本文整理匯總了C#中OpenCvSharp.CPlusPlus.InputOutputArray.Fix方法的典型用法代碼示例。如果您正苦於以下問題:C# InputOutputArray.Fix方法的具體用法?C# InputOutputArray.Fix怎麽用?C# InputOutputArray.Fix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類OpenCvSharp.CPlusPlus.InputOutputArray
的用法示例。
在下文中一共展示了InputOutputArray.Fix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: UpdateMotionHistory
/// <summary>
/// Updates motion history image using the current silhouette
/// </summary>
/// <param name="silhouette">Silhouette mask that has non-zero pixels where the motion occurs.</param>
/// <param name="mhi">Motion history image that is updated by the function (single-channel, 32-bit floating-point).</param>
/// <param name="timestamp">Current time in milliseconds or other units.</param>
/// <param name="duration">Maximal duration of the motion track in the same units as timestamp .</param>
public static void UpdateMotionHistory(
InputArray silhouette, InputOutputArray mhi,
double timestamp, double duration)
{
if (silhouette == null)
throw new ArgumentNullException("silhouette");
if (mhi == null)
throw new ArgumentNullException("mhi");
silhouette.ThrowIfDisposed();
mhi.ThrowIfNotReady();
NativeMethods.video_updateMotionHistory(
silhouette.CvPtr, mhi.CvPtr, timestamp, duration);
mhi.Fix();
}
示例2: Kmeans
/// <summary>
/// clusters the input data using k-Means algorithm
/// </summary>
/// <param name="data"></param>
/// <param name="k"></param>
/// <param name="bestLabels"></param>
/// <param name="criteria"></param>
/// <param name="attempts"></param>
/// <param name="flags"></param>
/// <param name="centers"></param>
/// <returns></returns>
public static double Kmeans(InputArray data, int k, InputOutputArray bestLabels,
TermCriteria criteria, int attempts, KMeansFlag flags, OutputArray centers = null)
{
if (data == null)
throw new ArgumentNullException("data");
if (bestLabels == null)
throw new ArgumentNullException("bestLabels");
data.ThrowIfDisposed();
bestLabels.ThrowIfDisposed();
double ret = NativeMethods.core_kmeans(data.CvPtr, k, bestLabels.CvPtr, criteria, attempts, (int)flags, ToPtr(centers));
bestLabels.Fix();
if(centers != null)
centers.Fix();
return ret;
}
示例3: FilterSpeckles
/// <summary>
/// filters off speckles (small regions of incorrectly computed disparity)
/// </summary>
/// <param name="img">The input 16-bit signed disparity image</param>
/// <param name="newVal">The disparity value used to paint-off the speckles</param>
/// <param name="maxSpeckleSize">The maximum speckle size to consider it a speckle. Larger blobs are not affected by the algorithm</param>
/// <param name="maxDiff">Maximum difference between neighbor disparity pixels to put them into the same blob.
/// Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point disparity map, where disparity values
/// are multiplied by 16, this scale factor should be taken into account when specifying this parameter value.</param>
/// <param name="buf">The optional temporary buffer to avoid memory allocation within the function.</param>
public static void FilterSpeckles(InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff,
InputOutputArray buf = null)
{
if (img == null)
throw new ArgumentNullException("img");
img.ThrowIfNotReady();
NativeMethods.calib3d_filterSpeckles(img.CvPtr, newVal, maxSpeckleSize, maxDiff, ToPtr(buf));
img.Fix();
}
示例4: CalibrateCamera
/// <summary>
/// finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
/// </summary>
/// <param name="objectPoints">In the new interface it is a vector of vectors of calibration pattern points in the calibration pattern coordinate space.
/// The outer vector contains as many elements as the number of the pattern views. If the same calibration pattern is shown in each view and
/// it is fully visible, all the vectors will be the same. Although, it is possible to use partially occluded patterns, or even different patterns
/// in different views. Then, the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, then,
/// if the rig is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate of each input object point is 0.
/// In the old interface all the vectors of object points from different views are concatenated together.</param>
/// <param name="imagePoints">In the new interface it is a vector of vectors of the projections of calibration pattern points.
