當前位置: 首頁>>代碼示例>>C++>>正文


C++ EFM_ASSERT函數代碼示例

本文整理匯總了C++中EFM_ASSERT函數的典型用法代碼示例。如果您正苦於以下問題:C++ EFM_ASSERT函數的具體用法?C++ EFM_ASSERT怎麽用?C++ EFM_ASSERT使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了EFM_ASSERT函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: CSEN_InitMode

/***************************************************************************//**
 * @brief
 *   Initialize a CSEN measurement mode.
 *
 * @details
 *   Used to configure any type of measurement mode. After the measurement
 *   has been configured, calling @ref CSEN_Enable() will enable CSEN and
 *   allow it to start a conversion from the selected trigger source. To
 *   manually start a conversion use @ref CSEN_Start(). To check if a
 *   conversion is in progress use @ref CSEN_IsBusy(), or alternatively
 *   use the interrupt flags returned by @ref CSEN_IntGet() to detect when
 *   a conversion is completed.
 *
 * @note
 *   This function will stop any ongoing conversion and disable CSEN.
 *
 * @param[in] csen
 *   Pointer to CSEN peripheral register block.
 *
 * @param[in] init
 *   Pointer to CSEN measurement mode initialization structure.
 ******************************************************************************/
void CSEN_InitMode(CSEN_TypeDef *csen, const CSEN_InitMode_TypeDef *init)
{
  uint32_t tmp;

  EFM_ASSERT(CSEN_REF_VALID(csen));
  EFM_ASSERT(init->dmIterPerCycle < 0x10);
  EFM_ASSERT(init->dmCycles < 0x10);

  /* Initialize CTRL. This will stop any conversion in progress.
   * These composite inputs set multiple fields. They do not need
   * to be shifted. */
  tmp = ((uint32_t)init->sampleMode
         | (uint32_t)init->convSel
         | (uint32_t)init->cmpMode);

  tmp |= (init->trigSel << _CSEN_CTRL_STM_SHIFT)
         | (init->accMode << _CSEN_CTRL_ACU_SHIFT)
         | (init->sarRes << _CSEN_CTRL_SARCR_SHIFT);

  if (init->enableDma) {
    tmp |= CSEN_CTRL_DMAEN_ENABLE;
  }

  if (init->sumOnly) {
    tmp |= CSEN_CTRL_DRSF_ENABLE;
  }

  if (init->autoGnd) {
    tmp |= CSEN_CTRL_AUTOGND_ENABLE;
  }

  /* Preserve the fields that were initialized by CSEN_Init(). */
  tmp |= csen->CTRL & (_CSEN_CTRL_CPACCURACY_MASK
                       | _CSEN_CTRL_LOCALSENS_MASK
                       | _CSEN_CTRL_WARMUPMODE_MASK);

  csen->CTRL = tmp;

  /* EMACTRL only has one field */
  csen->EMACTRL = init->emaSample << _CSEN_EMACTRL_EMASAMPLE_SHIFT;

  /* CMPTHR only has one field */
  csen->CMPTHR = init->cmpThr << _CSEN_CMPTHR_CMPTHR_SHIFT;

  /* SINGLECTRL only has one field */
  csen->SINGLECTRL = init->singleSel << _CSEN_SINGLECTRL_SINGLESEL_SHIFT;

  /* Set all input enables */
  csen->SCANMASK0 = init->inputMask0;
  csen->SCANMASK1 = init->inputMask1;

  /* Initialize DMCFG. */
  tmp = (init->dmRes << _CSEN_DMCFG_CRMODE_SHIFT)
        | (init->dmCycles << _CSEN_DMCFG_DMCR_SHIFT)
        | (init->dmIterPerCycle << _CSEN_DMCFG_DMR_SHIFT)
        | (init->dmDelta << _CSEN_DMCFG_DMG_SHIFT);

  if (init->dmFixedDelta) {
    tmp |= CSEN_DMCFG_DMGRDIS;
  }

  csen->DMCFG = tmp;

  /* Initialize ANACTRL. */
  csen->ANACTRL = (init->resetPhase << _CSEN_ANACTRL_TRSTPROG_SHIFT)
                  | (init->driveSel << _CSEN_ANACTRL_IDACIREFS_SHIFT)
                  | (init->gainSel << _CSEN_ANACTRL_IREFPROG_SHIFT);
}
開發者ID:sg-,項目名稱:mbed-os,代碼行數:90,代碼來源:em_csen.c

