本文整理匯總了C#中BasicNetwork類的典型用法代碼示例。如果您正苦於以下問題:C# BasicNetwork類的具體用法?C# BasicNetwork怎麽用?C# BasicNetwork使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
BasicNetwork類屬於命名空間,在下文中一共展示了BasicNetwork類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: NeuralGeneticAlgorithm
/// <summary>
/// Construct a neural genetic algorithm.
/// </summary>
///
/// <param name="network">The network to base this on.</param>
/// <param name="randomizer">The randomizer used to create this initial population.</param>
/// <param name="calculateScore">The score calculation object.</param>
/// <param name="populationSize">The population size.</param>
/// <param name="mutationPercent">The percent of offspring to mutate.</param>
/// <param name="percentToMate">The percent of the population allowed to mate.</param>
public NeuralGeneticAlgorithm(BasicNetwork network,
IRandomizer randomizer, ICalculateScore calculateScore,
int populationSize, double mutationPercent,
double percentToMate)
: base(TrainingImplementationType.Iterative)
{
Genetic = new NeuralGeneticAlgorithmHelper
{
CalculateScore = new GeneticScoreAdapter(calculateScore)
};
IPopulation population = new BasicPopulation(populationSize);
Genetic.MutationPercent = mutationPercent;
Genetic.MatingPopulation = percentToMate*2;
Genetic.PercentToMate = percentToMate;
Genetic.Crossover = new Splice(network.Structure.CalculateSize()/3);
Genetic.Mutate = new MutatePerturb(4.0d);
Genetic.Population = population;
for (int i = 0; i < population.PopulationSize; i++)
{
var chromosomeNetwork = (BasicNetwork) (network
.Clone());
randomizer.Randomize(chromosomeNetwork);
var genome = new NeuralGenome(chromosomeNetwork) {GA = Genetic};
Genetic.PerformCalculateScore(genome);
Genetic.Population.Add(genome);
}
population.Sort();
}
示例2: ManhattanPropagation
/// <summary>
/// Construct a Manhattan propagation training object.
/// </summary>
///
/// <param name="network">The network to train.</param>
/// <param name="training">The training data to use.</param>
/// <param name="learnRate">The learning rate.</param>
public ManhattanPropagation(BasicNetwork network,
IMLDataSet training, double learnRate)
: base(network, training)
{
_learningRate = learnRate;
_zeroTolerance = RPROPConst.DefaultZeroTolerance;
}
示例3: NetworkToString
/// <summary>
/// Format the network as a human readable string that lists the
/// hidden layers.
/// </summary>
/// <param name="network">The network to format.</param>
/// <returns>A human readable string.</returns>
public static String NetworkToString(BasicNetwork network)
{
StringBuilder result = new StringBuilder();
int num = 1;
ILayer layer = network.GetLayer(BasicNetwork.TAG_INPUT);
// display only hidden layers
while (layer.Next.Count > 0)
{
layer = layer.Next[0].ToLayer;
if (result.Length > 0)
{
result.Append(",");
}
result.Append("H");
result.Append(num++);
result.Append("=");
result.Append(layer.NeuronCount);
}
return result.ToString();
}
示例4: TrainHopfield
/// <summary>
/// Construct a Hopfield training class.
/// </summary>
/// <param name="trainingSet">The training set to use.</param>
/// <param name="network">The network to train.</param>
public TrainHopfield(INeuralDataSet trainingSet,
BasicNetwork network)
{
this.network = network;
this.Training = trainingSet;
this.Error = 0;
}
示例5: Randomize
/// <inheritdoc />
public override void Randomize(BasicNetwork network)
{
for (var i = 0; i < network.Layers.Count - 1; i++)
{
RandomizeLayer(network, i);
}
}
示例6: CalculateDepth
/// <summary>
/// Construct the depth calculation object.
/// </summary>
/// <param name="network">The network that we are calculating for.</param>
public CalculateDepth(BasicNetwork network)
{
this.network = network;
this.outputLayer = network.GetLayer(BasicNetwork.TAG_OUTPUT);
if( this.outputLayer!=null )
Calculate(0, this.outputLayer);
}
示例7: RPROPJob
/// <summary>
/// Construct an RPROP job. For more information on RPROP see the
/// ResilientPropagation class.
/// </summary>
/// <param name="network">The network to train.</param>
/// <param name="training">The training data to use.</param>
/// <param name="loadToMemory">True if binary training data should be loaded to memory.</param>
/// <param name="localRatio">The local ratio, used if this job is performed by an OpenCL Device.</param>
/// <param name="globalRatio">The global ratio, used if this job is performed by an OpenCL Device.</param>
/// <param name="segmentationRatio">The segmentation ratio, used if this job is performed by an OpenCL Device.</param>
/// <param name="iterationsPer">How many iterations to process per cycle.</param>
public RPROPJob(BasicNetwork network, INeuralDataSet training,
bool loadToMemory, double localRatio, int globalRatio, double segmentationRatio, int iterationsPer) :
this(network, training,
loadToMemory, RPROPConst.DEFAULT_INITIAL_UPDATE,
RPROPConst.DEFAULT_MAX_STEP, localRatio, globalRatio, segmentationRatio, iterationsPer)
{
}
示例8: CrossTraining
/// <summary>
/// Construct a cross trainer.
/// </summary>
/// <param name="network">The network.</param>
/// <param name="training">The training data.</param>
public CrossTraining(BasicNetwork network,
FoldedDataSet training)
{
this.network = network;
Training = training;
this.folded = training;
}
示例9: Randomize
/// <inheritdoc />
public override void Randomize(BasicNetwork network)
{
for (var i = 0; i < network.Weights.Length; i++)
{
network.Weights[i] = Rnd.NextDouble(_low, _high);
}
}
示例10: SVDTraining
/// <summary>
/// Construct the LMA object.
