本文整理匯總了C#中Poly2Tri.Triangulation.Delaunay.Sweep.DTSweepContext類的典型用法代碼示例。如果您正苦於以下問題:C# DTSweepContext類的具體用法?C# DTSweepContext怎麽用?C# DTSweepContext使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
DTSweepContext類屬於Poly2Tri.Triangulation.Delaunay.Sweep命名空間,在下文中一共展示了DTSweepContext類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Triangulate
/// <summary>
/// Triangulate simple polygon with holes
/// </summary>
public static void Triangulate(DTSweepContext tcx)
{
tcx.CreateAdvancingFront();
Sweep(tcx);
// Finalize triangulation
if (tcx.TriangulationMode == TriangulationMode.Polygon)
{
FinalizationPolygon(tcx);
}
else
{
FinalizationConvexHull(tcx);
}
tcx.Done();
}
示例2: Triangulate
public int[] Triangulate(UnityEngine.Vector2[] verts)
{
PolygonPoint[] points = new PolygonPoint[verts.Length];
for (int i = 0; i < verts.Length; i++)
points[i] = new PolygonPoint(verts[i].x, verts[i].y);
Polygon polygon = new Polygon(points);
DTSweepContext tcx = new DTSweepContext();
tcx.PrepareTriangulation(polygon);
DTSweep.Triangulate(tcx);
int[] resultPoints = new int[polygon.Triangles.Count * 3];
int idx = 0;
foreach (DelaunayTriangle triangle in polygon.Triangles) {
resultPoints[idx++] = FindIndex(points, triangle.Points._0);
resultPoints[idx++] = FindIndex(points, triangle.Points._1);
resultPoints[idx++] = FindIndex(points, triangle.Points._2);
}
return resultPoints;
}
示例3: Sweep
/// <summary>
/// Start sweeping the Y-sorted point set from bottom to top
/// </summary>
private static void Sweep(DTSweepContext tcx)
{
List<TriangulationPoint> points = tcx.Points;
TriangulationPoint point;
AdvancingFrontNode node;
for (int i = 1; i < points.Count; i++)
{
point = points[i];
node = PointEvent(tcx, point);
if (point.HasEdges)
{
foreach (DTSweepConstraint e in point.Edges)
{
EdgeEvent(tcx, e, node);
}
}
tcx.Update(null);
}
}
示例4: EdgeEvent
private static void EdgeEvent(DTSweepContext tcx, TriangulationPoint ep, TriangulationPoint eq,
DelaunayTriangle triangle, TriangulationPoint point)
{
TriangulationPoint p1, p2;
if (IsEdgeSideOfTriangle(triangle, ep, eq))
{
return;
}
p1 = triangle.PointCCW(point);
Orientation o1 = TriangulationUtil.Orient2d(eq, p1, ep);
if (o1 == Orientation.Collinear)
{
if (triangle.Contains(eq, p1))
{
triangle.MarkConstrainedEdge(eq, p1);
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.EdgeEvent.ConstrainedEdge.Q = p1;
triangle = triangle.NeighborAcross(point);
EdgeEvent(tcx, ep, p1, triangle, p1);
}
else
{
throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet");
}
if (tcx.IsDebugEnabled)
{
Debug.WriteLine("EdgeEvent - Point on constrained edge");
}
return;
}
p2 = triangle.PointCW(point);
Orientation o2 = TriangulationUtil.Orient2d(eq, p2, ep);
if (o2 == Orientation.Collinear)
{
if (triangle.Contains(eq, p2))
{
triangle.MarkConstrainedEdge(eq, p2);
// We are modifying the constraint maybe it would be better to
// not change the given constraint and just keep a variable for the new constraint
tcx.EdgeEvent.ConstrainedEdge.Q = p2;
triangle = triangle.NeighborAcross(point);
EdgeEvent(tcx, ep, p2, triangle, p2);
}
else
{
throw new PointOnEdgeException("EdgeEvent - Point on constrained edge not supported yet");
}
if (tcx.IsDebugEnabled)
{
Debug.WriteLine("EdgeEvent - Point on constrained edge");
}
return;
}
if (o1 == o2)
{
// Need to decide if we are rotating CW or CCW to get to a triangle
// that will cross edge
if (o1 == Orientation.CW)
{
triangle = triangle.NeighborCCW(point);
}
else
{
triangle = triangle.NeighborCW(point);
}
EdgeEvent(tcx, ep, eq, triangle, point);
}
else
{
// This triangle crosses constraint so lets flippin start!
