftside)
            {
                if (Primitives.CounterClockwise(nearvertex, leftvertex, farvertex) <= 0.0)
                {
                    // leftvertex is a reflex vertex too. Nothing can
                    // be done until a convex section is found.
                    return;
                }
            }
            else
            {
                if (Primitives.CounterClockwise(farvertex, rightvertex, nearvertex) <= 0.0)
                {
                    // rightvertex is a reflex vertex too.  Nothing can
                    // be done until a convex section is found.
                    return;
                }
            }
            if (Primitives.CounterClockwise(rightvertex, leftvertex, farvertex) > 0.0)
            {
                // fartri is not an inverted triangle, and farvertex is not a reflex
                // vertex.  As there are no reflex vertices, fixuptri isn't an
                // inverted triangle, either.  Hence, test the edge between the
                // triangles to ensure it is locally Delaunay.
                if (Primitives.InCircle(leftvertex, farvertex, rightvertex, nearvertex) <= 0.0)
                {
                    return;
                }
                // Not locally Delaunay; go on to an edge flip.
            }
            // else fartri is inverted; remove it from the stack by flipping.
            Flip(ref neartri);
            fixuptri.LprevSelf();    // Restore the origin of fixuptri after the flip.
            // Recursively process the two triangles that result from the flip.
            DelaunayFixup(ref fixuptri, leftside);
            DelaunayFixup(ref fartri, leftside);
        }
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:97,代碼來源:Mesh.cs

示例3: ScoutSegment

        /// <summary>
        /// Scout the first triangle on the path from one endpoint to another, and check 
        /// for completion (reaching the second endpoint), a collinear vertex, or the 
        /// intersection of two segments.
        /// </summary>
        /// <param name="searchtri"></param>
        /// <param name="endpoint2"></param>
        /// <param name="newmark"></param>
        /// <returns>Returns true if the entire segment is successfully inserted, and false 
        /// if the job must be finished by ConstrainedEdge().</returns>
        /// <remarks>
        /// If the first triangle on the path has the second endpoint as its
        /// destination or apex, a subsegment is inserted and the job is done.
        ///
        /// If the first triangle on the path has a destination or apex that lies on
        /// the segment, a subsegment is inserted connecting the first endpoint to
        /// the collinear vertex, and the search is continued from the collinear
        /// vertex.
        ///
        /// If the first triangle on the path has a subsegment opposite its origin,
        /// then there is a segment that intersects the segment being inserted.
        /// Their intersection vertex is inserted, splitting the subsegment.
        /// </remarks>
        private bool ScoutSegment(ref Otri searchtri, Vertex endpoint2, int newmark)
        {
            Otri crosstri = default(Otri);
            Osub crosssubseg = default(Osub);
            Vertex leftvertex, rightvertex;
            FindDirectionResult collinear;

            collinear = FindDirection(ref searchtri, endpoint2);
            rightvertex = searchtri.Dest();
            leftvertex = searchtri.Apex();
            if (((leftvertex.x == endpoint2.x) && (leftvertex.y == endpoint2.y)) ||
                ((rightvertex.x == endpoint2.x) && (rightvertex.y == endpoint2.y)))
            {
                // The segment is already an edge in the mesh.
                if ((leftvertex.x == endpoint2.x) && (leftvertex.y == endpoint2.y))
                {
                    searchtri.LprevSelf();
                }
                // Insert a subsegment, if there isn't already one there.
                InsertSubseg(ref searchtri, newmark);
                return true;
            }
            else if (collinear == FindDirectionResult.Leftcollinear)
            {
                // We've collided with a vertex between the segment's endpoints.
                // Make the collinear vertex be the triangle's origin.
                searchtri.LprevSelf();
                InsertSubseg(ref searchtri, newmark);
                // Insert the remainder of the segment.
                return ScoutSegment(ref searchtri, endpoint2, newmark);
            }
            else if (collinear == FindDirectionResult.Rightcollinear)
            {
                // We've collided with a vertex between the segment's endpoints.
                InsertSubseg(ref searchtri, newmark);
                // Make the collinear vertex be the triangle's origin.
                searchtri.LnextSelf();
                // Insert the remainder of the segment.
                return ScoutSegment(ref searchtri, endpoint2, newmark);
            }
            else
            {
                searchtri.Lnext(ref crosstri);
                crosstri.SegPivot(ref crosssubseg);
                // Check for a crossing segment.
                if (crosssubseg.seg == Mesh.dummysub)
                {
                    return false;
                }
                else
                {
                    // Insert a vertex at the intersection.
                    SegmentIntersection(ref crosstri, ref crosssubseg, endpoint2);
                    crosstri.Copy(ref searchtri);
                    InsertSubseg(ref searchtri, newmark);
                    // Insert the remainder of the segment.
                    return ScoutSegment(ref searchtri, endpoint2, newmark);
                }
            }
        }
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:83,代碼來源:Mesh.cs

