本文整理匯總了C++中FLA_Obj_create函數的典型用法代碼示例。如果您正苦於以下問題:C++ FLA_Obj_create函數的具體用法?C++ FLA_Obj_create怎麽用?C++ FLA_Obj_create使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了FLA_Obj_create函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: FLA_Obj_create_complex_constant
FLA_Error FLA_Obj_create_complex_constant( double const_real, double const_imag, FLA_Obj *obj )
{
int* temp_i;
float* temp_s;
double* temp_d;
scomplex* temp_c;
dcomplex* temp_z;
if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
FLA_Obj_create_complex_constant_check( const_real, const_imag, obj );
FLA_Obj_create( FLA_CONSTANT, 1, 1, 0, 0, obj );
#ifdef FLA_ENABLE_SCC
if ( !FLA_is_owner() )
return FLA_SUCCESS;
#endif
temp_i = FLA_INT_PTR( *obj );
temp_s = FLA_FLOAT_PTR( *obj );
temp_d = FLA_DOUBLE_PTR( *obj );
temp_c = FLA_COMPLEX_PTR( *obj );
temp_z = FLA_DOUBLE_COMPLEX_PTR( *obj );
*temp_i = ( int ) const_real;
*temp_s = ( float ) const_real;
*temp_d = const_real;
temp_c->real = ( float ) const_real;
temp_c->imag = ( float ) const_imag;
temp_z->real = const_real;
temp_z->imag = const_imag;
return FLA_SUCCESS;
}
示例2: FLA_Norm_inf
FLA_Error FLA_Norm_inf( FLA_Obj A, FLA_Obj norm )
{
FLA_Obj AT, A0,
AB, a1t,
A2;
FLA_Obj bT, b0,
bB, beta1,
b2;
FLA_Obj b;
if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
FLA_Norm_inf_check( A, norm );
FLA_Obj_create( FLA_Obj_datatype( A ), FLA_Obj_length( A ), 1, 0, 0, &b );
FLA_Part_2x1( A, &AT,
&AB, 0, FLA_TOP );
FLA_Part_2x1( b, &bT,
&bB, 0, FLA_TOP );
while ( FLA_Obj_length( AT ) < FLA_Obj_length( A ) ){
FLA_Repart_2x1_to_3x1( AT, &A0,
/* ** */ /* *** */
&a1t,
AB, &A2, 1, FLA_BOTTOM );
FLA_Repart_2x1_to_3x1( bT, &b0,
/* ** */ /* ***** */
&beta1,
bB, &b2, 1, FLA_BOTTOM );
/*------------------------------------------------------------*/
FLA_Asum( a1t, beta1 );
/*------------------------------------------------------------*/
FLA_Cont_with_3x1_to_2x1( &AT, A0,
a1t,
/* ** */ /* *** */
&AB, A2, FLA_TOP );
FLA_Cont_with_3x1_to_2x1( &bT, b0,
beta1,
/* ** */ /* ***** */
&bB, b2, FLA_TOP );
}
FLA_Max_abs_value( b, norm );
FLA_Obj_free( &b );
return FLA_SUCCESS;
}
示例3: FLA_Bidiag_UT_create_T
FLA_Error FLA_Bidiag_UT_create_T( FLA_Obj A, FLA_Obj* TU, FLA_Obj* TV )
{
FLA_Datatype datatype;
dim_t b_alg, k;
dim_t rs_T, cs_T;
// Query the datatype of A.
datatype = FLA_Obj_datatype( A );
// Query the blocksize from the library.
b_alg = FLA_Query_blocksize( datatype, FLA_DIMENSION_MIN );
// Scale the blocksize by a pre-set global constant.
b_alg = ( dim_t )( ( ( double ) b_alg ) * FLA_BIDIAG_INNER_TO_OUTER_B_RATIO );
// Query the minimum dimension of A.
k = FLA_Obj_min_dim( A );
b_alg = 5;
// Adjust the blocksize with respect to the min-dim of A.
b_alg = min( b_alg, k );
// Figure out whether TU and TV should be row-major or column-major.
if ( FLA_Obj_row_stride( A ) == 1 )
{
rs_T = 1;
cs_T = b_alg;
}
else // if ( FLA_Obj_col_stride( A ) == 1 )
{
rs_T = k;
cs_T = 1;
}
// Create two b_alg x k matrices to hold the block Householder transforms
// that will be accumulated within the bidiagonal reduction algorithm.
