本文整理匯總了C#中PdfSharp.Drawing.XMatrix類的典型用法代碼示例。如果您正苦於以下問題:C# XMatrix類的具體用法?C# XMatrix怎麽用?C# XMatrix使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
XMatrix類屬於PdfSharp.Drawing命名空間,在下文中一共展示了XMatrix類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Format
/// <summary>
/// Calculates the space used for the axis title.
/// </summary>
internal override void Format()
{
XGraphics gfx = _rendererParms.Graphics;
AxisTitleRendererInfo atri = ((AxisRendererInfo)_rendererParms.RendererInfo)._axisTitleRendererInfo;
if (atri.AxisTitleText != "")
{
XSize size = gfx.MeasureString(atri.AxisTitleText, atri.AxisTitleFont);
if (atri.AxisTitleOrientation != 0)
{
XPoint[] points = new XPoint[2];
points[0].X = 0;
points[0].Y = 0;
points[1].X = size.Width;
points[1].Y = size.Height;
XMatrix matrix = new XMatrix();
matrix.RotatePrepend(-atri.AxisTitleOrientation);
matrix.TransformPoints(points);
size.Width = Math.Abs(points[1].X - points[0].X);
size.Height = Math.Abs(points[1].Y - points[0].Y);
}
atri.X = 0;
atri.Y = 0;
atri.Height = size.Height;
atri.Width = size.Width;
}
}
示例2: SetupFromBrush
/// <summary>
/// Setups the shading pattern from the specified brush.
/// </summary>
public void SetupFromBrush(XLinearGradientBrush brush, XMatrix matrix)
{
if (brush == null)
throw new ArgumentNullException("brush");
PdfShading shading = new PdfShading(this.document);
shading.SetupFromBrush(brush);
Elements[Keys.Shading] = shading;
Elements[Keys.Matrix] = new PdfLiteral("[" + PdfEncoders.ToString(matrix) + "]");
}
示例3: SetupFromBrush
/// <summary>
/// Setups the shading pattern from the specified brush.
/// </summary>
internal void SetupFromBrush(XLinearGradientBrush brush, XMatrix matrix, XGraphicsPdfRenderer renderer)
{
if (brush == null)
throw new ArgumentNullException("brush");
PdfShading shading = new PdfShading(_document);
shading.SetupFromBrush(brush, renderer);
Elements[Keys.Shading] = shading;
//Elements[Keys.Matrix] = new PdfLiteral("[" + PdfEncoders.ToString(matrix) + "]");
Elements.SetMatrix(Keys.Matrix, matrix);
}
示例4: FromImageBrush
/// <summary>
/// Creates an XForm from an image brush.
/// </summary>
public static XForm FromImageBrush(DocumentRenderingContext context, ImageBrush brush)
{
XPImage xpImage = ImageBuilder.FromImageBrush(context, brush);
XImage ximage = xpImage.XImage;
double width = ximage.PixelWidth;
double height = ximage.PixelHeight;
// view box in point
// XRect box = new XRect(brush.Viewbox.X * 0.75, brush.Viewbox.Y * 0.75, brush.Viewbox.Width * 0.75, brush.Viewbox.Height * 0.75);
XRect box = new XRect(0, 0, width, height);
XForm xform = new XForm(context.PdfDocument, box);
PdfContentWriter formWriter = new PdfContentWriter(context, xform, RenderMode.Default);
Debug.Assert(ximage != null);
PdfFormXObject pdfForm = xform.PdfForm;
pdfForm.Elements.SetMatrix(PdfFormXObject.Keys.Matrix, new XMatrix());
//formWriter.Size = brush.Viewport.Size;
formWriter.BeginContentRaw();
string imageID = formWriter.Resources.AddImage(new PdfImage(context.PdfDocument, ximage));
XMatrix matrix = new XMatrix();
