本文整理匯總了C++中GCD函數的典型用法代碼示例。如果您正苦於以下問題:C++ GCD函數的具體用法?C++ GCD怎麽用?C++ GCD使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了GCD函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: fabs
void CBitPatternTreeMethod::convertToIntegers(CMatrix< C_FLOAT64 > & values)
{
bool Problems = false;
static const C_FLOAT64 limit = 10.0 / std::numeric_limits< C_INT32 >::max();
size_t Size = values.size();
size_t Columns = values.numCols();
C_FLOAT64 * pColumn = values.array();
C_FLOAT64 * pColumnEnd = pColumn + Columns;
C_FLOAT64 * pValue = values.array();
C_FLOAT64 * pValueEnd = pColumn + Size;
for (; pColumn < pColumnEnd; ++pColumn)
{
unsigned C_INT32 Multiplier = 1;
unsigned C_INT32 m00, m01, m10, m11;
unsigned C_INT32 maxden = 10000000;
C_INT32 GCD1, GCD2;
unsigned C_INT32 ai;
C_FLOAT64 x;
for (pValue = pColumn; pValue < pValueEnd; pValue += Columns)
{
x = fabs(*pValue);
if (x < 100 * std::numeric_limits< C_FLOAT64 >::epsilon())
{
continue;
}
/*
* Find rational approximation to given real number
* David Eppstein / UC Irvine / 8 Aug 1993
*
* With corrections from:
* Arno Formella, May 2008
* Stefan Hoops, Sept 2009
*
* Based on the theory of continued fractions
* if x = a1 + 1/(a2 + 1/(a3 + 1/(a4 + ...)))
* then best approximation is found by truncating this series
* (with some adjustments in the last term).
*
* Note the fraction can be recovered as the first column of the matrix
* (a1 1 ) (a2 1 ) (a3 1 ) ...
* (1 0 ) (1 0 ) (1 0)
* Instead of keeping the sequence of continued fraction terms,
* we just keep the last partial product of these matrices.
*/
/* initialize matrix */
m00 = m11 = 1;
m01 = m10 = 0;
/* loop finding terms until denom gets too big */
while (m10 *(ai = (unsigned C_INT32) x) + m11 <= maxden)
{
C_INT32 t;
t = m00 * ai + m01;
m01 = m00;
m00 = t;
t = m10 * ai + m11;
m11 = m10;
m10 = t;
if (fabs(x - (C_FLOAT64) ai) < limit)
break; // SH: We reached the numerical precision of the machine;
x = 1 / (x - (C_FLOAT64) ai);
}
if ((C_FLOAT64) m10 *(C_FLOAT64) ai + (C_FLOAT64) m11 > (C_FLOAT64) maxden)
{
Problems = true;
}
if (fabs(fabs(*pValue) - ((C_FLOAT64) m00) / ((C_FLOAT64) m10)) > 100.0 * std::numeric_limits< C_FLOAT64 >::epsilon())
{
ai = (maxden - m11) / m10;
m00 = m00 * ai + m01;
m10 = m10 * ai + m11;
}
// Find the greatest common divisor (GCD) of the multiplier and the current denominator.
// Euclidean algorithm
GCD1 = m10;
GCD2 = Multiplier;
GCD(GCD1, GCD2);
// Calculate the least common multiplier: LCM = v1 * v2 / GCD(v1, v2)
Multiplier *= m10 / GCD1;
}
for (pValue = pColumn; pValue < pValueEnd; pValue += Columns)
{
//.........這裏部分代碼省略.........