示例2: MSC_LoadWriteData

__ramfunc
#endif
#endif /* !EM_MSC_RUN_FROM_FLASH */
__STATIC_INLINE MSC_Status_TypeDef
  MSC_LoadWriteData(uint32_t* data,
                    uint32_t numWords,
                    MSC_WriteStrategy_Typedef writeStrategy)
{
  uint32_t timeOut;
  uint32_t wordIndex;
  uint32_t wordsPerDataPhase;
  MSC_Status_TypeDef retval = mscReturnOk;

#if defined(_MSC_WRITECTRL_LPWRITE_MASK) && defined(_MSC_WRITECTRL_WDOUBLE_MASK)
  /* If LPWRITE (Low Power Write) is NOT enabled, set WDOUBLE (Write Double word) */
  if (!(MSC->WRITECTRL & MSC_WRITECTRL_LPWRITE))
  {
    /* If the number of words to be written are odd, we need to align by writing
       a single word first, before setting the WDOUBLE bit. */
    if (numWords & 0x1)
    {
      /* Wait for the MSC to become ready for the next word. */
      timeOut = MSC_PROGRAM_TIMEOUT;
      while ((!(MSC->STATUS & MSC_STATUS_WDATAREADY)) && (timeOut != 0))
      {
        timeOut--;
      }
      /* Check for timeout */
      if (timeOut == 0)
      {
        return mscReturnTimeOut;
      }
      /* Clear double word option, in order to write the initial single word. */
      MSC->WRITECTRL &= ~MSC_WRITECTRL_WDOUBLE;
      /* Write first data word. */
      MSC->WDATA = *data++;
      MSC->WRITECMD = MSC_WRITECMD_WRITEONCE;

      /* Wait for the operation to finish. It may be required to change the WDOUBLE
         config after the initial write. It should not be changed while BUSY. */
      timeOut = MSC_PROGRAM_TIMEOUT;
      while((MSC->STATUS & MSC_STATUS_BUSY) && (timeOut != 0))
      {
        timeOut--;
      }
      /* Check for timeout */
      if (timeOut == 0)
      {
        return mscReturnTimeOut;
      }
      /* Subtract this initial odd word for the write loop below */
      numWords -= 1;
      retval = mscReturnOk;
    }
    /* Now we can set the double word option in order to write two words per
       data phase. */
    MSC->WRITECTRL |= MSC_WRITECTRL_WDOUBLE;
    wordsPerDataPhase = 2;
  }
  else
#endif /* defined( _MSC_WRITECTRL_LPWRITE_MASK ) && defined( _MSC_WRITECTRL_WDOUBLE_MASK ) */
  {
    wordsPerDataPhase = 1;
  }

  /* Write the rest as double word write if wordsPerDataPhase == 2 */
  if (numWords > 0)
  {
    /**** Write strategy: mscWriteIntSafe ****/
    if (writeStrategy == mscWriteIntSafe)
    {
      /* Requires a system core clock at 1MHz or higher */
      EFM_ASSERT(SystemCoreClockGet() >= 1000000);
      wordIndex = 0;
      while(wordIndex < numWords)
      {
        MSC->WDATA = *data++;
        wordIndex++;
        if (wordsPerDataPhase == 2)
        {
          while (!(MSC->STATUS & MSC_STATUS_WDATAREADY));
          MSC->WDATA = *data++;
          wordIndex++;
        }
        MSC->WRITECMD = MSC_WRITECMD_WRITEONCE;

        /* Wait for the transaction to finish. */
        timeOut = MSC_PROGRAM_TIMEOUT;
        while ((MSC->STATUS & MSC_STATUS_BUSY) && (timeOut != 0))
        {
          timeOut--;
        }
        /* Check for timeout */
        if (timeOut == 0)
        {
          retval = mscReturnTimeOut;
          break;
        }
#if defined( _EFM32_GECKO_FAMILY )
        MSC->ADDRB += 4;
//.........這裏部分代碼省略.........
開發者ID:snashpo,項目名稱:Senior_Design,代碼行數:101,代碼來源:em_msc.c