double scaleX = brush.Viewport.Width / brush.Viewbox.Width * 4 / 3 * ximage.PointWidth;
double scaleY = brush.Viewport.Height / brush.Viewbox.Height * 4 / 3 * ximage.PointHeight;
matrix.TranslatePrepend(-brush.Viewbox.X, -brush.Viewbox.Y);
matrix.ScalePrepend(scaleX, scaleY);
matrix.TranslatePrepend(brush.Viewport.X / scaleX, brush.Viewport.Y / scaleY);
matrix = new XMatrix(width, 0, 0, -height, 0, height);
formWriter.WriteLiteral("q\n");
// TODO:WriteClip(path.Data);
//formWriter.WriteLiteral("{0:0.###} 0 0 -{1:0.###} {2:0.###} {3:0.###} cm 100 Tz {4} Do Q\n",
// matrix.M11, matrix.M22, matrix.OffsetX, matrix.OffsetY + brush.Viewport.Height, imageID);
formWriter.WriteMatrix(matrix);
formWriter.WriteLiteral(imageID + " Do Q\n");
formWriter.EndContent();
return xform;
}
示例5: FromMatrix
/// <summary>
/// Creates a literal from an XMatrix
/// </summary>
public static PdfLiteral FromMatrix(XMatrix matrix)
{
return new PdfLiteral("[" + PdfEncoders.ToString(matrix) + "]");
}
示例6: GetMatrix
/// Converts the specified value to XMatrix.
/// If the value not exists, the function returns an identity matrix.
/// If the value is not convertible, the function throws an InvalidCastException.
public XMatrix GetMatrix(string key, bool create)
{
XMatrix value = new XMatrix();
object obj = this[key];
if (obj == null)
{
if (create)
this[key] = new PdfLiteral("[1 0 0 1 0 0]"); // cannot be parsed, implement a PdfMatrix...
return value;
}
if (obj is PdfReference)
obj = ((PdfReference)obj).Value;
PdfArray array = obj as PdfArray;
if (array != null && array.Elements.Count == 6)
{
value = new XMatrix(array.Elements.GetReal(0), array.Elements.GetReal(1), array.Elements.GetReal(2),
array.Elements.GetReal(3), array.Elements.GetReal(4), array.Elements.GetReal(5));
}
else if (obj is PdfLiteral)
{
throw new NotImplementedException("Parsing matrix from literal.");
}
else
throw new InvalidCastException("Element is not an array with 6 values.");
return value;
}
示例7: AddTransform
/// <summary>
/// Gets or sets the transformation matrix.
/// </summary>
void AddTransform(XMatrix transform, XMatrixOrder order)
{
//if (!this.transform.Equals(value))
{
XMatrix matrix = this.transform;
matrix.Multiply(transform, order);
this.transform = matrix;
matrix = this.defaultViewMatrix;
matrix.Multiply(this.transform, XMatrixOrder.Prepend);
#if GDI
if (this.targetContext == XGraphicTargetContext.GDI)
{
#if DEBUG
System.Drawing.Drawing2D.Matrix m = (System.Drawing.Drawing2D.Matrix)matrix;
this.gfx.Transform = m;
#else
this.gfx.Transform = (System.Drawing.Drawing2D.Matrix)matrix;
#endif
}
#endif
#if WPF
if (this.targetContext == XGraphicTargetContext.WPF)
{
#if !SILVERLIGHT
MatrixTransform mt = new MatrixTransform(transform.ToWpfMatrix());
#else
MatrixTransform mt = new MatrixTransform();
mt.Matrix = transform.ToWpfMatrix();
#endif
if (order == XMatrixOrder.Append)
mt = (MatrixTransform)mt.Inverse;
this.gsStack.Current.SetTransform(mt);
}
#endif
if (this.renderer != null)
this.renderer.Transform = this.transform;
}
}
示例8: MultiplyTransform
/// <summary>
/// Multiplies the transformation matrix of this object and specified matrix.
