本文整理匯總了C++中Factor函數的典型用法代碼示例。如果您正苦於以下問題:C++ Factor函數的具體用法?C++ Factor怎麽用?C++ Factor使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Factor函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Factor
Node* Parser::Term()
{
Node* pNode = Factor();
EToken token = _scanner.Token();
if (token == tMult || token == tDivide)
{
MultiNode* pMultiNode = new ProductNode(pNode);
do
{
_scanner.Accept();
Node* pRight = Factor();
pMultiNode->AddChild (pRight, (token == tMult));
token = _scanner.Token();
}while (token == tMult || token == tDivide);
pNode = pMultiNode;
}
return pNode;
/*
if (_scanner.Token() == tMult )
{
_scanner.Accept();
Node* pRight = Term();
pNode = new MultNode(pNode,pRight);
}
else if(_scanner.Token() == tDivide)
{
_scanner.Accept();
Node* pRight = Term();
pNode = new DivideNode (pNode, pRight );
}
return pNode;
*/
}
示例2: TermPrime
void TermPrime(void)
{
switch (Symb.type) {
case TIMES:
/* T' -> * F BinOp T' */
Symb = readLexem();
Factor();
Gener(BinOp, '*'); /* BinOp.dop = '*' */
TermPrime();
break;
case DIVIDE:
/* T' -> / F BinOp T' */
Symb = readLexem();
Factor();
Gener(BinOp, '/'); /* BinOp.dop = '/' */
TermPrime();
break;
case PLUS:
case MINUS:
case RPAR:
case EOI:
/* T' -> e */
break;
default:
ExpansionError("T'", Symb.type);
}
}
示例3: Item
//16.<項>—> <因子> [ *|/ <因子> ]
Val Item(){
Val v1 = Factor();
while (lookahead == mutiply || lookahead == div){
int op = lookahead;
if (op == mutiply) match(mutiply);
else match(div);
Val v2 = Factor();
quadruples.push_back(Quadruple(sno++, op == mutiply ? mutiply : div, v1, v2, temp));
//生成四元式
/*printf("%3d (%c,", sno++, op == mutiply ? '*' : '/');
if (v1.type == 1) printf("%s", GetNameByID(v1.value1));
else if (v1.type == 0) printf("%d", v1.value1);
else if (v1.type == 2) printf("%lf", v1.value2);
else printf("t%d", v1.value1);
printf(",");
if (v2.type == 1) printf("%s", GetNameByID(v2.value1));
else if (v2.type == 0) printf("%d", v2.value1);
else if (v2.type == 2) printf("%lf", v2.value2);
else printf("t%d", v2.value1);
printf(",t%d)\n", temp);*/
v1.type = -1;
v1.value1 = temp++;
}
return v1;
}
示例4: Term
result Term() {
result lhs = Factor(), rhs;
token op;
if(lhs.error != ERR_NONE) {
return lhs;
}
for(op = next_token(); op.type == TT_ASTERISK || op.type == TT_SLASH; op = next_token() ) {
rhs = Factor();
#ifdef DEBUG_1
print_result("Term:lhs:", lhs);
printf("Term:op:%d\n", op.type);
print_result("Term:rhs:", rhs);
#endif
if(rhs.error != ERR_NONE) {
return rhs;
}
if(op.type == TT_ASTERISK) {
lhs.value *= rhs.value;
}
else if(op.type == TT_SLASH) {
if(rhs.value != 0) {
lhs.value /= rhs.value;
}
else {
return make_result(ERR_DIVISION_BY_ZERO, 0);
}
}
else {
return make_result(ERR_UNEXPECTED_TOKEN, 0);
}
}
rollback();
return make_result(ERR_NONE, lhs.value);
}
示例5: switch
void Polynomial<Degree>::getSolutions(const double& c,std::vector<double>& roots,const double& EPS) const {
double r[4][2];
int rCount=0;
roots.clear();
switch(Degree){
case 1:
rCount=Factor(coefficients[1],coefficients[0]-c,r,EPS);
break;
case 2:
rCount=Factor(coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
break;
case 3:
rCount=Factor(coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
break;
// case 4:
// rCount=Factor(coefficients[4],coefficients[3],coefficients[2],coefficients[1],coefficients[0]-c,r,EPS);
