本文整理匯總了C++中EC_POINT_set_compressed_coordinates_GFp函數的典型用法代碼示例。如果您正苦於以下問題:C++ EC_POINT_set_compressed_coordinates_GFp函數的具體用法?C++ EC_POINT_set_compressed_coordinates_GFp怎麽用?C++ EC_POINT_set_compressed_coordinates_GFp使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了EC_POINT_set_compressed_coordinates_GFp函數的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: EC_KEY_new_by_curve_name
CSignerECDSA::CSignerECDSA(const uint8_t PrivData[32], unsigned char Signature[65])
{
order.setuint256(g_Order);
EC_KEY* pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
const EC_GROUP *group = EC_KEY_get0_group(pkey);
CBigNum privkey;
BN_bin2bn(PrivData, 32, &privkey);
EC_KEY_regenerate_key(pkey, &privkey);
EC_POINT *tmp_point = EC_POINT_new(group);
EC_POINT *test_point = EC_POINT_new(group);
CBigNum r, X, Y;
bool which = false;
do
{
// get random k
do
BN_rand_range(&kinv, &order);
while (!kinv);
/* We do not want timing information to leak the length of k,
* so we compute G*k using an equivalent scalar of fixed
* bit-length. */
kinv += order;
if (BN_num_bits(&kinv) <= 256)
kinv += order;
// compute r the x-coordinate of generator * k
EC_POINT_mul(group, tmp_point, &kinv, NULL, NULL, ctx);
EC_POINT_get_affine_coordinates_GFp(group, tmp_point, &X, &Y, ctx);
EC_POINT_set_compressed_coordinates_GFp(group, test_point, &X, 0, ctx);
which = !!EC_POINT_cmp(group, tmp_point, test_point, ctx);
BN_nnmod(&r, &X, &order, ctx);
}
while (!r);
// compute the inverse of k
BN_mod_inverse(&kinv, &kinv, &order, ctx);
BN_mod_mul(&pmr, &privkey, &r, &order, ctx);
BN_mod_mul(&prk, &pmr, &kinv, &order, ctx);
memset(Signature, 0, 65);
int nBitsR = BN_num_bits(&r);
BN_bn2bin(&r, &Signature[33-(nBitsR+7)/8]);
Signature[0] = 27 + which;
EC_POINT_free(tmp_point);
EC_POINT_free(test_point);
EC_KEY_free(pkey);
}
示例2: BN_bin2bn
EC_POINT *embed(const polypseud_ctx *ctx, const unsigned char *data, const size_t len) {
BIGNUM *t1 = BN_bin2bn(data, len, NULL);
BIGNUM *x = BN_new();
BN_mod(x, t1, ctx->p, ctx->bn_ctx);
EC_POINT *point = EC_POINT_new(ctx->ec_group);
unsigned char counter = 0;
int success = 0;
while(!success) {
success = EC_POINT_set_compressed_coordinates_GFp(ctx->ec_group, point, x, 1, ctx->bn_ctx);
if(!success) {
if(counter == 0) {
BN_lshift(x, x, 8);
}
BN_add(x, x, BN_value_one());
}
}
BN_free(x);
BN_free(t1);
return point;
}
示例3: ec_GFp_simple_oct2point
static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
const uint8_t *buf, size_t len,
BN_CTX *ctx) {
point_conversion_form_t form;
int y_bit;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
size_t field_len, enc_len;
int ret = 0;
if (len == 0) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_BUFFER_TOO_SMALL);
return 0;
}
form = buf[0];
y_bit = form & 1;
form = form & ~1U;
if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) &&
(form != POINT_CONVERSION_UNCOMPRESSED) &&
(form != POINT_CONVERSION_HYBRID)) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
return 0;
}
if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
return 0;
}
if (form == 0) {
if (len != 1) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
return 0;
}
return EC_POINT_set_to_infinity(group, point);
}
field_len = BN_num_bytes(&group->field);
enc_len =
(form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
if (len != enc_len) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
if (!BN_bin2bn(buf + 1, field_len, x))
goto err;
if (BN_ucmp(x, &group->field) >= 0) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
goto err;
}
if (form == POINT_CONVERSION_COMPRESSED) {
if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx))
goto err;
} else {
if (!BN_bin2bn(buf + 1 + field_len, field_len, y))
goto err;
if (BN_ucmp(y, &group->field) >= 0) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
goto err;
}
if (form == POINT_CONVERSION_HYBRID) {
if (y_bit != BN_is_odd(y)) {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_INVALID_ENCODING);
goto err;
}
}
if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
goto err;
}
if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */
{
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_oct2point, EC_R_POINT_IS_NOT_ON_CURVE);
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
示例4: ECDSA_SIG_recover_key_GFp
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// recid selects which key is recovered
// if check is nonzero, additional checks are performed
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
{
if (!eckey) return 0;
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *x = NULL;
BIGNUM *e = NULL;
BIGNUM *order = NULL;
BIGNUM *sor = NULL;
BIGNUM *eor = NULL;
BIGNUM *field = NULL;
EC_POINT *R = NULL;
EC_POINT *O = NULL;
EC_POINT *Q = NULL;
BIGNUM *rr = NULL;
BIGNUM *zero = NULL;
int n = 0;
int i = recid / 2;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
x = BN_CTX_get(ctx);
if (!BN_copy(x, order)) { ret=-1; goto err; }
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
field = BN_CTX_get(ctx);
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
if (check)
{
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
}
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
n = EC_GROUP_get_degree(group);
e = BN_CTX_get(ctx);
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
zero = BN_CTX_get(ctx);
if (!BN_zero(zero)) { ret=-1; goto err; }
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
rr = BN_CTX_get(ctx);
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
sor = BN_CTX_get(ctx);
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
eor = BN_CTX_get(ctx);
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
ret = 1;
err:
if (ctx) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (R != NULL) EC_POINT_free(R);
if (O != NULL) EC_POINT_free(O);
if (Q != NULL) EC_POINT_free(Q);
return ret;
}
示例5: compute_password_element
//.........這裏部分代碼省略.........
