當前位置: 首頁>>代碼示例>>C++>>正文


C++ DistMatrix::GetRealPartOfDiagonal方法代碼示例

本文整理匯總了C++中DistMatrix::GetRealPartOfDiagonal方法的典型用法代碼示例。如果您正苦於以下問題:C++ DistMatrix::GetRealPartOfDiagonal方法的具體用法?C++ DistMatrix::GetRealPartOfDiagonal怎麽用?C++ DistMatrix::GetRealPartOfDiagonal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在DistMatrix的用法示例。


在下文中一共展示了DistMatrix::GetRealPartOfDiagonal方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: PushCallStack

inline void
SimpleSingularValuesUpper
( DistMatrix<Complex<Real> >& A,
  DistMatrix<Real,VR,STAR>& s )
{
#ifndef RELEASE
    PushCallStack("svd::SimpleSingularValuesUpper");
#endif
    typedef Complex<Real> C;
    const int m = A.Height();
    const int n = A.Width();
    const int k = std::min( m, n );
    const int offdiagonal = ( m>=n ? 1 : -1 );
    const char uplo = ( m>=n ? 'U' : 'L' );
    const Grid& g = A.Grid();

    // Bidiagonalize A
    DistMatrix<C,STAR,STAR> tP(g), tQ(g);
    Bidiag( A, tP, tQ );

    // Grab copies of the diagonal and sub/super-diagonal of A
    DistMatrix<Real,MD,STAR> d_MD_STAR( g ), 
                             e_MD_STAR( g );
    A.GetRealPartOfDiagonal( d_MD_STAR );
    A.GetRealPartOfDiagonal( e_MD_STAR, offdiagonal );

    // In order to use serial QR kernels, we need the full bidiagonal matrix
    // on each process
    //
    // NOTE: lapack::BidiagQRAlg expects e to be of length k
    DistMatrix<Real,STAR,STAR> d_STAR_STAR( d_MD_STAR );
    DistMatrix<Real,STAR,STAR> eHat_STAR_STAR( k, 1, g );
    DistMatrix<Real,STAR,STAR> e_STAR_STAR( g );
    e_STAR_STAR.View( eHat_STAR_STAR, 0, 0, k-1, 1 );
    e_STAR_STAR = e_MD_STAR;

    // Compute the singular values of the bidiagonal matrix
    lapack::BidiagQRAlg
    ( uplo, k, 0, 0,
      d_STAR_STAR.LocalBuffer(), e_STAR_STAR.LocalBuffer(), 
      (C*)0, 1, (C*)0, 1 );

    // Copy out the appropriate subset of the singular values
    s = d_STAR_STAR;
#ifndef RELEASE
    PopCallStack();
#endif
}
開發者ID:certik,項目名稱:Elemental,代碼行數:48,代碼來源:SVD.hpp

示例2: entry

inline void
GolubReinschUpper
( DistMatrix<F>& A,
  DistMatrix<BASE(F),VR,STAR>& s )
{
#ifndef RELEASE
    CallStackEntry entry("svd::GolubReinschUpper");
#endif
    typedef BASE(F) Real;
    const Int m = A.Height();
    const Int n = A.Width();
    const Int k = Min( m, n );
    const Int offdiagonal = ( m>=n ? 1 : -1 );
    const Grid& g = A.Grid();

    // Bidiagonalize A
    DistMatrix<F,STAR,STAR> tP(g), tQ(g);
    Bidiag( A, tP, tQ );

    // Grab copies of the diagonal and sub/super-diagonal of A
    DistMatrix<Real,MD,STAR> d_MD_STAR(g), e_MD_STAR(g);
    A.GetRealPartOfDiagonal( d_MD_STAR );
    A.GetRealPartOfDiagonal( e_MD_STAR, offdiagonal );

    // In order to use serial DQDS kernels, we need the full bidiagonal matrix
    // on each process
    //
    // NOTE: lapack::BidiagDQDS expects e to be of length k
    DistMatrix<Real,STAR,STAR> d_STAR_STAR( d_MD_STAR ),
                               eHat_STAR_STAR( k, 1, g ),
                               e_STAR_STAR( g );
    View( e_STAR_STAR, eHat_STAR_STAR, 0, 0, k-1, 1 );
    e_STAR_STAR = e_MD_STAR;

    // Compute the singular values of the bidiagonal matrix via DQDS
    lapack::BidiagDQDS( k, d_STAR_STAR.Buffer(), e_STAR_STAR.Buffer() );

    // Copy out the appropriate subset of the singular values
    s = d_STAR_STAR;
}
開發者ID:khalid-hasanov,項目名稱:Elemental,代碼行數:40,代碼來源:GolubReinsch.hpp

示例3: HermitianInfinityNorm

void TestCorrectness
( UpperOrLower uplo, 
  const DistMatrix<F>& A, 
  const DistMatrix<F,STAR,STAR>& t,
        DistMatrix<F>& AOrig,
  bool print, bool display )
{
    typedef Base<F> Real;
    const Grid& g = A.Grid();
    const Int m = AOrig.Height();
    const Real infNormAOrig = HermitianInfinityNorm( uplo, AOrig );
    const Real frobNormAOrig = HermitianFrobeniusNorm( uplo, AOrig );
    if( g.Rank() == 0 )
        cout << "Testing error..." << endl;