// break;
default:
printf("Can't solve polynomial of degree: %d\n",Degree);
}
for(int i=0;i<rCount;i++){
if(fabs(r[i][1])<=EPS){
roots.push_back(r[i][0]);
//printf("%d] %f\t%f\n",i,r[i][0],(*this)(r[i][0])-c);
}
}
}
示例6: Factor
void HAK::construct() {
// Create outer beliefs
if( props.verbose >= 3 )
cerr << "Constructing outer beliefs" << endl;
_Qa.clear();
_Qa.reserve(nrORs());
for( size_t alpha = 0; alpha < nrORs(); alpha++ )
_Qa.push_back( Factor( OR(alpha) ) );
// Create inner beliefs
if( props.verbose >= 3 )
cerr << "Constructing inner beliefs" << endl;
_Qb.clear();
_Qb.reserve(nrIRs());
for( size_t beta = 0; beta < nrIRs(); beta++ )
_Qb.push_back( Factor( IR(beta) ) );
// Create messages
if( props.verbose >= 3 )
cerr << "Constructing messages" << endl;
_muab.clear();
_muab.reserve( nrORs() );
_muba.clear();
_muba.reserve( nrORs() );
for( size_t alpha = 0; alpha < nrORs(); alpha++ ) {
_muab.push_back( vector<Factor>() );
_muba.push_back( vector<Factor>() );
_muab[alpha].reserve( nbOR(alpha).size() );
_muba[alpha].reserve( nbOR(alpha).size() );
foreach( const Neighbor &beta, nbOR(alpha) ) {
_muab[alpha].push_back( Factor( IR(beta) ) );
_muba[alpha].push_back( Factor( IR(beta) ) );
}
}
示例7: print
bool syntaxparser::TermPrime(){
bool bTermPrime = false;
if (lexeme == "*"){
print();
cout<<endl;
Lexer();
if(displayFlag){
cout << "<TermPrime> ::= *<Factor><TermPrime>" << endl;
printproduction("<TermPrime> ::= *<Factor><TermPrime>");
}
Factor();
project3.gen_inst("MUL","-999");
string type1, type2;
type1 = project3.returnSymbolType(2);
type2 = project3.returnSymbolType(3);
if(type1 == "boolean")
error("Cannot perform '*' on boolean");
if (type2 == "boolean")
error("Cannot perform '*' on boolean");
TermPrime();
bTermPrime = true;
}
else if (lexeme == "/"){
print();
cout<<endl;
Lexer();
if(displayFlag){
cout << "<TermPrime> ::= /<Term><FactorPrime>" << endl;
printproduction("<TermPrime> ::= /<Term><FactorPrime>");
}
bTermPrime = true;
Factor();
project3.gen_inst("DIV", "-999");
string type1, type2;
type1 = project3.returnSymbolType(2);
type2 = project3.returnSymbolType(3);
if(type1 == "boolean")
error("Cannot perform '/' on boolean");
if (type2 == "boolean")
error("Cannot perform '/' on boolean");
TermPrime();
}
else{
bTermPrime = true;
if(displayFlag){
cout << "<TermPrime> ::= epsilon" << endl;
printproduction("<TermPrime> ::= epsilon");
}
}
return bTermPrime;
}
示例8: Factor
// Solution taken from: http://mathworld.wolfram.com/QuarticEquation.html
// and http://www.csit.fsu.edu/~burkardt/f_src/subpak/subpak.f90
int Factor(double a4,double a3,double a2,double a1,double a0,double roots[4][2],const double& EPS){
double R[2],D[2],E[2],R2[2];
if(fabs(a4)<EPS){return Factor(a3,a2,a1,a0,roots,EPS);}
a3/=a4;
a2/=a4;
a1/=a4;
a0/=a4;
Factor(1.0,-a2,a3*a1-4.0*a0,-a3*a3*a0+4.0*a2*a0-a1*a1,roots,EPS);
R2[0]=a3*a3/4.0-a2+roots[0][0];
R2[1]=0;
Sqrt(R2,R);
if(fabs(R[0])>10e-8){
double temp1[2],temp2[2];
double p1[2],p2[2];
p1[0]=a3*a3*0.75-2.0*a2-R2[0];
p1[1]=0;
temp2[0]=((4.0*a3*a2-8.0*a1-a3*a3*a3)/4.0);
temp2[1]=0;
Divide(temp2,R,p2);
Add (p1,p2,temp1);
Subtract(p1,p2,temp2);
Sqrt(temp1,D);
Sqrt(temp2,E);
}
else{
R[0]=R[1]=0;
double temp1[2],temp2[2];
temp1[0]=roots[0][0]*roots[0][0]-4.0*a0;
temp1[1]=0;
Sqrt(temp1,temp2);