/// </summary>
/// <param name="network">The network to train. Must have a single output neuron.</param>
/// <param name="training">The training data to use. Must be indexable.</param>
public SVDTraining(BasicNetwork network, INeuralDataSet training)
{
ILayer outputLayer = network.GetLayer(BasicNetwork.TAG_OUTPUT);
if (outputLayer == null)
{
throw new TrainingError("SVD requires an output layer.");
}
if (outputLayer.NeuronCount != 1)
{
throw new TrainingError("SVD requires an output layer with a single neuron.");
}
if (network.GetLayer(RadialBasisPattern.RBF_LAYER) == null)
throw new TrainingError("SVD is only tested to work on radial basis function networks.");
rbfLayer = (RadialBasisFunctionLayer)network.GetLayer(RadialBasisPattern.RBF_LAYER);
this.Training = training;
this.network = network;
this.trainingLength = (int)this.Training.InputSize;
BasicNeuralData input = new BasicNeuralData(this.Training.InputSize);
BasicNeuralData ideal = new BasicNeuralData(this.Training.IdealSize);
this.pair = new BasicNeuralDataPair(input, ideal);
}
示例11: Equals
/// <summary>
/// Determine if the two neural networks are equal.
/// </summary>
///
/// <param name="network1">The first network.</param>
/// <param name="network2">The second network.</param>
/// <param name="precision">How many decimal places to check.</param>
/// <returns>True if the two networks are equal.</returns>
public static bool Equals(BasicNetwork network1,
BasicNetwork network2, int precision)
{
double[] array1 = NetworkToArray(network1);
double[] array2 = NetworkToArray(network2);
if (array1.Length != array2.Length)
{
return false;
}
double test = Math.Pow(10.0d, precision);
if (Double.IsInfinity(test) || (test > Int64.MaxValue))
{
throw new NeuralNetworkError("Precision of " + precision
+ " decimal places is not supported.");
}
for (int i = 0; i < array1.Length; i++)
{
var l1 = (long) (array1[i]*test);
var l2 = (long) (array2[i]*test);
if (l1 != l2)
{
return false;
}
}
return true;
}
示例12: QuickPropagation
/// <summary>
/// Construct a QPROP trainer for flat networks.
/// </summary>
/// <param name="network">The network to train.</param>
/// <param name="training">The training data.</param>
/// <param name="learnRate">The learning rate. 2 is a good suggestion as
/// a learning rate to start with. If it fails to converge,
/// then drop it. Just like backprop, except QPROP can
/// take higher learning rates.</param>
public QuickPropagation(BasicNetwork network,
IMLDataSet training, double learnRate)
: base(network, training)
{
ValidateNetwork.ValidateMethodToData(network, training);
LearningRate = learnRate;
}
示例13: NetworkSize
/// <summary>
/// Determine the network size.
/// </summary>
/// <param name="network">The network to check.</param>
/// <returns>The size of the network.</returns>
public static int NetworkSize(BasicNetwork network)
{
// see if there is already an up to date flat network
if (network.Structure.Flat != null
&& (network.Structure.FlatUpdate == FlatUpdateNeeded.None
|| network.Structure.FlatUpdate == FlatUpdateNeeded.Unflatten))
{
return network.Structure.Flat.Weights.Length;
}
int index = 0;
// loop over all of the layers, take the output layer first
foreach (ILayer layer in network.Structure.Layers)
{
// see if the previous layer, which is the next layer that the loop will hit,
// is either a connection to a BasicLayer or a ContextLayer.
ISynapse synapse = network.Structure
.FindPreviousSynapseByLayerType(layer, typeof(BasicLayer));
ISynapse contextSynapse = network.Structure.FindPreviousSynapseByLayerType(
layer, typeof(ContextLayer));
// get a list of of the previous synapses to this layer
IList<ISynapse> list = network.Structure.GetPreviousSynapses(layer);
// If there is not a BasicLayer or contextLayer as the next layer, then
// just take the first synapse of any type.
if (synapse == null && contextSynapse == null && list.Count > 0)
{
synapse = list[0];
}
// is there any data to record for this synapse?
if (synapse != null && synapse.WeightMatrix != null)
{
// process each weight matrix
for (int x = 0; x < synapse.ToNeuronCount; x++)
{
index += synapse.FromNeuronCount;
if (synapse.ToLayer.HasBias)
{
index++;
}
if (contextSynapse != null)
{
index += contextSynapse.FromNeuronCount;
}
}
}
}
return index;
}
示例14: TrainInstar
/// <summary>
/// Construct the instar training object.
/// </summary>
/// <param name="network">The network to be trained.</param>
/// <param name="training">The training data.</param>
/// <param name="learningRate">The learning rate.</param>
public TrainInstar(BasicNetwork network, INeuralDataSet training,
double learningRate)
{
this.network = network;
this.training = training;
this.learningRate = learningRate;
this.parts = new FindCPN(network);
}
示例15: ScaledConjugateGradient
/// <summary>
/// Construct a training class.
/// </summary>
/// <param name="network">The network to train.</param>
/// <param name="training">The training data.</param>
public ScaledConjugateGradient(BasicNetwork network,
INeuralDataSet training)
: base(network, training)
{
TrainFlatNetworkSCG rpropFlat = new TrainFlatNetworkSCG(
network.Structure.Flat,
this.Training);
this.FlatTraining = rpropFlat;
}