示例2: GCD
// Euclid's algorithm
int GCD(int x, int y) {
if (y == 0)
return x;
return GCD(y, x%y);
}
示例4: LCMDenoCalculator
static int LCMDenoCalculator( int n, int m )
{
int gcd = GCD( n, m );
return m/gcd;
}
示例5: main
int main()
{
long n;
GF2X a, b, c, c1, ss, ss1, tt, tt1;
double t;
long iter, i;
cout << WD(12,"n") << WD(12,"OldGCD") << WD(12,"GCD") << WD(12,"OldXGCD")
<< WD(12, "XGCD") << "\n";
cout.precision(3);
cout.setf(ios::scientific);
for (n = 32; n <= (1L << 18); n = n << 3) {
random(a, n);
random(b, n);
OldGCD(c, a, b);
GCD(c1, a, b);
OldXGCD(c, ss, tt, a, b);
XGCD(c1, ss1, tt1, a, b);
if (c1 != c || ss1 != ss || tt1 != tt) {
cerr << "**** GF2XTest FAILED!\n";
return 1;
}
cout << WD(12,n);
iter = 0;
do {
iter = iter ? (2*iter) : 1;
t = GetTime();
for (i = 0; i < iter; i++)
OldGCD(c, a, b);
t = GetTime()-t;
} while (t < 0.5);
cout << WD(12,t/iter);
iter = 0;
do {
iter = iter ? (2*iter) : 1;
t = GetTime();
for (i = 0; i < iter; i++)
GCD(c, a, b);
t = GetTime()-t;
} while (t < 0.5);
cout << WD(12,t/iter);
iter = 0;
do {
iter = iter ? (2*iter) : 1;
t = GetTime();
for (i = 0; i < iter; i++)
OldXGCD(c, ss, tt, a, b);
t = GetTime()-t;
} while (t < 0.5);
cout << WD(12,t/iter);
iter = 0;
do {
iter = iter ? (2*iter) : 1;
t = GetTime();
for (i = 0; i < iter; i++)
XGCD(c, ss, tt, a, b);
t = GetTime()-t;
} while (t < 0.5);
cout << WD(12,t/iter);
cout << "\n";
}
return 0;
}
示例6: LCM
int LCM(int x, int y){
return x * y / GCD(x, y);
}
示例7: IterIrredTest
long IterIrredTest(const ZZ_pEX& f)
{
if (deg(f) <= 0) return 0;
if (deg(f) == 1) return 1;
ZZ_pEXModulus F;
build(F, f);
ZZ_pEX h;
FrobeniusMap(h, F);
long CompTableSize = 2*SqrRoot(deg(f));
ZZ_pEXArgument H;
build(H, h, F, CompTableSize);
long i, d, limit, limit_sqr;
ZZ_pEX g, X, t, prod;
SetX(X);
i = 0;
g = h;
d = 1;
limit = 2;
limit_sqr = limit*limit;
set(prod);
while (2*d <= deg(f)) {
sub(t, g, X);
MulMod(prod, prod, t, F);
i++;
if (i == limit_sqr) {
GCD(t, f, prod);
if (!IsOne(t)) return 0;
set(prod);
limit++;
limit_sqr = limit*limit;
i = 0;
}
d = d + 1;
if (2*d <= deg(f)) {
CompMod(g, g, H, F);
}
}
if (i > 0) {
GCD(t, f, prod);
if (!IsOne(t)) return 0;
}
return 1;
}
示例8: LCM
unsigned int LCM( unsigned int a, unsigned int b ) {
unsigned int tmp=a/GCD(a,b);
return tmp*b;
}
示例9: main
//.........這裏部分代碼省略.........