示例4: ConstrainedEdge

        /// <summary>
        /// Force a segment into a constrained Delaunay triangulation by deleting the 
        /// triangles it intersects, and triangulating the polygons that form on each 
        /// side of it.
        /// </summary>
        /// <param name="starttri"></param>
        /// <param name="endpoint2"></param>
        /// <param name="newmark"></param>
        /// <remarks>
        /// Generates a single subsegment connecting 'endpoint1' to 'endpoint2'.
        /// The triangle 'starttri' has 'endpoint1' as its origin.  'newmark' is the
        /// boundary marker of the segment.
        ///
        /// To insert a segment, every triangle whose interior intersects the
        /// segment is deleted. The union of these deleted triangles is a polygon
        /// (which is not necessarily monotone, but is close enough), which is
        /// divided into two polygons by the new segment. This routine's task is
        /// to generate the Delaunay triangulation of these two polygons.
        ///
        /// You might think of this routine's behavior as a two-step process.  The
        /// first step is to walk from endpoint1 to endpoint2, flipping each edge
        /// encountered.  This step creates a fan of edges connected to endpoint1,
        /// including the desired edge to endpoint2. The second step enforces the
        /// Delaunay condition on each side of the segment in an incremental manner:
        /// proceeding along the polygon from endpoint1 to endpoint2 (this is done
        /// independently on each side of the segment), each vertex is "enforced"
        /// as if it had just been inserted, but affecting only the previous
        /// vertices. The result is the same as if the vertices had been inserted
        /// in the order they appear on the polygon, so the result is Delaunay.
        ///
        /// In truth, ConstrainedEdge() interleaves these two steps. The procedure
        /// walks from endpoint1 to endpoint2, and each time an edge is encountered
        /// and flipped, the newly exposed vertex (at the far end of the flipped
        /// edge) is "enforced" upon the previously flipped edges, usually affecting
        /// only one side of the polygon (depending upon which side of the segment
        /// the vertex falls on).
        ///
        /// The algorithm is complicated by the need to handle polygons that are not
        /// convex.  Although the polygon is not necessarily monotone, it can be
        /// triangulated in a manner similar to the stack-based algorithms for
        /// monotone polygons. For each reflex vertex (local concavity) of the
        /// polygon, there will be an inverted triangle formed by one of the edge
        /// flips. (An inverted triangle is one with negative area - that is, its
        /// vertices are arranged in clockwise order - and is best thought of as a
        /// wrinkle in the fabric of the mesh.)  Each inverted triangle can be
        /// thought of as a reflex vertex pushed on the stack, waiting to be fixed
        /// later.
        ///
        /// A reflex vertex is popped from the stack when a vertex is inserted that
        /// is visible to the reflex vertex. (However, if the vertex behind the
        /// reflex vertex is not visible to the reflex vertex, a new inverted
        /// triangle will take its place on the stack.) These details are handled
        /// by the DelaunayFixup() routine above.
        /// </remarks>
        private void ConstrainedEdge(ref Otri starttri, Vertex endpoint2, int newmark)
        {
            Otri fixuptri = default(Otri), fixuptri2 = default(Otri);
            Osub crosssubseg = default(Osub);
            Vertex endpoint1;
            Vertex farvertex;
            double area;
            bool collision;
            bool done;