/// imagePoints.Count() and objectPoints.Count() and imagePoints[i].Count() must be equal to objectPoints[i].Count() for each i.</param>
/// <param name="imageSize">Size of the image used only to initialize the intrinsic camera matrix.</param>
/// <param name="cameraMatrix">Output 3x3 floating-point camera matrix.
/// If CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
/// initialized before calling the function.</param>
/// <param name="distCoeffs">Output vector of distortion coefficients (k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6]]) of 4, 5, or 8 elements.</param>
/// <param name="rvecs">Output vector of rotation vectors (see Rodrigues() ) estimated for each pattern view. That is, each k-th rotation vector
/// together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern
/// from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the
/// calibration pattern in the k-th pattern view (k=0.. M -1)</param>
/// <param name="tvecs">Output vector of translation vectors estimated for each pattern view.</param>
/// <param name="flags">Different flags that may be zero or a combination of the CalibrationFlag values</param>
/// <param name="criteria">Termination criteria for the iterative optimization algorithm.</param>
/// <returns></returns>
public static double CalibrateCamera(
IEnumerable<Mat> objectPoints,
IEnumerable<Mat> imagePoints,
Size imageSize,
InputOutputArray cameraMatrix,
InputOutputArray distCoeffs,
out Mat[] rvecs,
out Mat[] tvecs,
CalibrationFlag flags = CalibrationFlag.Zero,
TermCriteria? criteria = null)
{
if (objectPoints == null)
throw new ArgumentNullException("objectPoints");
if (objectPoints == null)
throw new ArgumentNullException("objectPoints");
if (cameraMatrix == null)
throw new ArgumentNullException("cameraMatrix");
if (distCoeffs == null)
throw new ArgumentNullException("distCoeffs");
cameraMatrix.ThrowIfNotReady();
distCoeffs.ThrowIfNotReady();
TermCriteria criteria0 = criteria.GetValueOrDefault(
new TermCriteria(CriteriaType.Iteration | CriteriaType.Epsilon, 30, Double.Epsilon));
IntPtr[] objectPointsPtrs = EnumerableEx.SelectPtrs(objectPoints);
IntPtr[] imagePointsPtrs = EnumerableEx.SelectPtrs(imagePoints);
double ret;
using (var rvecsVec = new VectorOfMat())
using (var tvecsVec = new VectorOfMat())
{
ret = NativeMethods.calib3d_calibrateCamera_InputArray(
objectPointsPtrs, objectPointsPtrs.Length,
imagePointsPtrs, objectPointsPtrs.Length,
imageSize, cameraMatrix.CvPtr, distCoeffs.CvPtr,
rvecsVec.CvPtr, tvecsVec.CvPtr, (int)flags, criteria0);
rvecs = rvecsVec.ToArray();
tvecs = tvecsVec.ToArray();
}
cameraMatrix.Fix();
distCoeffs.Fix();
return ret;
}
示例5: DrawChessboardCorners
/// <summary>
/// Renders the detected chessboard corners.
/// </summary>
/// <param name="image">Destination image. It must be an 8-bit color image.</param>
/// <param name="patternSize">Number of inner corners per a chessboard row and column (patternSize = cv::Size(points_per_row,points_per_column)).</param>
/// <param name="corners">Array of detected corners, the output of findChessboardCorners.</param>
/// <param name="patternWasFound">Parameter indicating whether the complete board was found or not. The return value of findChessboardCorners() should be passed here.</param>
public static void DrawChessboardCorners(InputOutputArray image, Size patternSize,
InputArray corners, bool patternWasFound)
{
if (image == null)
throw new ArgumentNullException("image");
if (corners == null)
throw new ArgumentNullException("corners");
image.ThrowIfNotReady();
corners.ThrowIfDisposed();
NativeMethods.calib3d_drawChessboardCorners_InputArray(
image.CvPtr, patternSize, corners.CvPtr, patternWasFound ? 1 : 0);
image.Fix();
}
示例6: DrawContours
/// <summary>
/// 輪郭線,または內側が塗りつぶされた輪郭を描きます.