// If the matrix dimension has a zero dimension, apply_q complains it.
if ( TU != NULL ) FLA_Obj_create( datatype, b_alg, k, rs_T, cs_T, TU );
if ( TV != NULL ) FLA_Obj_create( datatype, b_alg, k, rs_T, cs_T, TV );
return FLA_SUCCESS;
}
示例4: main
int main( int argc, char** argv ) {
FLA_Datatype testtype = TESTTYPE;
FLA_Datatype realtype = REALTYPE;
dim_t m;
FLA_Obj a, b;
FLA_Error init_result;
if ( argc == 2 ) {
m = atoi(argv[1]);
} else {
fprintf(stderr, " \n");
fprintf(stderr, "Usage: %s m\n", argv[0]);
fprintf(stderr, " m : test vector length\n");
fprintf(stderr, " \n");
return -1;
}
if ( m == 0 )
return 0;
FLA_Init_safe( &init_result );
FLA_Obj_create( testtype, m, 1, 0, 0, &a );
FLA_Random_matrix( a );
FLA_Obj_fshow( stdout, "- a -", a, "% 6.4e", "--" );
FLA_Obj_create( realtype, 1, m, 0, 0, &b );
FLA_Obj_extract_real_part( a, b );
FLA_Obj_fshow( stdout, "- a real -", b, "% 6.4e", "--" );
FLA_Obj_extract_imag_part( a, b );
FLA_Obj_fshow( stdout, "- a imag -", b, "% 6.4e", "--" );
FLA_Obj_free( &b );
FLA_Obj_free( &a );
FLA_Finalize_safe( init_result );
}
示例5: FLA_LQ_UT_create_T
FLA_Error FLA_LQ_UT_create_T( FLA_Obj A, FLA_Obj* T )
{
FLA_Datatype datatype;
dim_t b_alg, k;
dim_t rs_T, cs_T;
// Query the datatype of A.
datatype = FLA_Obj_datatype( A );
// Query the blocksize from the library.
b_alg = FLA_Query_blocksize( datatype, FLA_DIMENSION_MIN );
// Scale the blocksize by a pre-set global constant.
b_alg = ( dim_t )( ( ( double ) b_alg ) * FLA_LQ_INNER_TO_OUTER_B_RATIO );
// Adjust the blocksize with respect to the min-dim of A.
b_alg = min(b_alg, FLA_Obj_min_dim( A ));
// Query the length of A.
k = FLA_Obj_length( A );
// Figure out whether T should be row-major or column-major.
if ( FLA_Obj_row_stride( A ) == 1 )
{
rs_T = 1;
cs_T = b_alg;
}
else // if ( FLA_Obj_col_stride( A ) == 1 )
{
rs_T = k;
cs_T = 1;
}
// Create a b_alg x k matrix to hold the block Householder transforms that
// will be accumulated within the LQ factorization algorithm.
FLA_Obj_create( datatype, b_alg, k, rs_T, cs_T, T );
return FLA_SUCCESS;
}
示例6: fill_eigenvalues
void fill_eigenvalues( FLA_Obj l )
{
FLA_Obj lT, l0,
lB, lambda1,
l2;
FLA_Obj alpha;
FLA_Obj_create( FLA_Obj_datatype( l ), 1, 1, 0, 0, &alpha );
FLA_Copy( FLA_ONE, alpha );
FLA_Part_2x1( l, &lT,
&lB, 0, FLA_TOP );
while ( FLA_Obj_length( lT ) < FLA_Obj_length( l ) ){
FLA_Repart_2x1_to_3x1( lT, &l0,
/* ** */ /* ******* */
&lambda1,
lB, &l2, 1, FLA_BOTTOM );
/*------------------------------------------------------------*/
FLA_Copy( alpha, lambda1 );
FLA_Mult_add( FLA_ONE, FLA_ONE, alpha );
/*------------------------------------------------------------*/
FLA_Cont_with_3x1_to_2x1( &lT, l0,
lambda1,
/* ** */ /* ******* */
&lB, l2, FLA_TOP );
}
FLA_Obj_free( &alpha );
}
示例7: main
int main(int argc, char *argv[])
{
int
datatype,
m_input, n_input,
m, n,
p_first, p_last, p_inc,
p,
n_repeats,
param_combo,
i,
n_param_combos = N_PARAM_COMBOS;
char *colors = "brkgmcbrkgmcbrkgmc";
char *ticks = "o+*xso+*xso+*xso+*xs";
char m_dim_desc[14];
char n_dim_desc[14];
char m_dim_tag[10];
char n_dim_tag[10];
double max_gflops=6.0;
double
dtime,
gflops,
diff;
FLA_Obj
A, B, C, C_ref;
FLA_Init( );
fprintf( stdout, "%c number of repeats:", '%' );
scanf( "%d", &n_repeats );
fprintf( stdout, "%c %d\n", '%', n_repeats );
fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
scanf( "%d%d%d", &p_first, &p_last, &p_inc );
fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );
fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
scanf( "%d%d", &m_input, &n_input );
fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );
fprintf( stdout, "\nclear all;\n\n" );
if ( m_input > 0 ) {
sprintf( m_dim_desc, "m = %d", m_input );
sprintf( m_dim_tag, "m%dc", m_input);
}
else if( m_input < -1 ) {
sprintf( m_dim_desc, "m = p/%d", -m_input );
sprintf( m_dim_tag, "m%dp", -m_input );
}
else if( m_input == -1 ) {
sprintf( m_dim_desc, "m = p" );
sprintf( m_dim_tag, "m%dp", 1 );
}
if ( n_input > 0 ) {
sprintf( n_dim_desc, "n = %d", n_input );
sprintf( n_dim_tag, "n%dc", n_input);
}
else if( n_input < -1 ) {
sprintf( n_dim_desc, "n = p/%d", -n_input );
sprintf( n_dim_tag, "n%dp", -n_input );
}
else if( n_input == -1 ) {
sprintf( n_dim_desc, "n = p" );
sprintf( n_dim_tag, "n%dp", 1 );
}
//datatype = FLA_FLOAT;
//datatype = FLA_DOUBLE;
//datatype = FLA_COMPLEX;
datatype = FLA_DOUBLE_COMPLEX;
for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
{
m = m_input;
n = n_input;
if( m < 0 ) m = p / abs(m_input);
if( n < 0 ) n = p / abs(n_input);
for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
// If multiplying A on the left, A is m x m; ...on the right, A is n x n.
if ( pc_str[param_combo][0] == 'l' )
FLA_Obj_create( datatype, m, m, 0, 0, &A );
else
FLA_Obj_create( datatype, n, n, 0, 0, &A );
FLA_Obj_create( datatype, m, n, 0, 0, &B );
FLA_Obj_create( datatype, m, n, 0, 0, &C );
FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );
//.........這裏部分代碼省略.........
示例8: time_Lyap
void time_Lyap(
int param_combo, int type, int nrepeats, int m,
FLA_Obj isgn, FLA_Obj A, FLA_Obj C, FLA_Obj scale,
double *dtime, double *diff, double *gflops )
{
int
irep;
double
dtime_old = 1.0e9;
FLA_Obj
C_save, norm;
if ( param_combo == 0 && type == FLA_ALG_FRONT )
{
*gflops = 0.0;
*diff = 0.0;
return;
}
FLASH_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &C_save );
FLA_Obj_create( FLA_Obj_datatype_proj_to_real( C ), 1, 1, 0, 0, &norm );
FLASH_Copy( C, C_save );
for ( irep = 0 ; irep < nrepeats; irep++ )
{
FLASH_Copy( C_save, C );
*dtime = FLA_Clock();
switch( param_combo ){
case 0:{
switch( type ){
//case FLA_ALG_REFERENCE:
// REF_Lyap( FLA_NO_TRANSPOSE, isgn, A_flat, C_flat, scale );
// break;
case FLA_ALG_FRONT:
FLASH_Lyap( FLA_NO_TRANSPOSE, isgn, A, C, scale );
break;
default:
printf("trouble\n");
}
break;
}
case 1:{
switch( type ){
//case FLA_ALG_REFERENCE:
// REF_Lyap( FLA_CONJ_TRANSPOSE, isgn, A_flat, C_flat, scale );
// break;
case FLA_ALG_FRONT:
FLASH_Lyap( FLA_CONJ_TRANSPOSE, isgn, A, C, scale );
break;
default:
printf("trouble\n");
}
break;
}
}
*dtime = FLA_Clock() - *dtime;
dtime_old = min( *dtime, dtime_old );
}
/*
if ( type == FLA_ALG_REFERENCE )
{
FLASH_Obj_hierarchify( C_flat, C_ref );
*diff = 0.0;
}
else
{
*diff = FLASH_Max_elemwise_diff( C, C_ref );
}
*/
{
FLA_Obj X, W;
FLASH_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &X );
FLASH_Obj_create_conf_to( FLA_NO_TRANSPOSE, C, &W );
FLASH_Copy( C, X );
FLASH_Hermitianize( FLA_UPPER_TRIANGULAR, X );
if ( param_combo == 0 )
{
FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, A, X, FLA_ZERO, W );
FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE, FLA_ONE, X, A, FLA_ONE, W );
}
else if ( param_combo == 1 )
{
FLASH_Gemm( FLA_CONJ_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, A, X, FLA_ZERO, W );
FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, FLA_ONE, X, A, FLA_ONE, W );
//.........這裏部分代碼省略.........