            endpoint1 = starttri.Org();
            starttri.Lnext(ref fixuptri);
            Flip(ref fixuptri);
            // 'collision' indicates whether we have found a vertex directly
            // between endpoint1 and endpoint2.
            collision = false;
            done = false;
            do
            {
                farvertex = fixuptri.Org();
                // 'farvertex' is the extreme point of the polygon we are "digging"
                //  to get from endpoint1 to endpoint2.
                if ((farvertex.x == endpoint2.x) && (farvertex.y == endpoint2.y))
                {
                    fixuptri.Oprev(ref fixuptri2);
                    // Enforce the Delaunay condition around endpoint2.
                    DelaunayFixup(ref fixuptri, false);
                    DelaunayFixup(ref fixuptri2, true);
                    done = true;
                }
                else
                {
                    // Check whether farvertex is to the left or right of the segment being
                    // inserted, to decide which edge of fixuptri to dig through next.
                    area = Primitives.CounterClockwise(endpoint1, endpoint2, farvertex);
                    if (area == 0.0)
                    {
                        // We've collided with a vertex between endpoint1 and endpoint2.
                        collision = true;
                        fixuptri.Oprev(ref fixuptri2);
                        // Enforce the Delaunay condition around farvertex.
                        DelaunayFixup(ref fixuptri, false);
                        DelaunayFixup(ref fixuptri2, true);
                        done = true;
                    }
                    else
//.........這裏部分代碼省略.........
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:101,代碼來源:Mesh.cs

示例5: Unflip

        /// <summary>
        /// Transform two triangles to two different triangles by flipping an edge 
        /// clockwise within a quadrilateral. Reverses the flip() operation so that 
        /// the data structures representing the triangles are back where they were 
        /// before the flip().
        /// </summary>
        /// <param name="flipedge"></param>
        /// <remarks>
        /// See above Flip() remarks for more information.
        ///
        /// Upon completion of this routine, the 'flipedge' handle holds the edge
        /// cd of triangle cdb, and is directed up, from vertex c to vertex d.
        /// (Hence, the two triangles have rotated clockwise.)
        /// </remarks>
        internal void Unflip(ref Otri flipedge)
        {
            Otri botleft = default(Otri), botright = default(Otri);
            Otri topleft = default(Otri), topright = default(Otri);
            Otri top = default(Otri);
            Otri botlcasing = default(Otri), botrcasing = default(Otri);
            Otri toplcasing = default(Otri), toprcasing = default(Otri);
            Osub botlsubseg = default(Osub), botrsubseg = default(Osub);
            Osub toplsubseg = default(Osub), toprsubseg = default(Osub);
            Vertex leftvertex, rightvertex, botvertex;
            Vertex farvertex;

            // Identify the vertices of the quadrilateral.
            rightvertex = flipedge.Org();
            leftvertex = flipedge.Dest();
            botvertex = flipedge.Apex();
            flipedge.Sym(ref top);

            farvertex = top.Apex();

            // Identify the casing of the quadrilateral.
            top.Lprev(ref topleft);
            topleft.Sym(ref toplcasing);
            top.Lnext(ref topright);
            topright.Sym(ref toprcasing);
            flipedge.Lnext(ref botleft);
            botleft.Sym(ref botlcasing);
            flipedge.Lprev(ref botright);
            botright.Sym(ref botrcasing);
            // Rotate the quadrilateral one-quarter turn clockwise.
            topleft.Bond(ref toprcasing);
            botleft.Bond(ref toplcasing);
            botright.Bond(ref botlcasing);
            topright.Bond(ref botrcasing);

            if (checksegments)
            {
                // Check for subsegments and rebond them to the quadrilateral.
                topleft.SegPivot(ref toplsubseg);
                botleft.SegPivot(ref botlsubseg);
                botright.SegPivot(ref botrsubseg);
                topright.SegPivot(ref toprsubseg);
                if (toplsubseg.seg == Mesh.dummysub)
                {
                    botleft.SegDissolve();
                }
                else
                {
                    botleft.SegBond(ref toplsubseg);
                }
                if (botlsubseg.seg == Mesh.dummysub)
                {
                    botright.SegDissolve();
                }
                else
                {
                    botright.SegBond(ref botlsubseg);
                }
                if (botrsubseg.seg == Mesh.dummysub)
                {
                    topright.SegDissolve();
                }
                else
                {
                    topright.SegBond(ref botrsubseg);
                }
                if (toprsubseg.seg == Mesh.dummysub)
                {
                    topleft.SegDissolve();
                }
                else
                {
                    topleft.SegBond(ref toprsubseg);
                }
            }

