本文整理匯總了C#中System.Drawing.PointD.Magnitude方法的典型用法代碼示例。如果您正苦於以下問題:C# PointD.Magnitude方法的具體用法?C# PointD.Magnitude怎麽用?C# PointD.Magnitude使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Drawing.PointD
的用法示例。
在下文中一共展示了PointD.Magnitude方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: ExtendedNormalOfPoint
public void ExtendedNormalOfPoint(PointD mouseLocation, out PointD normalVector, out PointD nearestPoint, out double radius)
{
int n1;
int n2;
float r1;
float r2;
if (m_pointsInPath == null)
{
normalVector = PointD.Empty;
nearestPoint = PointD.Empty;
radius = 0;
return;
}
PointF[] array = m_pointsInPath;
NearestPoint(array, (PointF)mouseLocation, out n1, out n2, out r1, out r2);
PointD tangent = new PointD(array[n1].X - array[n2].X, array[n1].Y - array[n2].Y);
tangent = tangent / tangent.Magnitude();
normalVector = PointD.Orthogonal(tangent);
PointD vToPoint = mouseLocation - (PointD)array[n1];
radius = PointD.DotProduct(normalVector, vToPoint);
PointD orthVector = radius * normalVector;
nearestPoint = mouseLocation - orthVector;
// System.Diagnostics.Debug.WriteLine(String.Format("{0} {1}", array[n1], nearestPoint));
//// TODO: to optimize here, instead of averaging two nearest points,
//// we find the orthogonal vector and project to the mouseLocation
//// onto the line to find nearest point.
//nearestPoint = new PointD((array[n1].X + array[n2].X) / 2.0, (array[n1].Y + array[n2].Y) / 2.0);
//normalVector = PointD.Orthogonal(tangent);
//radius = (r1 + r2) / 2.0;
}
示例2: Point
/*
gc.DrawLine(Pens.Green, new Point(100, 100), new Point(300, 200));
gc.DrawEllipse(Pens.Green, (float)mappedToLine.X, (float)mappedToLine.Y, 4f, 4f);
gc.DrawLine(Pens.Green, 100f, 100f, 100f + (float)normalComponent.X, 100f + (float)normalComponent.Y);
*/
protected override void SecondCache(Render.IDrawVisitor drawMethods)
{
if (m_Param.Path.PointCount == 0)
return;
PointF[] array = ((Tools.Model.VectorPath)m_Param.Path).InternalPath.PathPoints;
// calculate number of lines to show for feedback
int spacing = (int)drawMethods.Spacing(m_Param.C);
int numLines = (int)m_Param.PathThickness / spacing;
// build a number of trace lines
m_traceLines = new List<PointF>[numLines];
for (int j = 0; j < numLines; j++)
m_traceLines[j] = new List<PointF>(array.Length);
// render all the points
for (int i = 1; i < array.Length; i += 2)
{
PointD tangent = new PointD(array[i].X - array[i - 1].X, array[i].Y - array[i - 1].Y);
tangent = tangent / tangent.Magnitude();
PointD normalVector = PointD.Orthogonal(tangent);
PointD pointOnLine = new PointD((array[i].X + array[i - 1].X) / 2.0, (array[i].Y + array[i - 1].Y) / 2.0);
for (int k = 0; k < numLines; k++)
{
PointD testPt = pointOnLine + normalVector * spacing * (k - numLines / 2);
m_traceLines[k].Add((PointF)testPt);
}
//PointD testNormal1 = (testPt1 - pointOnLine);
//testNormal1 = testNormal1 / testNormal1.Magnitude();
//PointD testNormal2 = (testPt2 - pointOnLine);
//testNormal2 = testNormal2 / testNormal2.Magnitude();
//PointD scaledVector1 = testNormal1 * (GetScalar() * 7 * m_Param.C / Math.Pow((m_Param.PtRadius / 2.0) + 10, 0.5));
//PointD scaledVector2 = testNormal2 * (GetScalar() * 7 * m_Param.C / Math.Pow((m_Param.PtRadius / 2.0) + 10, 0.5));
//drawMethods.DrawArrow(gc, r, testPt1, scaledVector1 * Render.DrawHelper.SPEED_AMPLIFIER);
//drawMethods.DrawArrow(gc, r, testPt2, scaledVector2 * Render.DrawHelper.SPEED_AMPLIFIER);
}
}