當前位置: 首頁>>代碼示例>>C++>>正文


C++ FINITE_RNK函數代碼示例

本文整理匯總了C++中FINITE_RNK函數的典型用法代碼示例。如果您正苦於以下問題:C++ FINITE_RNK函數的具體用法?C++ FINITE_RNK怎麽用?C++ FINITE_RNK使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了FINITE_RNK函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: X

/* Check if the vecsz/sz strides are consistent with the problem
   being in-place for vecsz.dim[vdim], or for all dimensions
   if vdim == RNK_MINFTY.  We can't just use tensor_inplace_strides
   because rdft transforms have the unfortunate property of
   differing input and output sizes.   This routine is not
   exhaustive; we only return 1 for the most common case.  */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
     INT N, Nc;
     INT rs, cs;
     int i;
     
     for (i = 0; i + 1 < p->sz->rnk; ++i)
	  if (p->sz->dims[i].is != p->sz->dims[i].os)
	       return 0;

     if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
	  return 1;
     if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
	  for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
	       if (!X(rdft2_inplace_strides)(p, vdim))
		    return 0;
	  return 1;
     }

     A(vdim < p->vecsz->rnk);
     if (p->sz->rnk == 0)
	  return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);

     N = X(tensor_sz)(p->sz);
     Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
	  (p->sz->dims[p->sz->rnk-1].n/2 + 1);
     X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &rs, &cs);

     /* the factor of 2 comes from the fact that RS is the stride
	of p->r0 and p->r1, which is twice as large as the strides
	in the r2r case */
     return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
	    && (X(iabs)(2 * p->vecsz->dims[vdim].os)
		>= X(imax)(2 * Nc * X(iabs)(cs), N * X(iabs)(rs))));
}
開發者ID:8cH9azbsFifZ,項目名稱:wspr,代碼行數:41,代碼來源:rdft2-inplace-strides.c

示例2: X

/* Check if the vecsz/sz strides are consistent with the problem
   being in-place for vecsz.dim[vdim], or for all dimensions
   if vdim == RNK_MINFTY.  We can't just use tensor_inplace_strides
   because rdft transforms have the unfortunate property of
   differing input and output sizes.   This routine is not
   exhaustive; we only return 1 for the most common case.  */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
     int N, Nc;
     int is, os;
     int i;
     
     for (i = 0; i + 1 < p->sz->rnk; ++i)
	  if (p->sz->dims[i].is != p->sz->dims[i].os)
	       return 0;

     if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
	  return 1;
     if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
	  for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
	       if (!X(rdft2_inplace_strides)(p, vdim))
		    return 0;
	  return 1;
     }

     A(vdim < p->vecsz->rnk);
     if (p->sz->rnk == 0)
	  return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);

     N = X(tensor_sz)(p->sz);
     Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
	  (p->sz->dims[p->sz->rnk-1].n/2 + 1);
     X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &is, &os);
     return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
	    && X(iabs)(p->vecsz->dims[vdim].os)
	    >= X(imax)(Nc * X(iabs)(os), N * X(iabs)(is)));
}
開發者ID:abrahamneben,項目名稱:orbcomm_beam_mapping,代碼行數:37,代碼來源:rdft2-inplace-strides.c

示例3: X

/* The inverse of X(tensor_append): splits the sz tensor into
   tensor a followed by tensor b, where a's rank is arnk. */
void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
{
     A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));

     *a = X(tensor_copy_sub)(sz, 0, arnk);
     *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
}
開發者ID:bambang,項目名稱:vsipl,代碼行數:9,代碼來源:tensor7.c

示例4: A

tensor *X(mktensor)(int rnk) 
{
     tensor *x;

     A(rnk >= 0);

#if defined(STRUCT_HACK_KR)
     if (FINITE_RNK(rnk) && rnk > 1)
	  x = (tensor *)MALLOC(sizeof(tensor) + (rnk - 1) * sizeof(iodim),
				    TENSORS);
     else
	  x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#elif defined(STRUCT_HACK_C99)
     if (FINITE_RNK(rnk))
	  x = (tensor *)MALLOC(sizeof(tensor) + rnk * sizeof(iodim),
				    TENSORS);
     else
	  x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#else
     x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
     if (FINITE_RNK(rnk) && rnk > 0)
          x->dims = (iodim *)MALLOC(sizeof(iodim) * rnk, TENSORS);
     else
          x->dims = 0;
#endif

     x->rnk = rnk;
     return x;
}
開發者ID:Aegisub,項目名稱:fftw3,代碼行數:29,代碼來源:tensor.c

示例5: verify_rdft2

void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
     int n, vecn, N;
     dofft_rdft2_closure k;

     BENCH_ASSERT(p->kind == PROBLEM_REAL);

     if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
	  return;      /* give up */

     k.k.apply = rdft2_apply;
     k.k.recopy_input = 0;
     k.p = p;

     if (rounds == 0)
	  rounds = 20;  /* default value */

     n = tensor_sz(p->sz);
     vecn = tensor_sz(p->vecsz);
     N = n * vecn;

     inA = (C *) bench_malloc(N * sizeof(C));
     inB = (C *) bench_malloc(N * sizeof(C));
     inC = (C *) bench_malloc(N * sizeof(C));
     outA = (C *) bench_malloc(N * sizeof(C));
     outB = (C *) bench_malloc(N * sizeof(C));
     outC = (C *) bench_malloc(N * sizeof(C));
     tmp = (C *) bench_malloc(N * sizeof(C));