            // New vertex assignments for the rotated quadrilateral.
            flipedge.SetOrg(botvertex);
            flipedge.SetDest(farvertex);
            flipedge.SetApex(leftvertex);
            top.SetOrg(farvertex);
            top.SetDest(botvertex);
            top.SetApex(rightvertex);
        }
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:98,代碼來源:Mesh.cs

示例6: PreciseLocate


//.........這裏部分代碼省略.........
            Vertex forg, fdest, fapex;
            float orgorient, destorient;
            bool moveleft;

            // Where are we?
            forg = searchtri.Org();
            fdest = searchtri.Dest();
            fapex = searchtri.Apex();
            while (true)
            {
                // Check whether the apex is the point we seek.
                if ((fapex.x == searchpoint.X) && (fapex.y == searchpoint.Y))
                {
                    searchtri.LprevSelf();
                    return LocateResult.OnVertex;
                }
                // Does the point lie on the other side of the line defined by the
                // triangle edge opposite the triangle's destination?
                destorient = Primitives.CounterClockwise(forg, fapex, searchpoint);
                // Does the point lie on the other side of the line defined by the
                // triangle edge opposite the triangle's origin?
                orgorient = Primitives.CounterClockwise(fapex, fdest, searchpoint);
                if (destorient > 0.0)
                {
                    if (orgorient > 0.0)
                    {
                        // Move left if the inner product of (fapex - searchpoint) and
                        // (fdest - forg) is positive.  This is equivalent to drawing
                        // a line perpendicular to the line (forg, fdest) and passing
                        // through 'fapex', and determining which side of this line
                        // 'searchpoint' falls on.
                        moveleft = (fapex.x - searchpoint.X) * (fdest.x - forg.x) +
                                   (fapex.y - searchpoint.Y) * (fdest.y - forg.y) > 0.0;
                    }
                    else
                    {
                        moveleft = true;
                    }
                }
                else
                {
                    if (orgorient > 0.0)
                    {
                        moveleft = false;
                    }
                    else
                    {
                        // The point we seek must be on the boundary of or inside this
                        // triangle.
                        if (destorient == 0.0)
                        {
                            searchtri.LprevSelf();
                            return LocateResult.OnEdge;
                        }
                        if (orgorient == 0.0)
                        {
                            searchtri.LnextSelf();
                            return LocateResult.OnEdge;
                        }
                        return LocateResult.InTriangle;
                    }
                }

                // Move to another triangle. Leave a trace 'backtracktri' in case
                // floating-point roundoff or some such bogey causes us to walk
                // off a boundary of the triangulation.
                if (moveleft)
                {
                    searchtri.Lprev(ref backtracktri);
                    fdest = fapex;
                }
                else
                {
                    searchtri.Lnext(ref backtracktri);
                    forg = fapex;
                }
                backtracktri.Sym(ref searchtri);

                if (mesh.checksegments && stopatsubsegment)
                {
                    // Check for walking through a subsegment.
                    backtracktri.SegPivot(ref checkedge);
                    if (checkedge.seg != Mesh.dummysub)
                    {
                        // Go back to the last triangle.
                        backtracktri.Copy(ref searchtri);
                        return LocateResult.Outside;
                    }
                }
                // Check for walking right out of the triangulation.
                if (searchtri.triangle == Mesh.dummytri)
                {
                    // Go back to the last triangle.
                    backtracktri.Copy(ref searchtri);
                    return LocateResult.Outside;
                }

                fapex = searchtri.Apex();
            }
        }
開發者ID:astrellon,項目名稱:cbt,代碼行數:101,代碼來源:TriangleLocator.cs