FlipEdgeEvent(tcx, ep, eq, triangle, point);
}
}
示例5: CreateMesh
public void CreateMesh(Vector2[] vertsToCopy, Transform transform)
{
List<Vector3> resultsLocal = new List<Vector3>();
List<int> resultsTriIndexesLocal = new List<int>();
List<int> resultsTriIndexesReversedLocal = new List<int>();
List<Vector2> uvsLocal = new List<Vector2>();
List<Vector3> normalsLocal = new List<Vector3>();
Sprite spr = transform.GetComponent<SpriteRenderer>().sprite;
Rect rec = spr.rect;
Vector3 bound = transform.GetComponent<Renderer>().bounds.max- transform.GetComponent<Renderer>().bounds.min ;
TextureImporter textureImporter = AssetImporter.GetAtPath(AssetDatabase.GetAssetPath(spr)) as TextureImporter;
int i = 0;
Polygon poly = new Polygon();
for (i=0; i <vertsToCopy.Length;i++)
{
poly.Points.Add(new TriangulationPoint(vertsToCopy[i].x, vertsToCopy[i].y));
}
DTSweepContext tcx = new DTSweepContext();
tcx.PrepareTriangulation(poly);
DTSweep.Triangulate(tcx);
int indexNumber = 0;
bool multiSprites = false;
foreach (DelaunayTriangle triangle in poly.Triangles)
{
Vector3 v = new Vector3();
foreach (TriangulationPoint p in triangle.Points)
{
v = new Vector3((float)p.X, (float)p.Y,0);
if(!resultsLocal.Contains(v))
{
resultsLocal.Add(v);
resultsTriIndexesLocal.Add(indexNumber);
Vector2 newUv = new Vector2((v.x /bound.x) + 0.5f, (v.y /bound.y) + 0.5f);
newUv.x *= rec.width/ spr.texture.width;
newUv.y *= rec.height/ spr.texture.height;
//Debug.Log(spr.textureRectOffset);
newUv.x += (rec.x)/ spr.texture.width;
newUv.y += (rec.y) / spr.texture.height;
//Debug.Log(Application.unityVersion);
SpriteMetaData[] smdArray = textureImporter.spritesheet;
Vector2 pivot = new Vector2(.0f,.0f);;
for (int j = 0; j < smdArray.Length; j++)
{
if (smdArray[j].name == spr.name)
{
switch(smdArray[j].alignment)
{
case(0):
smdArray[j].pivot = Vector2.zero;
break;
case(1):
smdArray[j].pivot = new Vector2(0f,1f) -new Vector2(.5f,.5f);
break;
case(2):
smdArray[j].pivot = new Vector2(0.5f,1f) -new Vector2(.5f,.5f);
break;
case(3):
smdArray[j].pivot = new Vector2(1f,1f) -new Vector2(.5f,.5f);
break;
case(4):
smdArray[j].pivot = new Vector2(0f,.5f) -new Vector2(.5f,.5f);
break;
case(5):
smdArray[j].pivot = new Vector2(1f,.5f) -new Vector2(.5f,.5f);
break;
case(6):
smdArray[j].pivot = new Vector2(0f,0f) -new Vector2(.5f,.5f);
break;
case(7):
smdArray[j].pivot = new Vector2(0.5f,0f) -new Vector2(.5f,.5f);
break;
case(8):
smdArray[j].pivot = new Vector2(1f,0f) -new Vector2(.5f,.5f);
break;
case(9):
smdArray[j].pivot -= new Vector2(.5f,.5f);
break;
}
pivot = smdArray[j].pivot ;
}
}
if(textureImporter.spriteImportMode == SpriteImportMode.Single)
pivot = textureImporter.spritePivot-new Vector2(.5f,.5f);
newUv.x += ((pivot.x)*rec.width)/ spr.texture.width;
newUv.y += ((pivot.y)*rec.height)/ spr.texture.height;
/*
if(Application.unityVersion != "4.3.0f4")
{
//.........這裏部分代碼省略.........