示例9: main
int main(int argc, char *argv[])
{
int
datatype,
m_input,
m,
p_first, p_last, p_inc,
p,
nb_alg,
variant,
n_repeats,
i, j,
n_variants = N_VARIANTS;
char *colors = "brkgmcbrkg";
char *ticks = "o+*xso+*xs";
char m_dim_desc[14];
char m_dim_tag[10];
double max_gflops=6.0;
double
dtime,
gflops,
diff;
FLA_Obj
A, b, b_orig, norm;
FLA_Init();
fprintf( stdout, "%c number of repeats:", '%' );
scanf( "%d", &n_repeats );
fprintf( stdout, "%c %d\n", '%', n_repeats );
fprintf( stdout, "%c Enter blocking size:", '%' );
scanf( "%d", &nb_alg );
fprintf( stdout, "%c %d\n", '%', nb_alg );
fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
scanf( "%d%d%d", &p_first, &p_last, &p_inc );
fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );
fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
scanf( "%d", &m_input );
fprintf( stdout, "%c %d\n", '%', m_input );
fprintf( stdout, "\nclear all;\n\n" );
if ( m_input > 0 ) {
sprintf( m_dim_desc, "m = %d", m_input );
sprintf( m_dim_tag, "m%dc", m_input);
}
else if( m_input < -1 ) {
sprintf( m_dim_desc, "m = p/%d", -m_input );
sprintf( m_dim_tag, "m%dp", -m_input );
}
else if( m_input == -1 ) {
sprintf( m_dim_desc, "m = p" );
sprintf( m_dim_tag, "m%dp", 1 );
}
//datatype = FLA_FLOAT;
//datatype = FLA_DOUBLE;
//datatype = FLA_COMPLEX;
datatype = FLA_DOUBLE_COMPLEX;
for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
{
m = m_input;
if( m < 0 ) m = p / f2c_abs(m_input);
FLA_Obj_create( datatype, m, m, 0, 0, &A );
FLA_Obj_create( datatype, m, 1, 0, 0, &b );
FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );
/*
FLA_Obj_create( datatype, m, m, m, 1, &A );
FLA_Obj_create( datatype, m, 1, 1, 1, &b );
FLA_Obj_create( datatype, m, 1, 1, 1, &b_orig );
*/
if ( FLA_Obj_is_single_precision( A ) )
FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
else
FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );
FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
FLA_Random_matrix( b );
FLA_Copy_external( b, b_orig );
/*
time_Trinv_un( 0, FLA_ALG_REFERENCE, n_repeats, m, nb_alg,
A, b, b_orig, norm, &dtime, &diff, &gflops );
//.........這裏部分代碼省略.........
示例10: main
int main(int argc, char *argv[])
{
int
datatype,
m_input, n_input,
m, n, min_m_n,
p_first, p_last, p_inc,
pp,
pivot_combo,
n_repeats,
i,
n_pivot_combos = N_PIVOT_COMBOS;
char *colors = "brkgmcbrkg";
char *ticks = "o+*xso+*xs";
char m_dim_desc[14];
char n_dim_desc[14];
char m_dim_tag[10];
char n_dim_tag[10];
double max_gflops=6.0;
double
dtime,
gflops,
diff;
FLA_Obj
C, b, b_orig, b_norm;
FLA_Init();
fprintf( stdout, "%c number of repeats:", '%' );
scanf( "%d", &n_repeats );
fprintf( stdout, "%c %d\n", '%', n_repeats );
fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
scanf( "%d%d%d", &p_first, &p_last, &p_inc );
fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );
fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
scanf( "%d %d", &m_input, &n_input );
fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );
fprintf( stdout, "\nclear all;\n\n" );
if ( m_input > 0 ) {
sprintf( m_dim_desc, "m = %d", m_input );
sprintf( m_dim_tag, "m%dc", m_input);
}
else if( m_input < -1 ) {
sprintf( m_dim_desc, "m = p/%d", -m_input );
sprintf( m_dim_tag, "m%dp", -m_input );
}
else if( m_input == -1 ) {
sprintf( m_dim_desc, "m = p" );
