本文整理匯總了C#中System.Stream.WaitForCompletion方法的典型用法代碼示例。如果您正苦於以下問題:C# Stream.WaitForCompletion方法的具體用法?C# Stream.WaitForCompletion怎麽用?C# Stream.WaitForCompletion使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Stream
的用法示例。
在下文中一共展示了Stream.WaitForCompletion方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Draw
/// <summary>
/// Draw the model image and observed image, the matched features and homography projection.
/// </summary>
/// <param name="modelImage">The model image</param>
/// <param name="observedImage">The observed image</param>
/// <param name="matchTime">The output total time for computing the homography matrix.</param>
/// <returns>The model image and observed image, the matched features and homography projection.</returns>
public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime)
{
Stopwatch watch;
HomographyMatrix homography = null;
SURFDetector surfCPU = new SURFDetector (500, false);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
if (GpuInvoke.HasCuda) {
GpuSURFDetector surfGPU = new GpuSURFDetector (surfCPU.SURFParams, 0.01f);
using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte> (modelImage))
//extract features from the object image
using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw (gpuModelImage, null))
using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw (gpuModelImage, null, gpuModelKeyPoints))
using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float> (DistanceType.L2)) {
modelKeyPoints = new VectorOfKeyPoint ();
surfGPU.DownloadKeypoints (gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew ();
// extract features from the observed image
using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte> (observedImage))
using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw (gpuObservedImage, null))
using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw (gpuObservedImage, null, gpuObservedKeyPoints))
using (GpuMat<int> gpuMatchIndices = new GpuMat<int> (gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<float> gpuMatchDist = new GpuMat<float> (gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<Byte> gpuMask = new GpuMat<byte> (gpuMatchIndices.Size.Height, 1, 1))
using (Stream stream = new Stream ()) {
matcher.KnnMatchSingle (gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
indices = new Matrix<int> (gpuMatchIndices.Size);
mask = new Matrix<byte> (gpuMask.Size);
//gpu implementation of voteForUniquess
using (GpuMat<float> col0 = gpuMatchDist.Col (0))
using (GpuMat<float> col1 = gpuMatchDist.Col (1)) {
GpuInvoke.Multiply (col1, new MCvScalar (uniquenessThreshold), col1, stream);
GpuInvoke.Compare (col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
}
observedKeyPoints = new VectorOfKeyPoint ();
surfGPU.DownloadKeypoints (gpuObservedKeyPoints, observedKeyPoints);
//wait for the stream to complete its tasks
//We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
stream.WaitForCompletion ();
gpuMask.Download (mask);
gpuMatchIndices.Download (indices);
if (GpuInvoke.CountNonZero (gpuMask) >= 4) {
int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation (modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures (modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop ();
}
}
} else {
//extract features from the object image
modelKeyPoints = surfCPU.DetectKeyPointsRaw (modelImage, null);
Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw (modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew ();
// extract features from the observed image
observedKeyPoints = surfCPU.DetectKeyPointsRaw (observedImage, null);
Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw (observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float> (DistanceType.L2);
matcher.Add (modelDescriptors);
indices = new Matrix<int> (observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float> (observedDescriptors.Rows, k)) {
matcher.KnnMatch (observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte> (dist.Rows, 1);
mask.SetValue (255);
Features2DToolbox.VoteForUniqueness (dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero (mask);
if (nonZeroCount >= 4) {
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation (modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures (modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop ();
}
//.........這裏部分代碼省略.........
示例2: FindMatch
public static void FindMatch(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, out Matrix<int> indices, out Matrix<byte> mask, out HomographyMatrix homography)
{
int k = 2;
double uniquenessThreshold = 0.8;
SURFDetector surfCPU = new SURFDetector(500, false);
Stopwatch watch;
homography = null;
#if !IOS
if (GpuInvoke.HasCuda)
{
GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
//extract features from the object image
using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
{
modelKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
using (Stream stream = new Stream())
{
matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
indices = new Matrix<int>(gpuMatchIndices.Size);
mask = new Matrix<byte>(gpuMask.Size);
//gpu implementation of voteForUniquess
using (GpuMat<float> col0 = gpuMatchDist.Col(0))
using (GpuMat<float> col1 = gpuMatchDist.Col(1))
{
GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
}
observedKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
//wait for the stream to complete its tasks
//We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
stream.WaitForCompletion();
gpuMask.Download(mask);
gpuMatchIndices.Download(indices);
if (GpuInvoke.CountNonZero(gpuMask) >= 4)
{
int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
}
}
}
else
#endif
{
//extract features from the object image
modelKeyPoints = new VectorOfKeyPoint();
Matrix<float> modelDescriptors = surfCPU.DetectAndCompute(modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
observedKeyPoints = new VectorOfKeyPoint();
Matrix<float> observedDescriptors = surfCPU.DetectAndCompute(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
}
matchTime = watch.ElapsedMilliseconds;
}