/// </summary>
/// <param name="image">出力畫像</param>
/// <param name="contours"> 入力される全輪郭.各輪郭は,點のベクトルとして格納されています.</param>
/// <param name="contourIdx">描かれる輪郭を示します.これが負値の場合,すべての輪郭が描畫されます.</param>
/// <param name="color">輪郭の色.</param>
/// <param name="thickness">輪郭線の太さ.これが負値の場合(例えば thickness=CV_FILLED ),輪郭の內側が塗りつぶされます.</param>
/// <param name="lineType">線の連結性</param>
/// <param name="hierarchy">階層に関するオプションの情報.これは,特定の輪郭だけを描畫したい場合にのみ必要になります.</param>
/// <param name="maxLevel">描畫される輪郭の最大レベル.0ならば,指定された輪郭のみが描畫されます.
/// 1ならば,指定された輪郭と,それに入れ子になったすべての輪郭が描畫されます.2ならば,指定された輪郭と,
/// それに入れ子になったすべての輪郭,さらにそれに入れ子になったすべての輪郭が描畫されます.このパラメータは,
/// hierarchy が有効な場合のみ考慮されます.</param>
/// <param name="offset">輪郭をシフトするオプションパラメータ.指定された offset = (dx,dy) だけ,すべての描畫輪郭がシフトされます.</param>
#else
/// <summary>
/// draws contours in the image
/// </summary>
/// <param name="image">Destination image.</param>
/// <param name="contours">All the input contours. Each contour is stored as a point vector.</param>
/// <param name="contourIdx">Parameter indicating a contour to draw. If it is negative, all the contours are drawn.</param>
/// <param name="color">Color of the contours.</param>
/// <param name="thickness">Thickness of lines the contours are drawn with. If it is negative (for example, thickness=CV_FILLED ),
/// the contour interiors are drawn.</param>
/// <param name="lineType">Line connectivity. </param>
/// <param name="hierarchy">Optional information about hierarchy. It is only needed if you want to draw only some of the contours</param>
/// <param name="maxLevel">Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
/// If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours,
/// all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account
/// when there is hierarchy available.</param>
/// <param name="offset">Optional contour shift parameter. Shift all the drawn contours by the specified offset = (dx, dy)</param>
#endif
public static void DrawContours(
InputOutputArray image,
IEnumerable<Mat> contours,
int contourIdx,
Scalar color,
int thickness = 1,
LineType lineType = LineType.Link8,
Mat hierarchy = null,
int maxLevel = Int32.MaxValue,
Point? offset = null)
{
if (image == null)
throw new ArgumentNullException("image");
if (contours == null)
throw new ArgumentNullException("contours");
image.ThrowIfNotReady();
CvPoint offset0 = offset.GetValueOrDefault(new Point());
IntPtr[] contoursPtr = EnumerableEx.SelectPtrs(contours);
NativeMethods.imgproc_drawContours_InputArray(image.CvPtr, contoursPtr, contoursPtr.Length,
contourIdx, color, thickness, (int)lineType, ToPtr(hierarchy), maxLevel, offset0);
image.Fix();
}
示例7: FindContoursAsMat
/// <summary>
/// 2値畫像中の輪郭を検出します.
/// </summary>
/// <param name="image">入力畫像,8ビット,シングルチャンネル.0以外のピクセルは 1として,0のピクセルは0のまま扱われます.
/// また,この関數は,輪郭抽出処理中に入力畫像 image の中身を書き換えます.</param>
/// <param name="mode">輪郭抽出モード</param>
/// <param name="method">輪郭の近似手法</param>
/// <param name="offset">オプションのオフセット.各輪郭點はこの値の分だけシフトします.これは,ROIの中で抽出された輪郭を,畫像全體に対して位置づけて解析する場合に役立ちます.</param>
/// <return>検出された輪郭.各輪郭は,點のベクトルとして格納されます.</return>
#else
/// <summary>
/// Finds contours in a binary image.
/// </summary>
/// <param name="image">Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s.
/// Zero pixels remain 0’s, so the image is treated as binary.
/// The function modifies the image while extracting the contours.</param>
/// <param name="mode">Contour retrieval mode</param>
/// <param name="method">Contour approximation method</param>
/// <param name="offset"> Optional offset by which every contour point is shifted.