sprintf( m_dim_tag, "m%dp", 1 );
}
if ( n_input > 0 ) {
sprintf( n_dim_desc, "n = %d", n_input );
sprintf( n_dim_tag, "n%dc", n_input);
}
else if( n_input < -1 ) {
sprintf( n_dim_desc, "n = p/%d", -n_input );
sprintf( n_dim_tag, "n%dp", -n_input );
}
else if( n_input == -1 ) {
sprintf( n_dim_desc, "n = p" );
sprintf( n_dim_tag, "n%dp", 1 );
}
//datatype = FLA_FLOAT;
//datatype = FLA_DOUBLE;
//datatype = FLA_COMPLEX;
datatype = FLA_DOUBLE_COMPLEX;
for ( pp = p_first, i = 1; pp <= p_last; pp += p_inc, i += 1 )
{
m = m_input;
n = n_input;
if( m < 0 ) m = pp / abs(m_input);
if( n < 0 ) n = pp / abs(n_input);
min_m_n = min( m, n );
for ( pivot_combo = 0; pivot_combo < n_pivot_combos; pivot_combo++ ){
FLA_Obj_create( datatype, m, n, 0, 0, &C );
FLA_Obj_create( datatype, m, 1, 0, 0, &b );
FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );
if ( FLA_Obj_is_single_precision( C ) )
FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &b_norm );
else
FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &b_norm );
//.........這裏部分代碼省略.........
示例11: main
int main(int argc, char *argv[])
{
int
m_input,
m,
p_first, p_last, p_inc,
p,
k_accum,
b_alg,
n_iter_max,
variant,
n_repeats,
i,
n_variants = 2;
char *colors = "brkgmcbrkg";
char *ticks = "o+*xso+*xs";
char m_dim_desc[14];
char m_dim_tag[10];
double max_gflops=6.0;
double
dtime,
gflops,
diff1, diff2;
FLA_Datatype datatype, dt_real;
FLA_Obj
A, l, Q, Ql, TT, r, d, e, A_orig, G, R, W2, de, alpha;
FLA_Init();
fprintf( stdout, "%c number of repeats:", '%' );
scanf( "%d", &n_repeats );
fprintf( stdout, "%c %d\n", '%', n_repeats );
fprintf( stdout, "%c enter n_iter_max (per eigenvalue): ", '%' );
scanf( "%d", &n_iter_max );
fprintf( stdout, "%c %d\n", '%', n_iter_max );
fprintf( stdout, "%c enter number of sets of Givens rotations to accumulate:", '%' );
scanf( "%d", &k_accum );
fprintf( stdout, "%c %d\n", '%', k_accum );
fprintf( stdout, "%c enter blocking size for application of G:", '%' );
scanf( "%d", &b_alg );
fprintf( stdout, "%c %d\n", '%', b_alg );
fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
scanf( "%d%d%d", &p_first, &p_last, &p_inc );
fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );
fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
scanf( "%d", &m_input );
fprintf( stdout, "%c %d\n", '%', m_input );
fprintf( stdout, "\n" );
if ( m_input > 0 ) {
sprintf( m_dim_desc, "m = %d", m_input );
sprintf( m_dim_tag, "m%dc", m_input);
}
else if( m_input < -1 ) {
sprintf( m_dim_desc, "m = p/%d", -m_input );
sprintf( m_dim_tag, "m%dp", -m_input );
}
else if( m_input == -1 ) {
sprintf( m_dim_desc, "m = p" );
sprintf( m_dim_tag, "m%dp", 1 );
}
for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
{
m = m_input;
if( m < 0 ) m = p / abs(m_input);
//datatype = FLA_FLOAT;
//datatype = FLA_DOUBLE;
//datatype = FLA_COMPLEX;
datatype = FLA_DOUBLE_COMPLEX;
FLA_Obj_create( datatype, m, m, 0, 0, &A );
FLA_Obj_create( datatype, m, m, 0, 0, &A_orig );
FLA_Obj_create( datatype, m, m, 0, 0, &Q );
FLA_Obj_create( datatype, m, m, 0, 0, &Ql );
FLA_Obj_create( datatype, m, 1, 0, 0, &r );
FLA_Obj_create( datatype, m, m, 0, 0, &W2 );
FLA_Obj_create( datatype, m-1, k_accum, 0, 0, &G );
dt_real = FLA_Obj_datatype_proj_to_real( A );
FLA_Obj_create( dt_real, m, 1, 0, 0, &l );
//.........這裏部分代碼省略.........