/// </summary>
public void MultiplyTransform(XMatrix matrix)
{
//MultiplyTransform(matrix, XMatrixOrder.Prepend);
XMatrix matrix2 = new XMatrix(); //XMatrix.Identity;
matrix2.Prepend(matrix);
AddTransform(matrix2, XMatrixOrder.Prepend);
}
示例9: RotateAtTransform
/// <summary>
/// Applies the specified rotation operation to the transformation matrix of this object by
/// prepending it to the object's transformation matrix.
/// </summary>
public void RotateAtTransform(double angle, XPoint point, XMatrixOrder order)
{
//XMatrix matrix = this.transform;
//matrix.RotateAt(angle, point, order);
//Transform = matrix;
XMatrix matrix = new XMatrix(); //XMatrix.Identity;
matrix.RotateAtPrepend(angle, point);
AddTransform(matrix, order);
}
示例10: RotateTransform
/// <summary>
/// Applies the specified rotation operation to the transformation matrix of this object
/// in the specified order. The angle unit of measure is degree.
/// </summary>
public void RotateTransform(double angle, XMatrixOrder order)
{
//XMatrix matrix = this.transform;
//matrix.Rotate(angle, order);
//Transform = matrix;
XMatrix matrix = new XMatrix(); //XMatrix.Identity;
matrix.RotatePrepend(angle);
AddTransform(matrix, order);
}
示例11: MultiplyTransform
public XMatrix MultiplyTransform(XMatrix matrix)
{
this.transform.Prepend(matrix);
return this.transform;
}
示例12: ArcToBezier
//+-------------------------------------------------------------------------------------------------
//
// Function: ArcToBezier
//
// Synopsis: Compute the Bezier approximation of an arc
//
// Notes: This utilitycomputes the Bezier approximation for an elliptical arc as it is defined
// in the SVG arc spec. The ellipse from which the arc is carved is axis-aligned in its
// own coordinates, and defined there by its x and y radii. The rotation angle defines
// how the ellipse's axes are rotated relative to our x axis. The start and end points
// define one of 4 possible arcs; the sweep and large-arc flags determine which one of
// these arcs will be chosen. See SVG spec for details.
//
// Returning pieces = 0 indicates a line instead of an arc
// pieces = -1 indicates that the arc degenerates to a point
//
//--------------------------------------------------------------------------------------------------
public static PointCollection ArcToBezier(double xStart, double yStart, double xRadius, double yRadius, double rotationAngle,
bool isLargeArc, bool isClockwise, double xEnd, double yEnd, out int pieces)
{
double cosArcAngle, sinArcAngle, xCenter, yCenter, r, bezDist;
XVector vecToBez1, vecToBez2;
XMatrix matToEllipse;
double fuzz2 = FUZZ * FUZZ;
bool isZeroCenter = false;
pieces = -1;
// In the following, the line segment between between the arc's start and
// end points is referred to as "the chord".
// Transform 1: Shift the origin to the chord's midpoint
double x = (xEnd - xStart) / 2;
double y = (yEnd - yStart) / 2;
double halfChord2 = x * x + y * y; // (half chord length)^2
// Degenerate case: single point
if (halfChord2 < fuzz2)
{
// The chord degeneartes to a point, the arc will be ignored
return null;
}
// Degenerate case: straight line
if (!AcceptRadius(halfChord2, fuzz2, ref xRadius) || !AcceptRadius(halfChord2, fuzz2, ref yRadius))
{
// We have a zero radius, add a straight line segment instead of an arc
pieces = 0;
return null;
}
if (xRadius == 0 || yRadius == 0)
{
// We have a zero radius, add a straight line segment instead of an arc
pieces = 0;
return null;
}
// Transform 2: Rotate to the ellipse's coordinate system
rotationAngle = -rotationAngle * Calc.Deg2Rad;
double cos = Math.Cos(rotationAngle);
double sin = Math.Sin(rotationAngle);
r = x * cos - y * sin;
y = x * sin + y * cos;
x = r;
// Transform 3: Scale so that the ellipse will become a unit circle
x /= xRadius;
y /= yRadius;
// We get to the center of that circle along a verctor perpendicular to the chord
// from the origin, which is the chord's midpoint. By Pythagoras, the length of that
// vector is sqrt(1 - (half chord)^2).