示例3: TIMER_Unlock

/***************************************************************************//**
 * @brief
 *   Unlock the TIMER so that writing to locked registers again is possible.
 *
 * @param[in] timer
 *   Pointer to TIMER peripheral register block.
 ******************************************************************************/
void TIMER_Unlock(TIMER_TypeDef *timer)
{
  EFM_ASSERT(TIMER_REF_VALID(timer));

  timer->DTLOCK = TIMER_DTLOCK_LOCKKEY_UNLOCK;
}
開發者ID:AndreHeunis,項目名稱:Flight-Software,代碼行數:13,代碼來源:em_timer.c

示例4: I2C_Enable

/***************************************************************************//**
 * @brief
 *   Enable/disable I2C.
 *
 * @note
 *   After enabling the I2C (from being disabled), the I2C is in BUSY state.
 *
 * @param[in] i2c
 *   Pointer to I2C peripheral register block.
 *
 * @param[in] enable
 *   true to enable counting, false to disable.
 ******************************************************************************/
void I2C_Enable(I2C_TypeDef *i2c, bool enable)
{
  EFM_ASSERT(I2C_REF_VALID(i2c));

  BUS_RegBitWrite(&(i2c->CTRL), _I2C_CTRL_EN_SHIFT, enable);
}
開發者ID:Rajusr70,項目名稱:makersguide,代碼行數:19,代碼來源:em_i2c.c

示例5: I2C_Enable

/***************************************************************************//**
 * @brief
 *   Enable/disable I2C.
 *
 * @note
 *   After enabling the I2C (from being disabled), the I2C is in BUSY state.
 *
 * @param[in] i2c
 *   Pointer to I2C peripheral register block.
 *
 * @param[in] enable
 *   true to enable counting, false to disable.
 ******************************************************************************/
void I2C_Enable(I2C_TypeDef *i2c, bool enable)
{
    EFM_ASSERT(I2C_REF_VALID(i2c));

    BITBAND_Peripheral(&(i2c->CTRL), _I2C_CTRL_EN_SHIFT, (unsigned int)enable);
}
開發者ID:hduffddybz,項目名稱:rt-thread,代碼行數:19,代碼來源:em_i2c.c

示例6: GPIO_PortOutSet

/***************************************************************************//**
 * @brief
 *   Set bits GPIO data out register to 1.
 *
 * @note
 *   In order for the setting to take effect on the respective output pads, the
 *   pins must have been configured properly. If not, it will take effect
 *   whenever the pin has been properly configured.
 *
 * @param[in] port
 *   The GPIO port to access.
 *
 * @param[in] pins
 *   Bit mask for bits to set to 1 in DOUT register.
 ******************************************************************************/
void GPIO_PortOutSet(GPIO_Port_TypeDef port, uint32_t pins)
{
  EFM_ASSERT(GPIO_PORT_VALID(port));

  GPIO->P[port].DOUTSET = pins & _GPIO_P_DOUTSET_DOUTSET_MASK;
}
開發者ID:MtTsai,項目名稱:mbed-freertos,代碼行數:21,代碼來源:efm32_gpio.c

示例7: GPIO_PortOutToggle

/***************************************************************************//**
 * @brief
 *   Toggle a single pin in GPIO port data out register.
 *
 * @note
 *   In order for the setting to take effect on the output pad, the pin must
 *   have been configured properly. If not, it will take effect whenever the
 *   pin has been properly configured.
 *
 * @param[in] port
 *   The GPIO port to access.
 *
 * @param[in] pins
 *   Bitmask with pins to toggle.
 ******************************************************************************/
void GPIO_PortOutToggle(GPIO_Port_TypeDef port, uint32_t pins)
{
  EFM_ASSERT(GPIO_PORT_VALID(port));

  GPIO->P[port].DOUTTGL = pins & _GPIO_P_DOUTTGL_DOUTTGL_MASK;
}
開發者ID:MtTsai,項目名稱:mbed-freertos,代碼行數:21,代碼來源:efm32_gpio.c

示例8: USART_BaudrateAsyncSet

/***************************************************************************//**
 * @brief
 *   Configure USART/UART operating in asynchronous mode to use a given
 *   baudrate (or as close as possible to specified baudrate).
 *
 * @param[in] usart
 *   Pointer to USART/UART peripheral register block.
 *
 * @param[in] refFreq
 *   USART/UART reference clock frequency in Hz that will be used. If set to 0,
 *   the currently configured reference clock is assumed.
 *
 * @param[in] baudrate
 *   Baudrate to try to achieve for USART/UART.
 *
 * @param[in] ovs
 *   Oversampling to be used. Normal is 16x oversampling, but lower oversampling
 *   may be used to achieve higher rates or better baudrate accuracy in some
 *   cases. Notice that lower oversampling frequency makes channel more
 *   vulnerable to bit faults during reception due to clock inaccuracies
 *   compared to link partner.
 ******************************************************************************/
void USART_BaudrateAsyncSet(USART_TypeDef *usart,
                            uint32_t refFreq,
                            uint32_t baudrate,
                            USART_OVS_TypeDef ovs)
{
  uint32_t clkdiv;
  uint32_t oversample;