/// This is useful if the contours are extracted from the image ROI and then they should be analyzed in the whole image context.</param>
/// <returns>Detected contours. Each contour is stored as a vector of points.</returns>
#endif
public static MatOfPoint[] FindContoursAsMat(InputOutputArray image,
ContourRetrieval mode, ContourChain method, Point? offset = null)
{
if (image == null)
throw new ArgumentNullException("image");
image.ThrowIfNotReady();
CvPoint offset0 = offset.GetValueOrDefault(new Point());
IntPtr contoursPtr;
NativeMethods.imgproc_findContours2_OutputArray(image.CvPtr, out contoursPtr, (int)mode, (int)method, offset0);
image.Fix();
using (var contoursVec = new VectorOfMat(contoursPtr))
{
return contoursVec.ToArray<MatOfPoint>();
}
}
示例8: FindContours
/// <summary>
/// 2値畫像中の輪郭を検出します.
/// </summary>
/// <param name="image">入力畫像,8ビット,シングルチャンネル.0以外のピクセルは 1として,0のピクセルは0のまま扱われます.
/// また,この関數は,輪郭抽出処理中に入力畫像 image の中身を書き換えます.</param>
/// <param name="contours">検出された輪郭.各輪郭は,點のベクトルとして格納されます.</param>
/// <param name="hierarchy">畫像のトポロジーに関する情報を含む出力ベクトル.これは,輪郭數と同じ數の要素を持ちます.各輪郭 contours[i] に対して,
/// 要素 hierarchy[i]のメンバにはそれぞれ,同じ階層レベルに存在する前後の輪郭,最初の子輪郭,および親輪郭の
/// contours インデックス(0 基準)がセットされます.また,輪郭 i において,前後,親,子の輪郭が存在しない場合,
/// それに対応する hierarchy[i] の要素は,負の値になります.</param>
/// <param name="mode">輪郭抽出モード</param>
/// <param name="method">輪郭の近似手法</param>
/// <param name="offset">オプションのオフセット.各輪郭點はこの値の分だけシフトします.これは,ROIの中で抽出された輪郭を,畫像全體に対して位置づけて解析する場合に役立ちます.</param>
#else
/// <summary>
/// Finds contours in a binary image.
/// </summary>
/// <param name="image">Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s.
/// Zero pixels remain 0’s, so the image is treated as binary.
/// The function modifies the image while extracting the contours.</param>
/// <param name="contours">Detected contours. Each contour is stored as a vector of points.</param>
/// <param name="hierarchy">Optional output vector, containing information about the image topology.
/// It has as many elements as the number of contours. For each i-th contour contours[i],
/// the members of the elements hierarchy[i] are set to 0-based indices in contours of the next
/// and previous contours at the same hierarchical level, the first child contour and the parent contour, respectively.
/// If for the contour i there are no next, previous, parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.</param>
/// <param name="mode">Contour retrieval mode</param>
/// <param name="method">Contour approximation method</param>
/// <param name="offset"> Optional offset by which every contour point is shifted.