{14112, 18415, 28, 11278},
{15004, 15709, 22, 3867},
{15360, 20485, 24, 12767},
// {16384, 21845, 16, 12798},
{17208 ,21931, 24, 18387},
{18000, 18631, 25, 4208},
{18816, 24295, 28, 16360},
{19200, 21607, 40, 35633},
{21168, 27305, 28, 15407},
{23040, 23377, 48, 5292},
{24576, 24929, 48, 5612},
{27000, 32767, 15, 20021},
{31104, 31609, 71, 5149},
{42336, 42799, 21, 5952},
{46080, 53261, 24, 33409},
{49140, 57337, 39, 2608},
{51840, 59527, 72, 21128},
{61680, 61681, 40, 1273},
{65536, 65537, 32, 1273},
{75264, 82603, 56, 36484},
{84672, 92837, 56, 38520}
};
#if 0
for (long i = 0; i < 25; i++) {
long m = ms[i][1];
PAlgebra alg(m);
alg.printout();
cout << "\n";
// compute phi(m) directly
long phim = 0;
for (long j = 0; j < m; j++)
if (GCD(j, m) == 1) phim++;
if (phim != alg.phiM()) cout << "ERROR\n";
}
exit(0);
#endif
// find the first m satisfying phi(m)>=N and d | ord(2) in Z_m^*
long m = 0;
for (unsigned i=0; i<sizeof(ms)/sizeof(long[3]); i++)
if (ms[i][0]>=N && (ms[i][2] % d) == 0) {
m = ms[i][1];
c_m = 0.001 * (double) ms[i][3];
break;
}
if (m==0) Error("Cannot support this L,d combination");
#endif
// m = 257;
FHEcontext context(m);
#if 0
context.stdev = to_xdouble(0.5); // very low error
#endif
activeContext = &context; // Mark this as the "current" context
context.zMstar.printout();
cout << endl;
示例10: assert
// Generate the representation of Z_m^* for a given odd integer m
// and plaintext base p
PAlgebra::PAlgebra(unsigned long mm, unsigned long pp)
{
m = mm;
p = pp;
assert( (m&1) == 1 );
assert( ProbPrime(p) );
// replaced by Mahdi after a conversation with Shai
// assert( m > p && (m % p) != 0 ); // original line
assert( (m % p) != 0 );
// end of replace by Mahdi
assert( m < NTL_SP_BOUND );
// Compute the generators for (Z/mZ)^*
vector<unsigned long> classes(m);
vector<long> orders(m);
unsigned long i;
for (i=0; i<m; i++) { // initially each element in its own class
if (GCD(i,m)!=1)
classes[i] = 0; // i is not in (Z/mZ)^*
else
classes[i] = i;
}
// Start building a representation of (Z/mZ)^*, first use the generator p
conjClasses(classes,p,m); // merge classes that have a factor of 2
// The order of p is the size of the equivalence class of 1
ordP = (unsigned long) count (classes.begin(), classes.end(), 1);
// Compute orders in (Z/mZ)^*/<p> while comparing to (Z/mZ)^*
long idx, largest;
while (true) {
compOrder(orders,classes,true,m);
idx = argmax(orders); // find the element with largest order
largest = orders[idx];
if (largest <= 0) break; // stop comparing to order in (Z/mZ)^*
// store generator with same order as in (Z/mZ)^*
gens.push_back(idx);
ords.push_back(largest);
conjClasses(classes,idx,m); // merge classes that have a factor of idx
}
// Compute orders in (Z/mZ)^*/<p> without comparing to (Z/mZ)^*
while (true) {
compOrder(orders,classes,false,m);
idx = argmax(orders); // find the element with largest order
largest = orders[idx];
if (largest <= 0) break; // we have the trivial group, we are done
// store generator with different order than (Z/mZ)^*
gens.push_back(idx);
ords.push_back(-largest); // store with negative sign
conjClasses(classes,idx,m); // merge classes that have a factor of idx
}
nSlots = qGrpOrd();
phiM = ordP * nSlots;
// Allocate space for the various arrays
T.resize(nSlots);
dLogT.resize(nSlots*gens.size());
Tidx.assign(m,-1); // allocate m slots, initialize them to -1
zmsIdx.assign(m,-1); // allocate m slots, initialize them to -1
for (i=idx=0; i<m; i++) if (GCD(i,m)==1) zmsIdx[i] = idx++;
// Now fill the Tidx and dLogT translation tables. We identify an element
// t\in T with its representation t = \prod_{i=0}^n gi^{ei} mod m (where
// the gi's are the generators in gens[]) , represent t by the vector of
// exponents *in reverse order* (en,...,e1,e0), and order these vectors
// in lexicographic order.