  /* Inhibit divide by 0 */
  EFM_ASSERT(baudrate);

  /*
   * We want to use integer division to avoid forcing in float division
   * utils, and yet keep rounding effect errors to a minimum.
   *
   * CLKDIV in asynchronous mode is given by:
   *
   * CLKDIV = 256 * (fHFPERCLK/(oversample * br) - 1)
   * or
   * CLKDIV = (256 * fHFPERCLK)/(oversample * br) - 256
   *
   * The basic problem with integer division in the above formula is that
   * the dividend (256 * fHFPERCLK) may become higher than max 32 bit
   * integer. Yet, we want to evaluate dividend first before dividing in
   * order to get as small rounding effects as possible. We do not want
   * to make too harsh restrictions on max fHFPERCLK value either.
   *
   * One can possibly factorize 256 and oversample/br. However,
   * since the last 6 bits of CLKDIV are don't care, we can base our
   * integer arithmetic on the below formula
   *
   * CLKDIV / 64 = (4 * fHFPERCLK)/(oversample * br) - 4
   *
   * and calculate 1/64 of CLKDIV first. This allows for fHFPERCLK
   * up to 1GHz without overflowing a 32 bit value!
   */

  /* HFPERCLK used to clock all USART/UART peripheral modules */
  if (!refFreq)
  {
    refFreq = CMU_ClockFreqGet(cmuClock_HFPER);
  }

  /* Map oversampling */
  switch (ovs)
  {
  case USART_CTRL_OVS_X16:
    EFM_ASSERT(baudrate <= (refFreq / 16));
    oversample = 16;
    break;

  case USART_CTRL_OVS_X8:
    EFM_ASSERT(baudrate <= (refFreq / 8));
    oversample = 8;
    break;

  case USART_CTRL_OVS_X6:
    EFM_ASSERT(baudrate <= (refFreq / 6));
    oversample = 6;
    break;

  case USART_CTRL_OVS_X4:
    EFM_ASSERT(baudrate <= (refFreq / 4));
    oversample = 4;
    break;

  default:
    /* Invalid input */
    EFM_ASSERT(0);
    return;
  }

  /* Calculate and set CLKDIV with fractional bits.
   * The addend (oversample*baudrate)/2 in the first line is to round the
   * divisor up by half the divisor before the division in order to reduce the
   * integer division error, which consequently results in a higher baudrate
   * than desired. */
  clkdiv  = 4 * refFreq + (oversample * baudrate) / 2;
//.........這裏部分代碼省略.........
開發者ID:MatKub,項目名稱:RIOT,代碼行數:101,代碼來源:em_usart.c

示例9: LDMA_EnableChannelRequest

/***************************************************************************//**
 * @brief
 *   Enable or disable a LDMA channel request.
 *
 * @details
 *   Use this function to enable or disable a LDMA channel request. This will
 *   prevent the LDMA from proceeding after its current transaction if disabled.
 *
 * @param[in] channel
 *   LDMA channel to enable or disable requests on.
 *
 * @param[in] enable
 *   If 'true' request will be enabled. If 'false' request will be disabled.
 ******************************************************************************/
void LDMA_EnableChannelRequest( int ch, bool enable)
{
  EFM_ASSERT( ch < DMA_CHAN_COUNT );

  BUS_RegBitWrite (&LDMA->REQDIS, ch, !enable);
}
開發者ID:basilfx,項目名稱:EFM2Riot,代碼行數:20,代碼來源:em_ldma.c