/// This is useful if the contours are extracted from the image ROI and then they should be analyzed in the whole image context.</param>
#endif
public static void FindContours(InputOutputArray image, out Point[][] contours,
out HierarchyIndex[] hierarchy, ContourRetrieval mode, ContourChain method, Point? offset = null)
{
if (image == null)
throw new ArgumentNullException("image");
image.ThrowIfNotReady();
CvPoint offset0 = offset.GetValueOrDefault(new Point());
IntPtr contoursPtr, hierarchyPtr;
NativeMethods.imgproc_findContours1_vector(image.CvPtr, out contoursPtr, out hierarchyPtr, (int)mode, (int)method, offset0);
using (var contoursVec = new VectorOfVectorPoint(contoursPtr))
using (var hierarchyVec = new VectorOfVec4i(hierarchyPtr))
{
contours = contoursVec.ToArray();
Vec4i[] hierarchyOrg = hierarchyVec.ToArray();
hierarchy = EnumerableEx.SelectToArray(hierarchyOrg, HierarchyIndex.FromVec4i);
}
image.Fix();
}
示例9: InsertChannel
/// <summary>
/// inserts a single channel to dst (coi is 0-based index)
/// </summary>
/// <param name="src"></param>
/// <param name="dst"></param>
/// <param name="coi"></param>
public static void InsertChannel(InputArray src, InputOutputArray dst, int coi)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.core_insertChannel(src.CvPtr, dst.CvPtr, coi);
dst.Fix();
}
示例10: RandShuffle
/// <summary>
/// shuffles the input array elements
/// </summary>
/// <param name="dst"></param>
/// <param name="iterFactor"></param>
public static void RandShuffle(InputOutputArray dst, double iterFactor = 1.0)
{
if (dst == null)
throw new ArgumentNullException("dst");
dst.ThrowIfNotReady();
NativeMethods.core_randShuffle_(dst.CvPtr, iterFactor);
dst.Fix();
}
示例11: Randn
/// <summary>
/// fills array with normally-distributed random numbers with the specified mean and the standard deviation
/// </summary>
/// <param name="dst"></param>
/// <param name="mean"></param>
/// <param name="stddev"></param>
public static void Randn(InputOutputArray dst, Scalar mean, Scalar stddev)
{
if (dst == null)
throw new ArgumentNullException("dst");
dst.ThrowIfNotReady();
NativeMethods.core_randn_Scalar(dst.CvPtr, mean, stddev);
dst.Fix();
}
示例12: Randu
/// <summary>
/// fills array with uniformly-distributed random numbers from the range [low, high)
/// </summary>
/// <param name="dst"></param>
/// <param name="low"></param>
/// <param name="high"></param>
public static void Randu(InputOutputArray dst, Scalar low, Scalar high)
{
if (dst == null)
throw new ArgumentNullException("dst");
dst.ThrowIfNotReady();
NativeMethods.core_randu_Scalar(dst.CvPtr, low, high);
dst.Fix();
}
示例13: GrabCut
/// <summary>
/// Segments the image using GrabCut algorithm
/// </summary>
/// <param name="img">Input 8-bit 3-channel image.</param>
/// <param name="mask">Input/output 8-bit single-channel mask.
/// The mask is initialized by the function when mode is set to GC_INIT_WITH_RECT.
/// Its elements may have Cv2.GC_BGD / Cv2.GC_FGD / Cv2.GC_PR_BGD / Cv2.GC_PR_FGD</param>
/// <param name="rect">ROI containing a segmented object. The pixels outside of the ROI are
/// marked as "obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT.</param>
/// <param name="bgdModel">Temporary array for the background model. Do not modify it while you are processing the same image.</param>
/// <param name="fgdModel">Temporary arrays for the foreground model. Do not modify it while you are processing the same image.</param>
/// <param name="iterCount">Number of iterations the algorithm should make before returning the result.
/// Note that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or mode==GC_EVAL .</param>
/// <param name="mode">Operation mode that could be one of GrabCutFlag value.</param>
public static void GrabCut(InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, GrabCutFlag mode)
{
if (img == null)
throw new ArgumentNullException("img");
if (mask == null)
throw new ArgumentNullException("mask");
if (bgdModel == null)
throw new ArgumentNullException("bgdModel");
if (fgdModel == null)
throw new ArgumentNullException("fgdModel");
img.ThrowIfDisposed();
mask.ThrowIfNotReady();
bgdModel.ThrowIfNotReady();
fgdModel.ThrowIfNotReady();
NativeMethods.imgproc_grabCut(img.CvPtr, mask.CvPtr, rect,
bgdModel.CvPtr, fgdModel.CvPtr, iterCount, (int)mode);
mask.Fix();
bgdModel.Fix();
fgdModel.Fix();
}
示例14: FloodFill
/// <summary>
/// Fills a connected component with the given color.
/// </summary>
/// <param name="image">Input/output 1- or 3-channel, 8-bit, or floating-point image.