    // Grab the diagonal and subdiagonal of the symmetric tridiagonal matrix
    Int subdiagonal = ( uplo==LOWER ? -1 : +1 );
    auto d = A.GetRealPartOfDiagonal();
    auto e = A.GetRealPartOfDiagonal( subdiagonal );
     
    // Grab a full copy of e so that we may fill the opposite subdiagonal 
    DistMatrix<Real,STAR,STAR> e_STAR_STAR( e );
    DistMatrix<Real,MD,STAR> eOpposite(g);
    A.ForceDiagonalAlign( eOpposite, -subdiagonal );
    eOpposite = e_STAR_STAR;
    
    // Zero B and then fill its tridiagonal
    DistMatrix<F> B(g);
    B.AlignWith( A );
    Zeros( B, m, m );
    B.SetRealPartOfDiagonal( d );
    B.SetRealPartOfDiagonal( e, subdiagonal );
    B.SetRealPartOfDiagonal( eOpposite, -subdiagonal );
    if( print )
        Print( B, "Tridiagonal" );
    if( display )
        Display( B, "Tridiagonal" );

    // Reverse the accumulated Householder transforms, ignoring symmetry
    herm_tridiag::ApplyQ( LEFT, uplo, NORMAL, A, t, B );
    herm_tridiag::ApplyQ( RIGHT, uplo, ADJOINT, A, t, B );
    if( print )
        Print( B, "Rotated tridiagonal" );
    if( display )
        Display( B, "Rotated tridiagonal" );

    // Compare the appropriate triangle of AOrig and B
    MakeTriangular( uplo, AOrig );
    MakeTriangular( uplo, B );
    Axpy( F(-1), AOrig, B );
    if( print )
        Print( B, "Error in rotated tridiagonal" );
    if( display )
        Display( B, "Error in rotated tridiagonal" );
    const Real infNormError = HermitianInfinityNorm( uplo, B );
    const Real frobNormError = HermitianFrobeniusNorm( uplo, B );

    // Compute || I - Q Q^H ||
    MakeIdentity( B );
    herm_tridiag::ApplyQ( RIGHT, uplo, ADJOINT, A, t, B );
    DistMatrix<F> QHAdj( g );
    Adjoint( B, QHAdj );
    MakeIdentity( B );
    herm_tridiag::ApplyQ( LEFT, uplo, NORMAL, A, t, B );
    Axpy( F(-1), B, QHAdj );
    herm_tridiag::ApplyQ( RIGHT, uplo, ADJOINT, A, t, B );
    UpdateDiagonal( B, F(-1) );
    const Real infNormQError = InfinityNorm( B );
    const Real frobNormQError = FrobeniusNorm( B ); 

    if( g.Rank() == 0 )
    {
        cout << "    ||A||_oo = " << infNormAOrig << "\n"
             << "    ||A||_F  = " << frobNormAOrig << "\n"
             << "    || I - Q^H Q ||_oo = " << infNormQError << "\n"
             << "    || I - Q^H Q ||_F  = " << frobNormQError << "\n"
             << "    ||A - Q T Q^H||_oo = " << infNormError << "\n"
             << "    ||A - Q T Q^H||_F  = " << frobNormError << endl;
    }
}
開發者ID:hrhill,項目名稱:Elemental,代碼行數:80,代碼來源:HermitianTridiag.cpp

示例4: BASE

void TestCorrectness
( bool print,
  UpperOrLower uplo, 
  const DistMatrix<F>& A, 
  const DistMatrix<F,STAR,STAR>& t,
        DistMatrix<F>& AOrig )
{
    typedef BASE(F) Real;
    const Grid& g = A.Grid();
    const Int m = AOrig.Height();

    Int subdiagonal = ( uplo==LOWER ? -1 : +1 );

    if( g.Rank() == 0 )
        cout << "Testing error..." << endl;

    // Grab the diagonal and subdiagonal of the symmetric tridiagonal matrix
    DistMatrix<Real,MD,STAR> d(g);
    DistMatrix<Real,MD,STAR> e(g);
    A.GetRealPartOfDiagonal( d );
    A.GetRealPartOfDiagonal( e, subdiagonal );
     
    // Grab a full copy of e so that we may fill the opposite subdiagonal 
    DistMatrix<Real,STAR,STAR> e_STAR_STAR(g);
    DistMatrix<Real,MD,STAR> eOpposite(g);
    e_STAR_STAR = e;
    eOpposite.AlignWithDiagonal( A.DistData(), -subdiagonal );
    eOpposite = e_STAR_STAR;
    
    // Zero B and then fill its tridiagonal
    DistMatrix<F> B(g);
    B.AlignWith( A );
    Zeros( B, m, m );
    B.SetRealPartOfDiagonal( d );
    B.SetRealPartOfDiagonal( e, subdiagonal );
    B.SetRealPartOfDiagonal( eOpposite, -subdiagonal );
    if( print )
        Print( B, "Tridiagonal" );