示例7: DivconqRecurse

        /// <summary>
        /// Recursively form a Delaunay triangulation by the divide-and-conquer method.
        /// </summary>
        /// <param name="left"></param>
        /// <param name="right"></param>
        /// <param name="axis"></param>
        /// <param name="farleft"></param>
        /// <param name="farright"></param>
        /// <remarks>
        /// Recursively breaks down the problem into smaller pieces, which are
        /// knitted together by mergehulls(). The base cases (problems of two or
        /// three vertices) are handled specially here.
        ///
        /// On completion, 'farleft' and 'farright' are bounding triangles such that
        /// the origin of 'farleft' is the leftmost vertex (breaking ties by
        /// choosing the highest leftmost vertex), and the destination of
        /// 'farright' is the rightmost vertex (breaking ties by choosing the
        /// lowest rightmost vertex).
        /// </remarks>
        void DivconqRecurse(int left, int right, int axis,
                            ref Otri farleft, ref Otri farright)
        {
            Otri midtri = default(Otri);
            Otri tri1 = default(Otri);
            Otri tri2 = default(Otri);
            Otri tri3 = default(Otri);
            Otri innerleft = default(Otri), innerright = default(Otri);
            double area;
            int vertices = right - left + 1;
            int divider;

            if (vertices == 2)
            {
                // The triangulation of two vertices is an edge.  An edge is
                // represented by two bounding triangles.
                mesh.MakeTriangle(ref farleft);
                farleft.SetOrg(sortarray[left]);
                farleft.SetDest(sortarray[left + 1]);
                // The apex is intentionally left NULL.
                mesh.MakeTriangle(ref farright);
                farright.SetOrg(sortarray[left + 1]);
                farright.SetDest(sortarray[left]);
                // The apex is intentionally left NULL.
                farleft.Bond(ref farright);
                farleft.LprevSelf();
                farright.LnextSelf();
                farleft.Bond(ref farright);
                farleft.LprevSelf();
                farright.LnextSelf();
                farleft.Bond(ref farright);

                // Ensure that the origin of 'farleft' is sortarray[0].
                farright.Lprev(ref farleft);
                return;
            }
            else if (vertices == 3)
            {
                // The triangulation of three vertices is either a triangle (with
                // three bounding triangles) or two edges (with four bounding
                // triangles).  In either case, four triangles are created.
                mesh.MakeTriangle(ref midtri);
                mesh.MakeTriangle(ref tri1);
                mesh.MakeTriangle(ref tri2);
                mesh.MakeTriangle(ref tri3);
                area = Primitives.CounterClockwise(sortarray[left], sortarray[left + 1], sortarray[left + 2]);
                if (area == 0.0)
                {
                    // Three collinear vertices; the triangulation is two edges.
                    midtri.SetOrg(sortarray[left]);
                    midtri.SetDest(sortarray[left + 1]);
                    tri1.SetOrg(sortarray[left + 1]);
                    tri1.SetDest(sortarray[left]);
                    tri2.SetOrg(sortarray[left + 2]);
                    tri2.SetDest(sortarray[left + 1]);
                    tri3.SetOrg(sortarray[left + 1]);
                    tri3.SetDest(sortarray[left + 2]);
                    // All apices are intentionally left NULL.
                    midtri.Bond(ref tri1);
                    tri2.Bond(ref tri3);
                    midtri.LnextSelf();
                    tri1.LprevSelf();
                    tri2.LnextSelf();
                    tri3.LprevSelf();
                    midtri.Bond(ref tri3);
                    tri1.Bond(ref tri2);
                    midtri.LnextSelf();
                    tri1.LprevSelf();
                    tri2.LnextSelf();
                    tri3.LprevSelf();
                    midtri.Bond(ref tri1);
                    tri2.Bond(ref tri3);
                    // Ensure that the origin of 'farleft' is sortarray[0].
                    tri1.Copy(ref farleft);
                    // Ensure that the destination of 'farright' is sortarray[2].
                    tri2.Copy(ref farright);
                }
                else
                {
                    // The three vertices are not collinear; the triangulation is one
                    // triangle, namely 'midtri'.
//.........這裏部分代碼省略.........
開發者ID:JackTing,項目名稱:PathCAM,代碼行數:101,代碼來源:Dwyer.cs