/// It is modified by the function unless the FLOODFILL_MASK_ONLY flag is set in the
/// second variant of the function. See the details below.</param>
/// <param name="mask">(For the second function only) Operation mask that should be a single-channel 8-bit image,
/// 2 pixels wider and 2 pixels taller. The function uses and updates the mask, so you take responsibility of
/// initializing the mask content. Flood-filling cannot go across non-zero pixels in the mask. For example,
/// an edge detector output can be used as a mask to stop filling at edges. It is possible to use the same mask
/// in multiple calls to the function to make sure the filled area does not overlap.</param>
/// <param name="seedPoint">Starting point.</param>
/// <param name="newVal">New value of the repainted domain pixels.</param>
/// <param name="rect">Optional output parameter set by the function to the
/// minimum bounding rectangle of the repainted domain.</param>
/// <param name="loDiff">Maximal lower brightness/color difference between the currently
/// observed pixel and one of its neighbors belonging to the component, or a seed pixel
/// being added to the component.</param>
/// <param name="upDiff">Maximal upper brightness/color difference between the currently
/// observed pixel and one of its neighbors belonging to the component, or a seed pixel
/// being added to the component.</param>
/// <param name="flags">Operation flags. Lower bits contain a connectivity value,
/// 4 (default) or 8, used within the function. Connectivity determines which
/// neighbors of a pixel are considered. </param>
/// <returns></returns>
public static int FloodFill(InputOutputArray image, InputOutputArray mask,
Point seedPoint, Scalar newVal, out Rect rect,
Scalar? loDiff = null, Scalar? upDiff = null,
FloodFillFlag flags = FloodFillFlag.Link4)
{
if (image == null)
throw new ArgumentNullException("image");
if (mask == null)
throw new ArgumentNullException("mask");
image.ThrowIfNotReady();
mask.ThrowIfNotReady();
Scalar loDiff0 = loDiff.GetValueOrDefault(new Scalar());
Scalar upDiff0 = upDiff.GetValueOrDefault(new Scalar());
CvRect rect0;
int ret = NativeMethods.imgproc_floodFill(image.CvPtr, mask.CvPtr, seedPoint,
newVal, out rect0, loDiff0, upDiff0, (int)flags);
rect = rect0;
image.Fix();
mask.Fix();
return ret;
}
示例15: CalcOpticalFlowPyrLK
/// <summary>
/// computes sparse optical flow using multi-scale Lucas-Kanade algorithm
/// </summary>
/// <param name="prevImg"></param>
/// <param name="nextImg"></param>
/// <param name="prevPts"></param>
/// <param name="nextPts"></param>
/// <param name="status"></param>
/// <param name="err"></param>
/// <param name="winSize"></param>
/// <param name="maxLevel"></param>
/// <param name="criteria"></param>
/// <param name="flags"></param>
/// <param name="minEigThreshold"></param>
public static void CalcOpticalFlowPyrLK(
InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status, OutputArray err,
Size? winSize = null,
int maxLevel = 3,
TermCriteria? criteria = null,
OpticalFlowFlags flags = OpticalFlowFlags.None,
double minEigThreshold = 1e-4)
{
if (prevImg == null)
throw new ArgumentNullException("prevImg");
if (nextImg == null)
throw new ArgumentNullException("nextImg");
if (prevPts == null)
throw new ArgumentNullException("prevPts");
if (nextPts == null)
throw new ArgumentNullException("nextPts");
if (status == null)
throw new ArgumentNullException("status");
if (err == null)
throw new ArgumentNullException("err");
prevImg.ThrowIfDisposed();
nextImg.ThrowIfDisposed();
prevPts.ThrowIfDisposed();
nextPts.ThrowIfNotReady();
status.ThrowIfNotReady();
err.ThrowIfNotReady();
Size winSize0 = winSize.GetValueOrDefault(new Size(21, 21));
TermCriteria criteria0 = criteria.GetValueOrDefault(
TermCriteria.Both(30, 0.01));
NativeMethods.video_calcOpticalFlowPyrLK_InputArray(
prevImg.CvPtr, nextImg.CvPtr, prevPts.CvPtr, nextPts.CvPtr,
status.CvPtr, err.CvPtr, winSize0,maxLevel,
criteria0, (int)flags, minEigThreshold);
nextPts.Fix();
status.Fix();
err.Fix();
}