    // Reverse the accumulated Householder transforms, ignoring symmetry
    hermitian_tridiag::ApplyQ( LEFT, uplo, NORMAL, A, t, B );
    hermitian_tridiag::ApplyQ( RIGHT, uplo, ADJOINT, A, t, B );
    if( print )
        Print( B, "Rotated tridiagonal" );

    // Compare the appropriate triangle of AOrig and B
    MakeTriangular( uplo, AOrig );
    MakeTriangular( uplo, B );
    Axpy( F(-1), AOrig, B );
    if( print )
        Print( B, "Error in rotated tridiagonal" );

    const Real infNormOfAOrig = HermitianInfinityNorm( uplo, AOrig );
    const Real frobNormOfAOrig = HermitianFrobeniusNorm( uplo, AOrig );
    const Real infNormOfError = HermitianInfinityNorm( uplo, B );
    const Real frobNormOfError = HermitianFrobeniusNorm( uplo, B );
    if( g.Rank() == 0 )
    {
        cout << "    ||AOrig||_1 = ||AOrig||_oo = " << infNormOfAOrig << "\n"
             << "    ||AOrig||_F                = " << frobNormOfAOrig << "\n"
             << "    ||AOrig - Q^H A Q||_oo     = " << infNormOfError << "\n"
             << "    ||AOrig - Q^H A Q||_F      = " << frobNormOfError << endl;
    }
}
開發者ID:khalid-hasanov,項目名稱:Elemental,代碼行數:64,代碼來源:HermitianTridiag.cpp

示例5: d

void TestCorrectness
( bool print,
  UpperOrLower uplo, 
  const DistMatrix<Complex<R> >& A, 
  const DistMatrix<Complex<R>,STAR,STAR>& t,
        DistMatrix<Complex<R> >& AOrig )
{
    typedef Complex<R> C;
    const Grid& g = A.Grid();
    const int m = AOrig.Height();

    int subdiagonal = ( uplo==LOWER ? -1 : +1 );

    if( g.Rank() == 0 )
        cout << "Testing error..." << endl;

    // Grab the diagonal and subdiagonal of the symmetric tridiagonal matrix
    DistMatrix<R,MD,STAR> d(g);
    DistMatrix<R,MD,STAR> e(g);
    A.GetRealPartOfDiagonal( d );
    A.GetRealPartOfDiagonal( e, subdiagonal );
     
    // Grab a full copy of e so that we may fill the opposite subdiagonal 
    DistMatrix<R,STAR,STAR> e_STAR_STAR(g);
    DistMatrix<R,MD,STAR> eOpposite(g);
    e_STAR_STAR = e;
    eOpposite.AlignWithDiagonal( A, -subdiagonal );
    eOpposite = e_STAR_STAR;
    
    // Zero B and then fill its tridiagonal
    DistMatrix<C> B(g);
    B.AlignWith( A );
    Zeros( m, m, B );
    B.SetRealPartOfDiagonal( d );
    B.SetRealPartOfDiagonal( e, subdiagonal );
    B.SetRealPartOfDiagonal( eOpposite, -subdiagonal );

    // Reverse the accumulated Householder transforms, ignoring symmetry
    if( uplo == LOWER )
    {
        ApplyPackedReflectors
        ( LEFT, LOWER, VERTICAL, BACKWARD, 
          UNCONJUGATED, subdiagonal, A, t, B );
        ApplyPackedReflectors
        ( RIGHT, LOWER, VERTICAL, BACKWARD, 
          CONJUGATED, subdiagonal, A, t, B );
    }
    else
    {
        ApplyPackedReflectors
        ( LEFT, UPPER, VERTICAL, FORWARD, 
          UNCONJUGATED, subdiagonal, A, t, B );
        ApplyPackedReflectors
        ( RIGHT, UPPER, VERTICAL, FORWARD, 
          CONJUGATED, subdiagonal, A, t, B );
    }

    // Compare the appropriate triangle of AOrig and B
    MakeTriangular( uplo, AOrig );
    MakeTriangular( uplo, B );
    Axpy( C(-1), AOrig, B );

    const R infNormOfAOrig = HermitianNorm( uplo, AOrig, INFINITY_NORM );
    const R frobNormOfAOrig = HermitianNorm( uplo, AOrig, FROBENIUS_NORM );
    const R infNormOfError = HermitianNorm( uplo, B, INFINITY_NORM );
    const R frobNormOfError = HermitianNorm( uplo, B, FROBENIUS_NORM );
    if( g.Rank() == 0 )
    {
        cout << "    ||AOrig||_1 = ||AOrig||_oo = " << infNormOfAOrig << "\n"
             << "    ||AOrig||_F                = " << frobNormOfAOrig << "\n"
             << "    ||AOrig - Q^H A Q||_oo     = " << infNormOfError << "\n"
             << "    ||AOrig - Q^H A Q||_F      = " << frobNormOfError << endl;
    }
}
開發者ID:jimgoo,項目名稱:Elemental,代碼行數:74,代碼來源:HermitianTridiag.cpp


注:本文中的DistMatrix::GetRealPartOfDiagonal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。