     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
		    tmp, rounds, tol);
     e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
		   tmp, rounds, tol);

     e->s = 0.0;
     if (p->sign < 0)
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, TIME_SHIFT));
     else
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, FREQ_SHIFT));
     
     if (!p->in_place && !p->destroy_input)
	  preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
			  N, inA, inB, outB, rounds);

     bench_free(tmp);
     bench_free(outC);
     bench_free(outB);
     bench_free(outA);
     bench_free(inC);
     bench_free(inB);
     bench_free(inA);
}
開發者ID:8cH9azbsFifZ,項目名稱:wspr,代碼行數:57,代碼來源:verify-rdft2.c

示例6: applicable0

static int applicable0(const solver *ego_, const problem *p_, int *rp)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     const S *ego = (const S *)ego_;
     return (1
	     && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
	     && p->sz->rnk >= 2
	     && picksplit(ego, p->sz, rp)
	  );
}
開發者ID:8cH9azbsFifZ,項目名稱:wspr,代碼行數:10,代碼來源:rank-geq2.c

示例7: X

tensor *X(tensor_append)(const tensor *a, const tensor *b)
{
     if (!FINITE_RNK(a->rnk) || !FINITE_RNK(b->rnk)) {
          return X(mktensor)(RNK_MINFTY);
     } else {
	  tensor *x = X(mktensor)(a->rnk + b->rnk);
          dimcpy(x->dims, a->dims, a->rnk);
          dimcpy(x->dims + a->rnk, b->dims, b->rnk);
	  return x;
     }
}
開發者ID:Aegisub,項目名稱:fftw3,代碼行數:11,代碼來源:tensor5.c

示例8: while

/* do what I mean */
static bench_tensor *dwim(bench_tensor *t, bench_iodim **last_iodim,
			  n_transform nti, n_transform nto,
			  bench_iodim *dt)
{
     int i;
     bench_iodim *d, *d1;

     if (!FINITE_RNK(t->rnk) || t->rnk < 1)
	  return t;

     i = t->rnk;
     d1 = *last_iodim;

     while (--i >= 0) {
	  d = t->dims + i;
	  if (!d->is) 
	       d->is = d1->is * transform_n(d1->n, d1==dt ? nti : SAME); 
	  if (!d->os) 
	       d->os = d1->os * transform_n(d1->n, d1==dt ? nto : SAME); 
	  d1 = d;
     }

     *last_iodim = d1;
     return t;
}
開發者ID:376473984,項目名稱:fftw3,代碼行數:26,代碼來源:problem.c

示例9: dimcpy

static void dimcpy(iodim *dst, const iodim *src, int rnk)
{
     int i;
     if (FINITE_RNK(rnk))
          for (i = 0; i < rnk; ++i)
               dst[i] = src[i];
}
開發者ID:Aegisub,項目名稱:fftw3,代碼行數:7,代碼來源:tensor5.c

示例10: fftw_tensor_contiguous

/* Like tensor_copy, but eliminate n == 1 dimensions, which
   never affect any transform or transform vector.
 
   Also, we sort the tensor into a canonical order of decreasing
   is.  In general, processing a loop/array in order of
   decreasing stride will improve locality; sorting also makes the
   analysis in fftw_tensor_contiguous (below) easier.  The choice
   of is over os is mostly arbitrary, and hopefully
   shouldn't affect things much.  Normally, either the os will be
   in the same order as is (for e.g. multi-dimensional
   transforms) or will be in opposite order (e.g. for Cooley-Tukey
   recursion).  (Both forward and backwards traversal of the tensor
   are considered e.g. by vrank-geq1, so sorting in increasing
   vs. decreasing order is not really important.) */
tensor *X(tensor_compress)(const tensor *sz)
{
     int i, rnk;
     tensor *x;

     A(FINITE_RNK(sz->rnk));
     for (i = rnk = 0; i < sz->rnk; ++i) {
          A(sz->dims[i].n > 0);
          if (sz->dims[i].n != 1)
               ++rnk;
     }

     x = X(mktensor)(rnk);
     for (i = rnk = 0; i < sz->rnk; ++i) {
          if (sz->dims[i].n != 1)
               x->dims[rnk++] = sz->dims[i];
     }

     if (rnk > 1) {
	  qsort(x->dims, (size_t)x->rnk, sizeof(iodim),
		(int (*)(const void *, const void *))X(dimcmp));
     }

     return x;
}
開發者ID:bambang,項目名稱:vsipl,代碼行數:39,代碼來源:tensor7.c

示例11: A

problem *X(mkproblem_dft)(const tensor *sz, const tensor *vecsz,
                          R *ri, R *ii, R *ro, R *io)
{
     problem_dft *ego =
          (problem_dft *)X(mkproblem)(sizeof(problem_dft), &padt);