示例10: LCD_BiasSegmentSet

/***************************************************************************//**
 * @brief
 *   Configure bias level for a specific segment line for Direct Segment Control
 *
 * @note
 *   When DSC is active, each configuration takes up 4 bits in the Segment
 *   Registers (SEGD0L/SEGD1H) which defines bias level.
 *   For optimal use of this feature, the entire SEGD-registers should be set
 *   at once in a optimized routine, so this function is mainly here to
 *   demonstrate how to correctly configure the bias levels, and should be used
 *   with care.
 *
 * @param[in] segmentLine
 *   Segment line number
 *
 * @param[in] biasLevel
 *   Bias configuration level, 0-4. This value must be within the constraint
 *   defined by the LCD_DISPCTRL bias setting, see Reference Manual/Datasheet
 ******************************************************************************/
void LCD_BiasSegmentSet(int segmentLine, int biasLevel)
{
  int               biasRegister;
  int               bitShift;
  volatile uint32_t *segmentRegister;

#if defined(_EFM32_TINY_FAMILY)
  EFM_ASSERT(segmentLine < 20);
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  EFM_ASSERT(segmentLine < 40);
#endif
#if defined(_EFM32_TINY_FAMILY)
  /* Bias config for 8 segment lines per SEGDnL register */
  biasRegister = segmentLine / 8;
  bitShift     = (segmentLine % 8) * 4;

  switch (biasRegister)
  {
  case 0:
    segmentRegister = &LCD->SEGD0L;
    break;
  case 1:
    segmentRegister = &LCD->SEGD1L;
    break;
  case 2:
    segmentRegister = &LCD->SEGD2L;
    break;
  case 3:
    segmentRegister = &LCD->SEGD3L;
    break;
  default:
    segmentRegister = (uint32_t *)0x00000000;
    EFM_ASSERT(0);
    break;
  }
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY) 
  /* Bias config for 10 segment lines per SEGDn L+H registers */
  biasRegister = segmentLine / 10;
  bitShift     = (segmentLine % 10) * 4;

  switch (biasRegister)
  {
  case 0:
    if (bitShift < 32)
    {
      segmentRegister = &LCD->SEGD0L;
    }
    else
    {
      segmentRegister = &LCD->SEGD0H;
      bitShift       -= 32;
    }
    break;
  case 1:
    if (bitShift < 32)
    {
      segmentRegister = &LCD->SEGD1L;
    }
    else
    {
      segmentRegister = &LCD->SEGD1H;
      bitShift       -= 32;
    }
    break;
  case 2:
    if (bitShift < 32)
    {
      segmentRegister = &LCD->SEGD2L;
    }
    else
    {
      segmentRegister = &LCD->SEGD1H;
      bitShift       -= 32;
    }
    break;
  case 3:
    if (bitShift < 32)
    {
      segmentRegister = &LCD->SEGD3L;
//.........這裏部分代碼省略.........
開發者ID:AFritzMulti,項目名稱:mbed,代碼行數:101,代碼來源:em_lcd.c

示例11: VCMP_Init

/***************************************************************************//**
 * @brief
 *   Configure and enable Voltage Comparator
 *
 * @param[in] vcmpInit
 *   VCMP Initialization structure
 ******************************************************************************/
void VCMP_Init(const VCMP_Init_TypeDef *vcmpInit)
{
  /* Verify input */
  EFM_ASSERT((vcmpInit->inactive == 0) || (vcmpInit->inactive == 1));
  EFM_ASSERT((vcmpInit->biasProg >= 0) && (vcmpInit->biasProg < 16));

  /* Configure Half Bias setting */
  if (vcmpInit->halfBias)
  {
    VCMP->CTRL |= VCMP_CTRL_HALFBIAS;
  }
  else
  {
    VCMP->CTRL &= ~(VCMP_CTRL_HALFBIAS);
  }

  /* Configure bias prog */
  VCMP->CTRL &= ~(_VCMP_CTRL_BIASPROG_MASK);
  VCMP->CTRL |= (vcmpInit->biasProg << _VCMP_CTRL_BIASPROG_SHIFT);

  /* Configure sense for falling edge */
  if (vcmpInit->irqFalling)
  {
    VCMP->CTRL |= VCMP_CTRL_IFALL;
  }
  else
  {
    VCMP->CTRL &= ~(VCMP_CTRL_IFALL);
  }

  /* Configure sense for rising edge */
  if (vcmpInit->irqRising)
  {
    VCMP->CTRL |= VCMP_CTRL_IRISE;
  }
  else
  {
    VCMP->CTRL &= ~(VCMP_CTRL_IRISE);
  }

  /* Configure warm-up time */
  VCMP->CTRL &= ~(_VCMP_CTRL_WARMTIME_MASK);
  VCMP->CTRL |= (vcmpInit->warmup << _VCMP_CTRL_WARMTIME_SHIFT);