示例12: FLA_Svd_uv_unb_var1
FLA_Error FLA_Svd_uv_unb_var1( dim_t n_iter_max, FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V, dim_t k_accum, dim_t b_alg )
{
FLA_Error r_val = FLA_SUCCESS;
FLA_Datatype dt;
FLA_Datatype dt_real;
FLA_Datatype dt_comp;
FLA_Obj scale, T, S, rL, rR, d, e, G, H;
dim_t m_A, n_A;
dim_t min_m_n;
dim_t n_GH;
double crossover_ratio = 17.0 / 9.0;
n_GH = k_accum;
m_A = FLA_Obj_length( A );
n_A = FLA_Obj_width( A );
min_m_n = FLA_Obj_min_dim( A );
dt = FLA_Obj_datatype( A );
dt_real = FLA_Obj_datatype_proj_to_real( A );
dt_comp = FLA_Obj_datatype_proj_to_complex( A );
// Create matrices to hold block Householder transformations.
FLA_Bidiag_UT_create_T( A, &T, &S );
// Create vectors to hold the realifying scalars.
FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rL );
FLA_Obj_create( dt, min_m_n, 1, 0, 0, &rR );
// Create vectors to hold the diagonal and sub-diagonal.
FLA_Obj_create( dt_real, min_m_n, 1, 0, 0, &d );
FLA_Obj_create( dt_real, min_m_n-1, 1, 0, 0, &e );
// Create matrices to hold the left and right Givens scalars.
FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &G );
FLA_Obj_create( dt_comp, min_m_n-1, n_GH, 0, 0, &H );
// Create a real scaling factor.
FLA_Obj_create( dt_real, 1, 1, 0, 0, &scale );
// Compute a scaling factor; If none is needed, sigma will be set to one.
FLA_Svd_compute_scaling( A, scale );
// Scale the matrix if scale is non-unit.
if ( !FLA_Obj_equals( scale, FLA_ONE ) )
FLA_Scal( scale, A );
if ( m_A < crossover_ratio * n_A )
{
// Reduce the matrix to bidiagonal form.
// Apply scalars to rotate elements on the superdiagonal to the real domain.
// Extract the diagonal and superdiagonal from A.
FLA_Bidiag_UT( A, T, S );
FLA_Bidiag_UT_realify( A, rL, rR );
FLA_Bidiag_UT_extract_real_diagonals( A, d, e );
// Form U and V.
FLA_Bidiag_UT_form_U( A, T, U );
FLA_Bidiag_UT_form_V( A, S, V );
// Apply the realifying scalars in rL and rR to U and V, respectively.
{
FLA_Obj UL, UR;
FLA_Obj VL, VR;
FLA_Part_1x2( U, &UL, &UR, min_m_n, FLA_LEFT );
FLA_Part_1x2( V, &VL, &VR, min_m_n, FLA_LEFT );
FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, rL, UL );
FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, rR, VL );
}
// Perform a singular value decomposition on the bidiagonal matrix.
r_val = FLA_Bsvd_v_opt_var1( n_iter_max, d, e, G, H, U, V, b_alg );
}
else // if ( crossover_ratio * n_A <= m_A )
{
FLA_Obj TQ, R;
FLA_Obj AT,
AB;
FLA_Obj UL, UR;
// Perform a QR factorization on A and form Q in U.
FLA_QR_UT_create_T( A, &TQ );
FLA_QR_UT( A, TQ );
FLA_QR_UT_form_Q( A, TQ, U );
FLA_Obj_free( &TQ );
// Set the lower triangle of R to zero and then copy the upper
// triangle of A to R.
FLA_Part_2x1( A, &AT,
&AB, n_A, FLA_TOP );
FLA_Obj_create( dt, n_A, n_A, 0, 0, &R );
FLA_Setr( FLA_LOWER_TRIANGULAR, FLA_ZERO, R );
FLA_Copyr( FLA_UPPER_TRIANGULAR, AT, R );
// Reduce the matrix to bidiagonal form.
// Apply scalars to rotate elements on the superdiagonal to the real domain.
// Extract the diagonal and superdiagonal from A.
FLA_Bidiag_UT( R, T, S );
FLA_Bidiag_UT_realify( R, rL, rR );
//.........這裏部分代碼省略.........