     A((ri == ro) == (ii == io)); /* both in place or both out of place */
     A(X(tensor_kosherp)(sz));
     A(X(tensor_kosherp)(vecsz));

     /* enforce pointer equality if untainted pointers are equal */
     if (UNTAINT(ri) == UNTAINT(ro))
	  ri = ro = JOIN_TAINT(ri, ro);
     if (UNTAINT(ii) == UNTAINT(io))
	  ii = io = JOIN_TAINT(ii, io);

     /* more correctness conditions: */
     A(TAINTOF(ri) == TAINTOF(ii));
     A(TAINTOF(ro) == TAINTOF(io));

     ego->sz = X(tensor_compress)(sz);
     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
     ego->ri = ri;
     ego->ii = ii;
     ego->ro = ro;
     ego->io = io;

     A(FINITE_RNK(ego->sz->rnk));
     return &(ego->super);
}
開發者ID:abrahamneben,項目名稱:orbcomm_beam_mapping,代碼行數:30,代碼來源:problem.c

示例12: applicable0

static int applicable0(const solver *ego_, const problem *p_,
		       const planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_rdft *p = (const problem_rdft *) p_;
     return (1
	     && FINITE_RNK(p->vecsz->rnk)

	     /* problem must be a nontrivial transform, not just a copy */
	     && p->sz->rnk > 0

	     && (0

		 /* problem must be in-place & require some
		    rearrangement of the data */
		 || (p->I == p->O
		     && !(X(tensor_inplace_strides2)(p->sz, p->vecsz)))

		 /* or problem must be out of place, transforming
		    from stride 1/2 to bigger stride, for apply_after */
		 || (p->I != p->O && ego->adt->apply == apply_after
		     && !NO_DESTROY_INPUTP(plnr)
		     && X(tensor_min_istride)(p->sz) <= 2
		     && X(tensor_min_ostride)(p->sz) > 2)
			  
		 /* or problem must be out of place, transforming
		    to stride 1/2 from bigger stride, for apply_before */
		 || (p->I != p->O && ego->adt->apply == apply_before
		     && X(tensor_min_ostride)(p->sz) <= 2
		     && X(tensor_min_istride)(p->sz) > 2)
			  
		  )
	  );
}
開發者ID:376473984,項目名稱:fftw3,代碼行數:34,代碼來源:indirect.c

示例13: applicable0

static int applicable0(const problem *p_)
{
     const problem_dft *p = (const problem_dft *) p_;
     return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
	     || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
	  );
}
開發者ID:376473984,項目名稱:fftw3,代碼行數:7,代碼來源:dft-r2hc.c

示例14: tensor_rowmajor_transposedp

static int tensor_rowmajor_transposedp(bench_tensor *t)
{
     bench_iodim *d;
     int i;

     BENCH_ASSERT(FINITE_RNK(t->rnk));
     if (t->rnk < 2)
	  return 0;

     d = t->dims;
     if (d[0].is != d[1].is * d[1].n
	 || d[0].os != d[1].is
	 || d[1].os != d[0].os * d[0].n)
	  return 0;
     if (t->rnk > 2 && d[1].is != d[2].is * d[2].n)
	  return 0;
     for (i = 2; i + 1 < t->rnk; ++i) {
          d = t->dims + i;
          if (d[0].is != d[1].is * d[1].n
	      || d[0].os != d[1].os * d[1].n)
               return 0;
     }

     if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os)
	  return 0;
     return 1;
}
開發者ID:dstuck,項目名稱:tinker_integrated_PIMC,代碼行數:27,代碼來源:mpi-bench.c

示例15: A

problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
			    R *r0, R *r1, R *cr, R *ci,
			    rdft_kind kind)
{
     problem_rdft2 *ego;

     A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
     A(X(tensor_kosherp)(sz));
     A(X(tensor_kosherp)(vecsz));
     A(FINITE_RNK(sz->rnk));

     /* require in-place problems to use r0 == cr */
     if (UNTAINT(r0) == UNTAINT(ci))
	  return X(mkproblem_unsolvable)();

     /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
	only if odd elements exist, which requires compressing the 
	tensors first */

     if (UNTAINT(r0) == UNTAINT(cr)) 
	  r0 = cr = JOIN_TAINT(r0, cr);

     ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);

     if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
	  tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
	  tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
	  tensor *szcc = X(tensor_compress)(szc);
	  if (szcc->rnk > 0)
	       ego->sz = X(tensor_append)(szcc, szr);
	  else
	       ego->sz = X(tensor_compress)(szr);
	  X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
     } else {
	  ego->sz = X(tensor_compress)(sz);
     }
     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
     ego->r0 = r0;
     ego->r1 = r1;
     ego->cr = cr;
     ego->ci = ci;
     ego->kind = kind;

     A(FINITE_RNK(ego->sz->rnk));
     return &(ego->super);

}
開發者ID:Aegisub,項目名稱:fftw3,代碼行數:47,代碼來源:problem2.c


注:本文中的FINITE_RNK函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。