示例8: TestTriangle

        /// <summary>
        /// Test a triangle for quality and size.
        /// </summary>
        /// <param name="testtri">Triangle to check.</param>
        /// <remarks>
        /// Tests a triangle to see if it satisfies the minimum angle condition and
        /// the maximum area condition.  Triangles that aren't up to spec are added
        /// to the bad triangle queue.
        /// </remarks>
        public void TestTriangle(ref Otri testtri)
        {
            Otri tri1 = default(Otri), tri2 = default(Otri);
            Osub testsub = default(Osub);
            Vertex torg, tdest, tapex;
            Vertex base1, base2;
            Vertex org1, dest1, org2, dest2;
            Vertex joinvertex;
            double dxod, dyod, dxda, dyda, dxao, dyao;
            double dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
            double apexlen, orglen, destlen, minedge;
            double angle;
            double area;
            double dist1, dist2;

            double maxangle;

            torg = testtri.Org();
            tdest = testtri.Dest();
            tapex = testtri.Apex();
            dxod = torg.x - tdest.x;
            dyod = torg.y - tdest.y;
            dxda = tdest.x - tapex.x;
            dyda = tdest.y - tapex.y;
            dxao = tapex.x - torg.x;
            dyao = tapex.y - torg.y;
            dxod2 = dxod * dxod;
            dyod2 = dyod * dyod;
            dxda2 = dxda * dxda;
            dyda2 = dyda * dyda;
            dxao2 = dxao * dxao;
            dyao2 = dyao * dyao;
            // Find the lengths of the triangle's three edges.
            apexlen = dxod2 + dyod2;
            orglen = dxda2 + dyda2;
            destlen = dxao2 + dyao2;

            if ((apexlen < orglen) && (apexlen < destlen))
            {
                // The edge opposite the apex is shortest.
                minedge = apexlen;
                // Find the square of the cosine of the angle at the apex.
                angle = dxda * dxao + dyda * dyao;
                angle = angle * angle / (orglen * destlen);
                base1 = torg;
                base2 = tdest;
                testtri.Copy(ref tri1);
            }
            else if (orglen < destlen)
            {
                // The edge opposite the origin is shortest.
                minedge = orglen;
                // Find the square of the cosine of the angle at the origin.
                angle = dxod * dxao + dyod * dyao;
                angle = angle * angle / (apexlen * destlen);
                base1 = tdest;
                base2 = tapex;
                testtri.Lnext(ref tri1);
            }
            else
            {
                // The edge opposite the destination is shortest.
                minedge = destlen;
                // Find the square of the cosine of the angle at the destination.
                angle = dxod * dxda + dyod * dyda;
                angle = angle * angle / (apexlen * orglen);
                base1 = tapex;
                base2 = torg;
                testtri.Lprev(ref tri1);
            }

            if (behavior.VarArea || behavior.fixedArea || behavior.Usertest)
            {
                // Check whether the area is larger than permitted.
                area = 0.5 * (dxod * dyda - dyod * dxda);
                if (behavior.fixedArea && (area > behavior.MaxArea))
                {
                    // Add this triangle to the list of bad triangles.
                    queue.Enqueue(ref testtri, minedge, tapex, torg, tdest);
                    return;
                }

                // Nonpositive area constraints are treated as unconstrained.
                if ((behavior.VarArea) && (area > testtri.triangle.area) && (testtri.triangle.area > 0.0))
                {
                    // Add this triangle to the list of bad triangles.
                    queue.Enqueue(ref testtri, minedge, tapex, torg, tdest);
                    return;
                }

                // Check whether the user thinks this triangle is too large.
//.........這裏部分代碼省略.........
開發者ID:filipkunc,項目名稱:GLGraphics,代碼行數:101,代碼來源:Quality.cs


注:本文中的TriangleNet.Data.Otri.Lnext方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。