示例6: Legalize
/// <summary>
/// Returns true if triangle was legalized
/// </summary>
private static bool Legalize(DTSweepContext tcx, DelaunayTriangle t)
{
int oi;
bool inside;
TriangulationPoint p, op;
DelaunayTriangle ot;
// To legalize a triangle we start by finding if any of the three edges
// violate the Delaunay condition
for (int i = 0; i < 3; i++)
{
// TODO: fix so that cEdge is always valid when creating new triangles then we can check it here
// instead of below with ot
if (t.EdgeIsDelaunay[i])
{
continue;
}
ot = t.Neighbors[i];
if (ot != null)
{
p = t.Points[i];
op = ot.OppositePoint(t, p);
oi = ot.IndexOf(op);
// If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
// then we should not try to legalize
if (ot.EdgeIsConstrained[oi] || ot.EdgeIsDelaunay[oi])
{
t.EdgeIsConstrained[i] = ot.EdgeIsConstrained[oi];
// XXX: have no good way of setting this property when creating new triangles so lets set it here
continue;
}
inside = TriangulationUtil.SmartIncircle(p,
t.PointCCW(p),
t.PointCW(p),
op);
if (inside)
{
bool notLegalized;
// Lets mark this shared edge as Delaunay
t.EdgeIsDelaunay[i] = true;
ot.EdgeIsDelaunay[oi] = true;
// Lets rotate shared edge one vertex CW to legalize it
RotateTrianglePair(t, p, ot, op);
// We now got one valid Delaunay Edge shared by two triangles
// This gives us 4 new edges to check for Delaunay
// Make sure that triangle to node mapping is done only one time for a specific triangle
notLegalized = !Legalize(tcx, t);
if (notLegalized)
{
tcx.MapTriangleToNodes(t);
}
notLegalized = !Legalize(tcx, ot);
if (notLegalized)
{
tcx.MapTriangleToNodes(ot);
}
// Reset the Delaunay edges, since they only are valid Delaunay edges
// until we add a new triangle or point.
// XXX: need to think about this. Can these edges be tried after we
// return to previous recursive level?
t.EdgeIsDelaunay[i] = false;
ot.EdgeIsDelaunay[oi] = false;
// If triangle have been legalized no need to check the other edges since
// the recursive legalization will handles those so we can end here.
return true;
}
}
}
return false;
}
示例7: IsShallow
private static bool IsShallow(DTSweepContext tcx, AdvancingFrontNode node)
{
double height;
if (tcx.Basin.leftHighest)
{
height = tcx.Basin.leftNode.Point.Y - node.Point.Y;
}
else
{
height = tcx.Basin.rightNode.Point.Y - node.Point.Y;
}
if (tcx.Basin.width > height)
{
return true;
}
return false;
}
示例8: FillAdvancingFront
/// <summary>
/// Fills holes in the Advancing Front
/// </summary>
private static void FillAdvancingFront(DTSweepContext tcx, AdvancingFrontNode n)
{
AdvancingFrontNode node;
double angle;
// Fill right holes
node = n.Next;
while (node.HasNext)
{
angle = HoleAngle(node);
if (angle > PI_div2 || angle < -PI_div2)
{
break;
}
Fill(tcx, node);
node = node.Next;
}
// Fill left holes
node = n.Prev;
while (node.HasPrev)
{
angle = HoleAngle(node);
if (angle > PI_div2 || angle < -PI_div2)
{
break;
}
Fill(tcx, node);
node = node.Prev;
}
// Fill right basins
if (n.HasNext && n.Next.HasNext)
{
angle = BasinAngle(n);