示例13: main
//.........這裏部分代碼省略.........
precision = FLA_DOUBLE_PRECISION;
for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
{
m = m_input;
k = k_input;
n = n_input;
if( m < 0 ) m = p / f2c_abs(m_input);
if( k < 0 ) k = p / f2c_abs(k_input);
if( n < 0 ) n = p / f2c_abs(n_input);
for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
// Determine datatype based on trans argument.
if ( pc_str[param_combo][0] == 'c' ||
pc_str[param_combo][1] == 'c' )
{
if ( precision == FLA_SINGLE_PRECISION )
datatype = FLA_COMPLEX;
else
datatype = FLA_DOUBLE_COMPLEX;
}
else
{
if ( precision == FLA_SINGLE_PRECISION )
datatype = FLA_FLOAT;
else
datatype = FLA_DOUBLE;
}
// If transposing A, switch dimensions.
if ( pc_str[param_combo][0] == 'n' )
FLA_Obj_create( datatype, m, k, 0, 0, &A );
else
FLA_Obj_create( datatype, k, m, 0, 0, &A );
// If transposing B, switch dimensions.
if ( pc_str[param_combo][1] == 'n' )
FLA_Obj_create( datatype, k, n, 0, 0, &B );
else
FLA_Obj_create( datatype, n, k, 0, 0, &B );
FLA_Obj_create( datatype, m, n, 0, 0, &C );
FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );
FLA_Random_matrix( A );
FLA_Random_matrix( B );
FLA_Random_matrix( C );
FLA_Copy_external( C, C_ref );
fprintf( stdout, "data_gemm_%s( %d, 1:5 ) = [ %4d %4d %4d ", pc_str[param_combo], i, m, k, n );
fflush( stdout );
time_Gemm( param_combo, FLA_ALG_REFERENCE, n_repeats, m, k, n,
A, B, C, C_ref, &dtime, &diff, &gflops );
fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
fflush( stdout );
/*
time_Gemm( param_combo, FLA_ALG_FRONT, n_repeats, m, k, n,
A, B, C, C_ref, &dtime, &diff, &gflops );
fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
示例14: main
int main(int argc, char *argv[])
{
int n, nfirst, nlast, ninc, nlast_unb, i, irep,
nrepeats, nb_alg;
double
dtime, dtime_best,
gflops, max_gflops,
diff, d_n;
FLA_Obj
A, Aref, Aold, delta;
/* Initialize FLAME */
FLA_Init( );
/* Every time trial is repeated "repeat" times and the fastest run in recorded */
printf( "%% number of repeats:" );
scanf( "%d", &nrepeats );
printf( "%% %d\n", nrepeats );
/* Enter the max GFLOPS attainable
This is used to set the y-axis range for the graphs. Here is how
you figure out what to enter (on Linux machines):
1) more /proc/cpuinfo (this lists the contents of this file).
2) read through this and figure out the clock rate of the machine (in GHz).
3) Find out (from an expert of from the web) the number of floating point
instructions that can be performed per core per clock cycle.
4) Figure out if you are using "multithreaded BLAS" which automatically
parallelize calls to the Basic Linear Algebra Subprograms. If so,
check how many cores are available.
5) Multiply 2) x 3) x 4) and enter this in response to the below.
If you enter a value for max GFLOPS that is lower that the maximum that
is observed in the experiments, then the top of the graph is set to the
observed maximum. Thus, one possibility is to simply set this to 0.0.
*/
printf( "%% enter max GFLOPS:" );
scanf( "%lf", &max_gflops );
printf( "%% %lf\n", max_gflops );
/* Enter the algorithmic block size */
printf( "%% enter nb_alg:" );
scanf( "%d", &nb_alg );
printf( "%% %d\n", nb_alg );
/* Timing trials for matrix sizes n=nfirst to nlast in increments
of ninc will be performed. Unblocked versions are only tested to
nlast_unb */
printf( "%% enter nfirst, nlast, ninc, nlast_unb:" );
scanf( "%d%d%d%d", &nfirst, &nlast, &ninc, &nlast_unb );
printf( "%% %d %d %d %d\n", nfirst, nlast, ninc, nlast_unb );
i = 1;
for ( n=nfirst; n<= nlast; n+=ninc ){
/* Allocate space for the matrices */
FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &A );
FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aref );
FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aold );
FLA_Obj_create( FLA_DOUBLE, 1, 1, 1, 1, &delta );
/* Generate random matrix A and save in Aold */
FLA_Random_matrix( Aold );
/* Add something large to the diagonal to make sure it isn't ill-conditionsed */
d_n = ( double ) n;
*( ( double * ) FLA_Obj_buffer_at_view( delta ) ) = d_n;
FLA_Shift_diag( FLA_NO_CONJUGATE, delta, Aold );
/* Set gflops = billions of floating point operations that will be performed */
gflops = 1.0/3.0 * n * n * n * 1.0e-09;
/* Time the reference implementation */
#if TIME_LAPACK == TRUE
#else
// if ( n <= nlast_unb )
#endif
{
for ( irep=0; irep<nrepeats; irep++ ){
FLA_Copy( Aold, Aref );
dtime = FLA_Clock();
REF_Chol( TIME_LAPACK, Aref, nb_alg );
dtime = FLA_Clock() - dtime;
if ( irep == 0 )
dtime_best = dtime;
else
dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
}
printf( "data_REF( %d, 1:2 ) = [ %d %le ];\n", i, n,
gflops / dtime_best );
fflush( stdout );
}
//.........這裏部分代碼省略.........
