本文整理匯總了C#中System.ComponentModel.EnumConverter.GetStandardValues方法的典型用法代碼示例。如果您正苦於以下問題:C# EnumConverter.GetStandardValues方法的具體用法?C# EnumConverter.GetStandardValues怎麽用?C# EnumConverter.GetStandardValues使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.ComponentModel.EnumConverter
的用法示例。
在下文中一共展示了EnumConverter.GetStandardValues方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: backgroundWorker1_DoWork
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
int progress = 0;
optrez.Clear();
finalRez.Clear();
alg = new PGA();
OptimizationModel optModel = new OptimizationModel(func);
EnumConverter InitialLoadTypeCollection = new EnumConverter(typeof(InitialLoadType));
EnumConverter EndConditionTypeCollecton = new EnumConverter(typeof(EndCondition));
EnumConverter MutationTypeCollecton = new EnumConverter(typeof(MutationType));
EnumConverter SelectionTypeCollection = new EnumConverter(typeof(SelectionType));
foreach (InitialLoadType il in InitialLoadTypeCollection.GetStandardValues())
{
foreach (EndCondition ec in EndConditionTypeCollecton.GetStandardValues())
{
foreach (MutationType mt in MutationTypeCollecton.GetStandardValues())
{
foreach (SelectionType st in SelectionTypeCollection.GetStandardValues())
{
double[] f1m = new double[(int)numericUpDown8.Value];
double[] f2m = new double[(int)numericUpDown8.Value];
double[] fm = new double[(int)numericUpDown8.Value];
double[] x1m = new double[(int)numericUpDown8.Value];
double[] x2m = new double[(int)numericUpDown8.Value];
for (int i = 0; i < (int)numericUpDown8.Value; i++)
{
AlgorithmSettings settings = new AlgorithmSettings()
{
InitialLoadType = il,
OptModel = optModel,
InitialPointCount = (int)numericUpDown1.Value,
SelectionType = st,
EndCondition = ec,
MaxGenerationCount = (int)numericUpDown2.Value,
SurvivedCount = (int)numericUpDown3.Value,
MutationChance = (double)numericUpDown4.Value,
CrossingGenNumber = (int)numericUpDown5.Value,
Tolerance = (double)numericUpDown6.Value,
MutationChanceAfterCrossing = (double)numericUpDown7.Value,
MutationType = mt
};
alg.Run(settings);
double x1 = alg.Best.X1;
double x2 = alg.Best.X2;
double f1 = alg.Best.F;
double f2 = alg.CallCount;
double f = GetCriterion(f1, f2);
f1m[i] = f1;
f2m[i] = f2;
fm[i] = f;
x1m[i] = x1;
x2m[i] = x2;
optrez.Add(new OptRezult()
{
I = il,
E = ec,
S = st,
M = mt,
F1 = f1,
F2 = f2,
X1 = x1,
X2 = x2,
F = f
});
}
progress++;
backgroundWorker1.ReportProgress(progress * 100 / 24);
finalRez.Add(new OptRezult()
{
I = il,
E = ec,
S = st,
M = mt,
X1 = x1m.Average(),
X2 = x2m.Average(),
F1 = f1m.Average(),
F2 = f2m.Average(),
F = fm.Average()
});
}
}
}
}
}