if (angle < PI_3div4)
{
FillBasin(tcx, n);
}
}
}
示例9: NextFlipTriangle
/// <summary>
/// After a flip we have two triangles and know that only one will still be
/// intersecting the edge. So decide which to contiune with and legalize the other
/// </summary>
/// <param name="tcx"></param>
/// <param name="o">should be the result of an TriangulationUtil.orient2d( eq, op, ep )</param>
/// <param name="t">triangle 1</param>
/// <param name="ot">triangle 2</param>
/// <param name="p">a point shared by both triangles</param>
/// <param name="op">another point shared by both triangles</param>
/// <returns>returns the triangle still intersecting the edge</returns>
private static DelaunayTriangle NextFlipTriangle(DTSweepContext tcx, Orientation o, DelaunayTriangle t,
DelaunayTriangle ot, TriangulationPoint p,
TriangulationPoint op)
{
int edgeIndex;
if (o == Orientation.CCW)
{
// ot is not crossing edge after flip
edgeIndex = ot.EdgeIndex(p, op);
ot.EdgeIsDelaunay[edgeIndex] = true;
Legalize(tcx, ot);
ot.EdgeIsDelaunay.Clear();
return t;
}
// t is not crossing edge after flip
edgeIndex = t.EdgeIndex(p, op);
t.EdgeIsDelaunay[edgeIndex] = true;
Legalize(tcx, t);
t.EdgeIsDelaunay.Clear();
return ot;
}
示例10: NewFrontTriangle
/// <summary>
/// Creates a new front triangle and legalize it
/// </summary>
private static AdvancingFrontNode NewFrontTriangle(DTSweepContext tcx, TriangulationPoint point,
AdvancingFrontNode node)
{
AdvancingFrontNode newNode;
DelaunayTriangle triangle;
triangle = new DelaunayTriangle(point, node.Point, node.Next.Point);
triangle.MarkNeighbor(node.Triangle);
tcx.Triangles.Add(triangle);
newNode = new AdvancingFrontNode(point);
newNode.Next = node.Next;
newNode.Prev = node;
node.Next.Prev = newNode;
node.Next = newNode;
tcx.AddNode(newNode); // XXX: BST
if (!Legalize(tcx, triangle))
{
tcx.MapTriangleToNodes(triangle);
}
return newNode;
}
示例11: PointEvent
/// <summary>
/// Find closes node to the left of the new point and
/// create a new triangle. If needed new holes and basins
/// will be filled to.
/// </summary>
private static AdvancingFrontNode PointEvent(DTSweepContext tcx, TriangulationPoint point)
{
AdvancingFrontNode node, newNode;
node = tcx.LocateNode(point);
newNode = NewFrontTriangle(tcx, point, node);
// Only need to check +epsilon since point never have smaller
// x value than node due to how we fetch nodes from the front
if (point.X <= node.Point.X + TriangulationUtil.EPSILON)
{
Fill(tcx, node);
}
tcx.AddNode(newNode);
FillAdvancingFront(tcx, newNode);
return newNode;
}
示例12: FinalizationPolygon
private static void FinalizationPolygon(DTSweepContext tcx)
{
// Get an Internal triangle to start with
DelaunayTriangle t = tcx.aFront.Head.Next.Triangle;
TriangulationPoint p = tcx.aFront.Head.Next.Point;
while (!t.GetConstrainedEdgeCW(p))
{
t = t.NeighborCCW(p);
}
// Collect interior triangles constrained by edges
tcx.MeshClean(t);
}
示例13: TurnAdvancingFrontConvex
/// <summary>
/// We will traverse the entire advancing front and fill it to form a convex hull.