示例15: REF_Svdd_uv_components
FLA_Error REF_Svdd_uv_components( FLA_Obj A, FLA_Obj s, FLA_Obj U, FLA_Obj V,
double* dtime_bred, double* dtime_bsvd, double* dtime_appq,
double* dtime_qrfa, double* dtime_gemm )
/*
{
*dtime_bred = 1;
*dtime_bsvd = 1;
*dtime_appq = 1;
*dtime_qrfa = 1;
*dtime_gemm = 1;
return FLA_Svdd_external( FLA_SVD_VECTORS_ALL, A, s, U, V );
}
*/
{
FLA_Datatype dt_A;
FLA_Datatype dt_A_real;
dim_t m_A, n_A;
dim_t min_m_n;
FLA_Obj tq, tu, tv, d, e, Ur, Vr, W;
FLA_Obj eT, epsilonB;
FLA_Uplo uplo = FLA_UPPER_TRIANGULAR;
double crossover_ratio = 16.0 / 10.0;
double dtime_temp;
dt_A = FLA_Obj_datatype( A );
dt_A_real = FLA_Obj_datatype_proj_to_real( A );
m_A = FLA_Obj_length( A );
n_A = FLA_Obj_width( A );
min_m_n = FLA_Obj_min_dim( A );
FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tq );
FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tu );
FLA_Obj_create( dt_A, min_m_n, 1, 0, 0, &tv );
FLA_Obj_create( dt_A_real, min_m_n, 1, 0, 0, &d );
FLA_Obj_create( dt_A_real, min_m_n, 1, 0, 0, &e );
FLA_Obj_create( dt_A_real, n_A, n_A, 0, 0, &Ur );
FLA_Obj_create( dt_A_real, n_A, n_A, 0, 0, &Vr );
FLA_Part_2x1( e, &eT,
&epsilonB, 1, FLA_BOTTOM );
if ( m_A >= n_A )
{
if ( m_A < crossover_ratio * n_A )
{
dtime_temp = FLA_Clock();
{
// Reduce to bidiagonal form.
FLA_Bidiag_blk_external( A, tu, tv );
FLA_Bidiag_UT_extract_diagonals( A, d, eT );
}
*dtime_bred = FLA_Clock() - dtime_temp;
dtime_temp = FLA_Clock();
{
// Divide-and-conquor algorithm.
FLA_Bsvdd_external( uplo, d, e, Ur, Vr );
}
*dtime_bsvd = FLA_Clock() - dtime_temp;
dtime_temp = FLA_Clock();
{
// Form U.
FLA_Copy_external( Ur, U );
FLA_Bidiag_apply_U_external( FLA_LEFT, FLA_NO_TRANSPOSE, A, tu, U );
// Form V.
FLA_Copy_external( Vr, V );
FLA_Bidiag_apply_V_external( FLA_RIGHT, FLA_CONJ_TRANSPOSE, A, tv, V );
}
*dtime_appq = FLA_Clock() - dtime_temp;
*dtime_qrfa = 0.0;
*dtime_gemm = 0.0;
}
else
{
FLA_Obj AT,
AB;
FLA_Obj UL, UR;
FLA_Part_2x1( A, &AT,
&AB, n_A, FLA_TOP );
FLA_Part_1x2( U, &UL, &UR, n_A, FLA_LEFT );
// Create a temporary n-by-n matrix R.
FLA_Obj_create( dt_A, n_A, n_A, 0, 0, &W );
dtime_temp = FLA_Clock();
{
// Perform a QR factorization.
FLA_QR_blk_external( A, tq );
FLA_Copyr_external( FLA_LOWER_TRIANGULAR, A, UL );
//.........這裏部分代碼省略.........