  /* Configure hysteresis */
  switch (vcmpInit->hyst)
  {
    case vcmpHyst20mV:
      VCMP->CTRL |= VCMP_CTRL_HYSTEN;
      break;
    case vcmpHystNone:
      VCMP->CTRL &= ~(VCMP_CTRL_HYSTEN);
      break;
    default:
      break;
  }

  /* Configure inactive output value */
  VCMP->CTRL |= (vcmpInit->inactive << _VCMP_CTRL_INACTVAL_SHIFT);

  /* Configure trigger level */
  VCMP_TriggerSet(vcmpInit->triggerLevel);

  /* Enable or disable VCMP */
  if (vcmpInit->enable)
  {
    VCMP->CTRL |= VCMP_CTRL_EN;
  }
  else
  {
    VCMP->CTRL &= ~(VCMP_CTRL_EN);
  }

  /* If Low Power Reference is enabled, wait until VCMP is ready */
  /* before enabling it, see reference manual for deatils        */
  /* Configuring Low Power Ref without enable has no effect      */
  if(vcmpInit->lowPowerRef && vcmpInit->enable)
  {
    /* Poll for VCMP ready */
    while(!VCMP_Ready());
    VCMP_LowPowerRefSet(vcmpInit->lowPowerRef);
  }

  /* Clear edge interrupt */
  VCMP_IntClear(VCMP_IF_EDGE);
}
開發者ID:marcuschangarm,項目名稱:mbed-hal-silabs-1,代碼行數:93,代碼來源:em_vcmp.c

示例12: LCD_SegmentSetHigh

/***************************************************************************//**
 * @brief
 *   Updated the high (32-39) segments on a given COM-line in one operation
 *
 * @param[in] com
 *   Which COM line to update
 *
 * @param[in] mask
 *   Bit mask for segments 32-39
 *
 * @param[in] bits
 *   Bit pattern for segments 32-39
 ******************************************************************************/
void LCD_SegmentSetHigh(int com, uint32_t mask, uint32_t bits)
{
  uint32_t segData;

#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  EFM_ASSERT(com < 8);
#endif
#if defined(_EFM32_GECKO_FAMILY)
  EFM_ASSERT(com < 4);
#endif

  /* Maximum number of com lines */
  switch (com)
  {
  case 0:
    segData     = LCD->SEGD0H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD0H = segData;
    break;
  case 1:
    segData     = LCD->SEGD1H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD1H = segData;
    break;
  case 2:
    segData     = LCD->SEGD2H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD2H = segData;
    break;
  case 3:
    segData     = LCD->SEGD3H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD3H = segData;
    break;
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 4:
    segData     = LCD->SEGD4H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD4H = segData;
    break;
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 5:
    segData     = LCD->SEGD5H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD5H = segData;
    break;
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 6:
    segData     = LCD->SEGD6H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD6H = segData;
    break;
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 7:
    segData     = LCD->SEGD7H;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD7H = segData;
    break;
#endif
  default:
    break;
  }
}
開發者ID:AFritzMulti,項目名稱:mbed,代碼行數:87,代碼來源:em_lcd.c

示例13: LCD_SegmentSetLow

/***************************************************************************//**
 * @brief
 *   Updates the 0-31 lowest segments on a given COM-line in one operation,
 *   according to bit mask
 *
 * @param[in] com
 *   Which COM line to update
 *
 * @param[in] mask
 *   Bit mask for segments 0-31
 *
 * @param[in] bits
 *   Bit pattern for segments 0-31
 ******************************************************************************/
void LCD_SegmentSetLow(int com, uint32_t mask, uint32_t bits)
{
  uint32_t segData;

  /* Maximum number of com lines */
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  EFM_ASSERT(com < 8);
#else
  /* Gecko Family supports up to 4 COM lines */
  EFM_ASSERT(com < 4);
#endif

  switch (com)
  {
  case 0:
    segData     = LCD->SEGD0L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD0L = segData;
    break;
  case 1:
    segData     = LCD->SEGD1L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD1L = segData;
    break;
  case 2:
    segData     = LCD->SEGD2L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD2L = segData;
    break;
  case 3:
    segData     = LCD->SEGD3L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD3L = segData;
    break;
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 4:
    segData     = LCD->SEGD4L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD4L = segData;
    break;
#endif
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY) 
  case 5:
    segData     = LCD->SEGD5L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD5L = segData;
    break;
#endif
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 6:
    segData     = LCD->SEGD6L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD6L = segData;
    break;
#endif
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  case 7:
    segData     = LCD->SEGD7L;
    segData    &= ~(mask);
    segData    |= (mask & bits);
    LCD->SEGD7L = segData;
    break;
#endif
  default:
    EFM_ASSERT(0);
    break;
  }
}
開發者ID:AFritzMulti,項目名稱:mbed,代碼行數:89,代碼來源:em_lcd.c