/// </summary>
private static void TurnAdvancingFrontConvex(DTSweepContext tcx, AdvancingFrontNode b, AdvancingFrontNode c)
{
AdvancingFrontNode first = b;
while (c != tcx.aFront.Tail)
{
if (TriangulationUtil.Orient2d(b.Point, c.Point, c.Next.Point) == Orientation.CCW)
{
// [b,c,d] Concave - fill around c
Fill(tcx, c);
c = c.Next;
}
else
{
// [b,c,d] Convex
if (b != first && TriangulationUtil.Orient2d(b.Prev.Point, b.Point, c.Point) == Orientation.CCW)
{
// [a,b,c] Concave - fill around b
Fill(tcx, b);
b = b.Prev;
}
else
{
// [a,b,c] Convex - nothing to fill
b = c;
c = c.Next;
}
}
}
}
示例14: FinalizationConvexHull
/// <summary>
/// If this is a Delaunay Triangulation of a pointset we need to fill so the triangle mesh gets a ConvexHull
/// </summary>
private static void FinalizationConvexHull(DTSweepContext tcx)
{
AdvancingFrontNode n1, n2;
DelaunayTriangle t1, t2;
TriangulationPoint first, p1;
n1 = tcx.aFront.Head.Next;
n2 = n1.Next;
first = n1.Point;
TurnAdvancingFrontConvex(tcx, n1, n2);
// TODO: implement ConvexHull for lower right and left boundary
// Lets remove triangles connected to the two "algorithm" points
// XXX: When the first the nodes are points in a triangle we need to do a flip before
// removing triangles or we will lose a valid triangle.
// Same for last three nodes!
// !!! If I implement ConvexHull for lower right and left boundary this fix should not be
// needed and the removed triangles will be added again by default
n1 = tcx.aFront.Tail.Prev;
if (n1.Triangle.Contains(n1.Next.Point) && n1.Triangle.Contains(n1.Prev.Point))
{
t1 = n1.Triangle.NeighborAcross(n1.Point);
RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point));
tcx.MapTriangleToNodes(n1.Triangle);
tcx.MapTriangleToNodes(t1);
}
n1 = tcx.aFront.Head.Next;
if (n1.Triangle.Contains(n1.Prev.Point) && n1.Triangle.Contains(n1.Next.Point))
{
t1 = n1.Triangle.NeighborAcross(n1.Point);
RotateTrianglePair(n1.Triangle, n1.Point, t1, t1.OppositePoint(n1.Triangle, n1.Point));
tcx.MapTriangleToNodes(n1.Triangle);
tcx.MapTriangleToNodes(t1);
}
// Lower right boundary
first = tcx.aFront.Head.Point;
n2 = tcx.aFront.Tail.Prev;
t1 = n2.Triangle;
p1 = n2.Point;
n2.Triangle = null;
do
{
tcx.RemoveFromList(t1);
p1 = t1.PointCCW(p1);
if (p1 == first) break;
t2 = t1.NeighborCCW(p1);
t1.Clear();
t1 = t2;
} while (true);
// Lower left boundary
first = tcx.aFront.Head.Next.Point;
p1 = t1.PointCW(tcx.aFront.Head.Point);
t2 = t1.NeighborCW(tcx.aFront.Head.Point);
t1.Clear();
t1 = t2;
while (p1 != first) //TODO: Port note. This was do while before.
{
tcx.RemoveFromList(t1);
p1 = t1.PointCCW(p1);
t2 = t1.NeighborCCW(p1);
t1.Clear();
t1 = t2;
}
// Remove current head and tail node now that we have removed all triangles attached
// to them. Then set new head and tail node points
tcx.aFront.Head = tcx.aFront.Head.Next;
tcx.aFront.Head.Prev = null;
tcx.aFront.Tail = tcx.aFront.Tail.Prev;
tcx.aFront.Tail.Next = null;
tcx.FinalizeTriangulation();
}
示例15: FillRightBelowEdgeEvent
private static void FillRightBelowEdgeEvent(DTSweepContext tcx, DTSweepConstraint edge, AdvancingFrontNode node)
{
if (node.Point.x < edge.P.x) // needed?
{
if (TriangulationUtil.Orient2d(node.Point, node.Next.Point, node.Next.Next.Point) == Orientation.CCW)
{
// Concave
FillRightConcaveEdgeEvent(tcx, edge, node);
}
else
{
// Convex
FillRightConvexEdgeEvent(tcx, edge, node);
// Retry this one
FillRightBelowEdgeEvent(tcx, edge, node);
}
}
}