// buffer is initialized to all-zero, which represents 1=\prod_i gi^0
vector<unsigned long> buffer(gens.size()); // temporaty holds exponents
i = idx = 0;
do {
unsigned long t = exponentiate(buffer);
for (unsigned long j=0; j<buffer.size(); j++) dLogT[idx++] = buffer[j];
T[i] = t; // The i'th element in T it t
Tidx[t] = i++; // the index of t in T is i
// increment buffer by one (in lexigoraphic order)
} while (nextExpVector(buffer)); // until we cover all the group
PhimX = Cyclotomic(m); // compute and store Phi_m(X)
// initialize prods array
long ndims = gens.size();
prods.resize(ndims+1);
prods[ndims] = 1;
for (long j = ndims-1; j >= 0; j--) {
prods[j] = OrderOf(j) * prods[j+1];
}
}
示例11: Paillier
/**************************
//Paillier HE system
//len: length of params p,q
**************************/
void Paillier(int len=512){
ZZ n, n2, p, q, g, lamda;
ZZ p1, q1, p1q1;
ZZ miu;
ZZ m1, m2;
ZZ BSm, HEm; //baseline and HE result
ZZ c, c1, c2, cm1, cm2, r;
//key gen
start = std::clock();
GenPrime(p, len);
GenPrime(q, len);
mul(n, p, q);
mul(n2, n, n);
sub(p1,p,1);
sub(q1,q,1);
GCD(lamda,p1,q1);
mul(p1q1,p1,q1);
div(lamda, p1q1, lamda);
RandomBnd(g, n2);
PowerMod(miu,g,lamda,n2);
sub(miu, miu, 1);
div(miu,miu,n); //should add 1?
InvMod(miu, miu, n);
duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
cout<<"Pailler Setup:"<< duration <<'\n';
//Enc
start = std::clock();
RandomBnd(m1,n);
RandomBnd(m2,n);
RandomBnd(r,n); //enc m1
PowerMod(c1, g,m1,n2);
PowerMod(c2, r,n,n2);
MulMod(cm1, c1,c2, n2);
RandomBnd(r,n); //enc m2
PowerMod(c1, g,m2,n2);
PowerMod(c2, r,n,n2);
MulMod(cm2, c1,c2, n2);
duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
cout<<"Pailler Enc:"<< duration/2 <<'\n';
//Evaluation
start = std::clock();
c=cm1;
for(int i=0; i<TIMES; i++)
MulMod(c,c,cm2,n2);
duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
cout<<"Pailler Eval:"<< duration <<'\n';
//c=cm2;
//Dec
start = std::clock();
PowerMod(c,c,lamda,n2);
sub(c,c,1);
div(c,c,n); //should add 1?
MulMod(HEm, c, miu, n);
duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
cout<<"Pailler Dec:"<< duration <<'\n';
//baseline
BSm=m1;
for(int i=0; i<TIMES; i++)
AddMod(BSm,BSm,m2,n);
assert(BSm==HEm);
}
示例12: GCD
int GCD(int a, int b) {
//printf(">> %d %d\n", a, b);
if (b==0) return a;
else return GCD(b, a%b);
};
示例13: main
void main(void){
printf("%d\n",GCD(6,12));
}
示例14: assert
//.........這裏部分代碼省略.........