halfChord2 = x * x + y * y; // now in the circle coordinates
if (halfChord2 > 1)
{
// The chord is longer than the circle's diameter; we scale the radii uniformly so
// that the chord will be a diameter. The center will then be the chord's midpoint,
// which is now the origin.
r = Math.Sqrt(halfChord2);
xRadius *= r;
yRadius *= r;
xCenter = yCenter = 0;
isZeroCenter = true;
// Adjust the unit-circle coordinates x and y
x /= r;
y /= r;
}
else
{
// The length of (-y,x) or (x,-y) is sqrt(rHalfChord2), and we want a vector
// of length sqrt(1 - rHalfChord2), so we'll multiply it by:
r = Math.Sqrt((1 - halfChord2) / halfChord2);
//.........這裏部分代碼省略.........
示例13: BezierCurveFromArc
/// <summary>
/// Creates between 1 and 5 Béziers curves from parameters specified like in WPF.
/// </summary>
public static List<XPoint> BezierCurveFromArc(XPoint point1, XPoint point2, XSize size,
double rotationAngle, bool isLargeArc, bool clockwise, PathStart pathStart)
{
// See also http://www.charlespetzold.com/blog/blog.xml from January 2, 2008:
// http://www.charlespetzold.com/blog/2008/01/Mathematics-of-ArcSegment.html
double δx = size.Width;
double δy = size.Height;
Debug.Assert(δx * δy > 0);
double factor = δy / δx;
bool isCounterclockwise = !clockwise;
// Adjust for different radii and rotation angle.
XMatrix matrix = new XMatrix();
matrix.RotateAppend(-rotationAngle);
matrix.ScaleAppend(δy / δx, 1);
XPoint pt1 = matrix.Transform(point1);
XPoint pt2 = matrix.Transform(point2);
// Get info about chord that connects both points.
XPoint midPoint = new XPoint((pt1.X + pt2.X) / 2, (pt1.Y + pt2.Y) / 2);
XVector vect = pt2 - pt1;
double halfChord = vect.Length / 2;
// Get vector from chord to center.
XVector vectRotated;
// (comparing two Booleans here!)
if (isLargeArc == isCounterclockwise)
vectRotated = new XVector(-vect.Y, vect.X);
else
vectRotated = new XVector(vect.Y, -vect.X);
vectRotated.Normalize();
// Distance from chord to center.
double centerDistance = Math.Sqrt(δy * δy - halfChord * halfChord);
if (double.IsNaN(centerDistance))
centerDistance = 0;
// Calculate center point.
XPoint center = midPoint + centerDistance * vectRotated;
// Get angles from center to the two points.
double α = Math.Atan2(pt1.Y - center.Y, pt1.X - center.X);
double β = Math.Atan2(pt2.Y - center.Y, pt2.X - center.X);
// (another comparison of two Booleans!)
if (isLargeArc == (Math.Abs(β - α) < Math.PI))
{
if (α < β)
α += 2 * Math.PI;
else
β += 2 * Math.PI;
}
// Invert matrix for final point calculation.
matrix.Invert();
double sweepAngle = β - α;
// Let the algorithm of GDI+ DrawArc to Bézier curves do the rest of the job
return BezierCurveFromArc(center.X - δx * factor, center.Y - δy, 2 * δx * factor, 2 * δy,
α / Calc.Deg2Rad, sweepAngle / Calc.Deg2Rad, pathStart, ref matrix);
}
示例14: AppendPartialArcQuadrant
/// <summary>
/// Appends a Bézier curve for an arc within a full quadrant.