temp1[0]=a3*a3*0.75-2.0*a2+2.0*temp2[0];
temp1[1]= 2.0*temp2[1];
Sqrt(temp1,D);
temp1[0]=a3*a3*0.75-2.0*a2-2.0*temp2[0];
temp1[1]= -2.0*temp2[1];
Sqrt(temp1,E);
}
roots[0][0]=-a3/4.0+R[0]/2.0+D[0]/2.0;
roots[0][1]= R[1]/2.0+D[1]/2.0;
roots[1][0]=-a3/4.0+R[0]/2.0-D[0]/2.0;
roots[1][1]= R[1]/2.0-D[1]/2.0;
roots[2][0]=-a3/4.0-R[0]/2.0+E[0]/2.0;
roots[2][1]= -R[1]/2.0+E[1]/2.0;
roots[3][0]=-a3/4.0-R[0]/2.0-E[0]/2.0;
roots[3][1]= -R[1]/2.0-E[1]/2.0;
return 4;
}
示例9: Term
void Term()
{
Factor();
while(!strcmp(string[TokenCounter],"*"))
{
MulOp();
Factor();
}
}
示例10: Factor
Factor LC::belief (const VarSet &ns) const {
if( ns.size() == 0 )
return Factor();
else if( ns.size() == 1 )
return beliefV( findVar( *(ns.begin()) ) );
else {
DAI_THROW(BELIEF_NOT_AVAILABLE);
return Factor();
}
}
示例11: Factor
void Parser::Term(int &type) {
int type1, op;
Factor(type);
while (la->kind == 7 || la->kind == 8) {
MulOp(op);
Factor(type1);
if (type != integer || type1 != integer)
Err(L"integer type expected");
gen->Emit(op);
}
}
示例12: FirstFactor
void FirstFactor() {
switch(Look) {
case '+':
Match('+');
Factor();
break;
case '-':
NegFactor();
break;
default: Factor();
}
}
示例13: Weight
// This code has been copied from bp.cpp, except where comments indicate TRWBP-specific behaviour
Prob TRWBP::calcIncomingMessageProduct( size_t I, bool without_i, size_t i ) const {
Real c_I = Weight(I); // TRWBP: c_I
Factor Fprod( factor(I) );
Prob &prod = Fprod.p();
if( props.logdomain ) {
prod.takeLog();
prod /= c_I; // TRWBP
} else
prod ^= (1.0 / c_I); // TRWBP
// Calculate product of incoming messages and factor I
bforeach( const Neighbor &j, nbF(I) )
if( !(without_i && (j == i)) ) {
const Var &v_j = var(j);
// prod_j will be the product of messages coming into j
// TRWBP: corresponds to messages n_jI
Prob prod_j( v_j.states(), props.logdomain ? 0.0 : 1.0 );
bforeach( const Neighbor &J, nbV(j) ) {
Real c_J = Weight(J); // TRWBP
if( J != I ) { // for all J in nb(j) \ I
if( props.logdomain )
prod_j += message( j, J.iter ) * c_J;
else
prod_j *= message( j, J.iter ) ^ c_J;
} else if( c_J != 1.0 ) { // TRWBP: multiply by m_Ij^(c_I-1)
if( props.logdomain )
prod_j += message( j, J.iter ) * (c_J - 1.0);
else
prod_j *= message( j, J.iter ) ^ (c_J - 1.0);
}
}
// multiply prod with prod_j
if( !DAI_TRWBP_FAST ) {
// UNOPTIMIZED (SIMPLE TO READ, BUT SLOW) VERSION
if( props.logdomain )
Fprod += Factor( v_j, prod_j );
else
Fprod *= Factor( v_j, prod_j );
} else {
// OPTIMIZED VERSION
size_t _I = j.dual;
// ind is the precalculated IndexFor(j,I) i.e. to x_I == k corresponds x_j == ind[k]
const ind_t &ind = index(j, _I);
for( size_t r = 0; r < prod.size(); ++r )
if( props.logdomain )
prod.set( r, prod[r] + prod_j[ind[r]] );
else
prod.set( r, prod[r] * prod_j[ind[r]] );
}
}
示例14: switch
Expr *TermPrimed(Expr *du)
{
switch (Symb.type) {
case TIMES:
Symb = readLexem();
return TermPrimed(new Bop(Times, du, Factor()));
case DIVIDE:
Symb = readLexem();
return ExpressionPrimed(new Bop(Divide, du, Factor()));
default:
return du;
}
}
示例15: Factor
void CParser::Term2()
{
Factor();
while (true)
{
switch (mLookahead)
{
case RAISE: Match(RAISE); Factor(); AddToken(opRaise); break;
case '^': Match('^'); Factor(); AddToken(opRaise); break;
default: return;
}
}
} // CParser::Term2