示例14: LCD_SegmentSet

/***************************************************************************//**
 * @brief
 *   Turn on or clear a segment
 *
 * @note
 *    On Gecko Family, max configuration is (COM-lines x Segment-Lines) 4x40
 *    On Tiny Family, max configuration is 8x20 or 4x24
 *    On Giant Family, max configuration is 8x36 or 4x40
 *
 * @param[in] com
 *   COM line to change
 *
 * @param[in] bit
 *   Bit index of which field to change
 *
 * @param[in] enable
 *   When true will set segment, when false will clear segment
 ******************************************************************************/
void LCD_SegmentSet(int com, int bit, bool enable)
{
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  /* Tiny and Giant Family supports up to 8 COM lines */
  EFM_ASSERT(com < 8);
#else
  /* Gecko Family supports up to 4 COM lines */
  EFM_ASSERT(com < 4);
#endif

#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
  EFM_ASSERT(bit < 40);
#else
  /* Tiny Gecko Family supports only "low" segment registers */
  EFM_ASSERT(bit < 32);
#endif

  /* Use bitband access for atomic bit set/clear of segment */
  switch (com)
  {
  case 0:
    if (bit < 32)
    {
      BITBAND_Peripheral(&(LCD->SEGD0L), bit, (unsigned int)enable);
    }
#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    else
    {
      bit -= 32;
      BITBAND_Peripheral(&(LCD->SEGD0H), bit, (unsigned int)enable);
    }
#endif
    break;
  case 1:
    if (bit < 32)
    {
      BITBAND_Peripheral(&(LCD->SEGD1L), bit, (unsigned int)enable);
    }
#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    else
    {
      bit -= 32;
      BITBAND_Peripheral(&(LCD->SEGD1H), bit, (unsigned int)enable);
    }
#endif
    break;
  case 2:
    if (bit < 32)
    {
      BITBAND_Peripheral(&(LCD->SEGD2L), bit, (unsigned int)enable);
    }
#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    else
    {
      bit -= 32;
      BITBAND_Peripheral(&(LCD->SEGD2H), bit, (unsigned int)enable);
    }
#endif
    break;
  case 3:
    if (bit < 32)
    {
      BITBAND_Peripheral(&(LCD->SEGD3L), bit, (unsigned int)enable);
    }
#if defined(_EFM32_GECKO_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    else
    {
      bit -= 32;
      BITBAND_Peripheral(&(LCD->SEGD3H), bit, (unsigned int)enable);
    }
#endif
    break;
  case 4:
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    if (bit < 32)
    {
      BITBAND_Peripheral(&(LCD->SEGD4L), bit, (unsigned int)enable);
    }
#endif
#if defined(_EFM32_GIANT_FAMILY) || defined(_EFM32_WONDER_FAMILY)
    else
    {
//.........這裏部分代碼省略.........
開發者ID:AFritzMulti,項目名稱:mbed,代碼行數:101,代碼來源:em_lcd.c

示例15: GPIO_PortOutClear

/***************************************************************************//**
 * @brief
 *   Set bits in DOUT register for a port to 0.
 *
 * @note
 *   In order for the setting to take effect on the output pad, the pin must
 *   have been configured properly. If not, it will take effect whenever the
 *   pin has been properly configured.
 *
 * @param[in] port
 *   The GPIO port to access.
 *
 * @param[in] pins
 *   Bit mask for bits to clear in DOUT register.
 ******************************************************************************/
void GPIO_PortOutClear(GPIO_Port_TypeDef port, uint32_t pins)
{
  EFM_ASSERT(GPIO_PORT_VALID(port));

  GPIO->P[port].DOUTCLR = pins & _GPIO_P_DOUTCLR_DOUTCLR_MASK;
}
開發者ID:MtTsai,項目名稱:mbed-freertos,代碼行數:21,代碼來源:efm32_gpio.c


注:本文中的EFM_ASSERT函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。