/// </summary>
static void AppendPartialArcQuadrant(List<XPoint> points, double x, double y, double width, double height, double α, double β, PathStart pathStart, XMatrix matrix)
{
Debug.Assert(α >= 0 && α <= 360);
Debug.Assert(β >= 0);
if (β > 360)
β = β - Math.Floor(β / 360) * 360;
Debug.Assert(Math.Abs(α - β) <= 90);
// Scanling factor.
double δx = width / 2;
double δy = height / 2;
// Center of ellipse.
double x0 = x + δx;
double y0 = y + δy;
// We have the following quarters:
// |
// 2 | 3
// ----+-----
// 1 | 0
// |
// If the angles lie in quarter 2 or 3, their values are subtracted by 180 and the
// resulting curve is reflected at the center. This algorithm works as expected (simply tried out).
// There may be a mathematically more elegant solution...
bool reflect = false;
if (α >= 180 && β >= 180)
{
α -= 180;
β -= 180;
reflect = true;
}
double cosα, cosβ, sinα, sinβ;
if (width == height)
{
// Circular arc needs no correction.
α = α * Calc.Deg2Rad;
β = β * Calc.Deg2Rad;
}
else
{
// Elliptic arc needs the angles to be adjusted such that the scaling transformation is compensated.
α = α * Calc.Deg2Rad;
sinα = Math.Sin(α);
if (Math.Abs(sinα) > 1E-10)
α = Math.PI / 2 - Math.Atan(δy * Math.Cos(α) / (δx * sinα));
β = β * Calc.Deg2Rad;
sinβ = Math.Sin(β);
if (Math.Abs(sinβ) > 1E-10)
β = Math.PI / 2 - Math.Atan(δy * Math.Cos(β) / (δx * sinβ));
}
double κ = 4 * (1 - Math.Cos((α - β) / 2)) / (3 * Math.Sin((β - α) / 2));
sinα = Math.Sin(α);
cosα = Math.Cos(α);
sinβ = Math.Sin(β);
cosβ = Math.Cos(β);
//XPoint pt1, pt2, pt3;
if (!reflect)
{
// Calculation for quarter 0 and 1.
switch (pathStart)
{
case PathStart.MoveTo1st:
points.Add(matrix.Transform(new XPoint(x0 + δx * cosα, y0 + δy * sinα)));
break;
case PathStart.LineTo1st:
points.Add(matrix.Transform(new XPoint(x0 + δx * cosα, y0 + δy * sinα)));
break;
case PathStart.Ignore1st:
break;
}
points.Add(matrix.Transform(new XPoint(x0 + δx * (cosα - κ * sinα), y0 + δy * (sinα + κ * cosα))));
points.Add(matrix.Transform(new XPoint(x0 + δx * (cosβ + κ * sinβ), y0 + δy * (sinβ - κ * cosβ))));
points.Add(matrix.Transform(new XPoint(x0 + δx * cosβ, y0 + δy * sinβ)));
}
else
{
// Calculation for quarter 2 and 3.
switch (pathStart)
{
case PathStart.MoveTo1st:
points.Add(matrix.Transform(new XPoint(x0 - δx * cosα, y0 - δy * sinα)));
break;
case PathStart.LineTo1st:
points.Add(matrix.Transform(new XPoint(x0 - δx * cosα, y0 - δy * sinα)));
break;
case PathStart.Ignore1st:
break;
}
points.Add(matrix.Transform(new XPoint(x0 - δx * (cosα - κ * sinα), y0 - δy * (sinα + κ * cosα))));
//.........這裏部分代碼省略.........
示例15: ScaleTransform
/// <summary>
/// Applies the specified scaling operation to the transformation matrix of this object
/// in the specified order.
/// </summary>
public void ScaleTransform(double scaleXY, XMatrixOrder order)
{
//XMatrix matrix = this.transform;
//matrix.Scale(scaleXY, scaleXY, order);
//Transform = matrix;
XMatrix matrix = new XMatrix(); //XMatrix.Identity;
matrix.ScalePrepend(scaleXY, scaleXY);
AddTransform(matrix, order);
}