C_INT64 TMP = Identity[CurrentRowIndex];
Identity[CurrentRowIndex] = Identity[NonZeroIndex];
Identity[NonZeroIndex] = TMP;
}
if (*(pActiveRowStart + CurrentColumnIndex) < 0)
{
for (pRow = pActiveRowStart; pRow < pActiveRowEnd; ++pRow)
{
*pRow *= -1;
}
Identity[CurrentRowIndex] *= -1;
}
// For each row
pRow = pActiveRowStart + NumCols;
pIdentity = Identity.array() + CurrentRowIndex + 1;
C_INT64 ActiveRowValue = *(pActiveRowStart + CurrentColumnIndex);
*(pActiveRowStart + CurrentColumnIndex) = Identity[CurrentRowIndex];
for (; pRow < pRowEnd; pRow += NumCols, ++pIdentity)
{
C_INT64 RowValue = *(pRow + CurrentColumnIndex);
if (RowValue == 0)
continue;
*(pRow + CurrentColumnIndex) = 0;
// compute GCD(*pActiveRowStart, *pRow)
C_INT64 GCD1 = abs64(ActiveRowValue);
C_INT64 GCD2 = abs64(RowValue);
GCD(GCD1, GCD2);
C_INT64 alpha = ActiveRowValue / GCD1;
C_INT64 beta = RowValue / GCD1;
// update rest of row
pActiveRow = pActiveRowStart;
pCurrent = pRow;
*pIdentity *= alpha;
GCD1 = abs64(*pIdentity);
for (; pActiveRow < pActiveRowEnd; ++pActiveRow, ++pCurrent)
{
// Assert that we do not have a numerical overflow.
assert(fabs(((C_FLOAT64) alpha) *((C_FLOAT64) * pCurrent) - ((C_FLOAT64) beta) *((C_FLOAT64) * pActiveRow)) < std::numeric_limits< C_INT64 >::max());
*pCurrent = alpha * *pCurrent - beta * *pActiveRow;
// We check that the row values do not have any common divisor.
if (GCD1 > 1 &&
(GCD2 = abs64(*pCurrent)) > 0)
{
GCD(GCD1, GCD2);
}
}
if (GCD1 > 1)
{
*pIdentity /= GCD1;
示例15: Output
// TODO: Add the ability to set a maximum number of iterations
inline BigInt FindFactor
( const BigInt& n,
Int a,
const PollardRhoCtrl& ctrl )
{
if( a == 0 || a == -2 )
Output("WARNING: Problematic choice of Pollard rho shift");
BigInt tmp, gcd;
BigInt one(1);
auto xAdvance =
[&]( BigInt& x )
{
if( ctrl.numSteps == 1 )
{
// TODO: Determine if there is a penalty to x *= x
/*
tmp = x;
tmp *= x;
tmp += a;
x = tmp;
x %= n;
*/
x *= x;
x += a;
x %= n;
}
else
{
PowMod( x, 2*ctrl.numSteps, n, x );
x += a;
x %= n;
}
};
auto QAdvance =
[&]( const BigInt& x, const BigInt& x2, BigInt& Q )
{
tmp = x2;
tmp -= x;
Q *= tmp;
Q %= n;
};
Int gcdDelay = ctrl.gcdDelay;
BigInt xi=ctrl.x0;
BigInt x2i(xi);
BigInt xiSave=xi, x2iSave=x2i;
BigInt Qi(1);
Int k=1, i=1; // it is okay for i to overflow since it is just for printing
while( true )
{
// Advance xi once
xAdvance( xi );
// Advance x2i twice
xAdvance( x2i );
xAdvance( x2i );
// Advance Qi
QAdvance( xi, x2i, Qi );
if( k >= gcdDelay )
{
GCD( Qi, n, gcd );
if( gcd > one )
{
// NOTE: This was not suggested by Pollard's original paper
if( gcd == n )
{
if( gcdDelay == 1 )
{
RuntimeError("(x) converged before (x mod p) at i=",i);
}
else
{
if( ctrl.progress )
Output("Backtracking at i=",i);
i = Max( i-(gcdDelay+1), 0 );
gcdDelay = 1;
xi = xiSave;
x2i = x2iSave;
}
}
else
{
if( ctrl.progress )
Output("Found factor ",gcd," at i=",i);
return gcd;
}
}
// NOTE: This was not suggested by Pollard's original paper
k = 0;
xiSave = xi;
x2iSave = x2i;
Qi = 1;
}
++k;
//.........這裏部分代碼省略.........