}
ctr = 0;
while (1) {
if (ctr > 10) {
DEBUG("unable to find random point on curve for group %d, something's fishy", grp_num);
goto fail;
}
ctr++;
/*
* compute counter-mode password value and stretch to prime
* pwd-seed = H(token | peer-id | server-id | password |
* counter)
*/
H_Init(&ctx);
H_Update(&ctx, (uint8_t *)token, sizeof(*token));
H_Update(&ctx, (uint8_t *)id_peer, id_peer_len);
H_Update(&ctx, (uint8_t *)id_server, id_server_len);
H_Update(&ctx, (uint8_t *)password, password_len);
H_Update(&ctx, (uint8_t *)&ctr, sizeof(ctr));
H_Final(&ctx, pwe_digest);
BN_bin2bn(pwe_digest, SHA256_DIGEST_LENGTH, rnd);
eap_pwd_kdf(pwe_digest, SHA256_DIGEST_LENGTH,
"EAP-pwd Hunting And Pecking",
strlen("EAP-pwd Hunting And Pecking"),
prfbuf, primebitlen);
BN_bin2bn(prfbuf, primebytelen, x_candidate);
/*
* eap_pwd_kdf() returns a string of bits 0..primebitlen but
* BN_bin2bn will treat that string of bits as a big endian
* number. If the primebitlen is not an even multiple of 8
* then excessive bits-- those _after_ primebitlen-- so now
* we have to shift right the amount we masked off.
*/
if (primebitlen % 8) {
BN_rshift(x_candidate, x_candidate, (8 - (primebitlen % 8)));
}
if (BN_ucmp(x_candidate, sess->prime) >= 0) {
continue;
}
/*
* need to unambiguously identify the solution, if there is
* one...
*/
if (BN_is_odd(rnd)) {
is_odd = 1;
} else {
is_odd = 0;
}
/*
* solve the quadratic equation, if it's not solvable then we
* don't have a point
*/
if (!EC_POINT_set_compressed_coordinates_GFp(sess->group,
sess->pwe,
x_candidate,
is_odd, NULL)) {
continue;
}
/*
* If there's a solution to the equation then the point must be
* on the curve so why check again explicitly? OpenSSL code
* says this is required by X9.62. We're not X9.62 but it can't
* hurt just to be sure.
*/
if (!EC_POINT_is_on_curve(sess->group, sess->pwe, NULL)) {
DEBUG("EAP-pwd: point is not on curve");
continue;
}
if (BN_cmp(cofactor, BN_value_one())) {
/* make sure the point is not in a small sub-group */
if (!EC_POINT_mul(sess->group, sess->pwe, NULL, sess->pwe,
cofactor, NULL)) {
DEBUG("EAP-pwd: cannot multiply generator by order");
continue;
}
if (EC_POINT_is_at_infinity(sess->group, sess->pwe)) {
DEBUG("EAP-pwd: point is at infinity");
continue;
}
}
/* if we got here then we have a new generator. */
break;
}
sess->group_num = grp_num;
if (0) {
fail: /* DON'T free sess, it's in handler->opaque */
ret = -1;
}
/* cleanliness and order.... */
BN_free(cofactor);
BN_free(x_candidate);
BN_free(rnd);
talloc_free(prfbuf);
return ret;
}
示例6: compute_password_element
//.........這裏部分代碼省略.........
eap_pwd_h_update(hash, id_server, id_server_len);
eap_pwd_h_update(hash, password, password_len);
eap_pwd_h_update(hash, &ctr, sizeof(ctr));
eap_pwd_h_final(hash, pwe_digest);
BN_bin2bn(pwe_digest, SHA256_MAC_LEN, rnd);
if (eap_pwd_kdf(pwe_digest, SHA256_MAC_LEN,
(u8 *) "EAP-pwd Hunting And Pecking",
os_strlen("EAP-pwd Hunting And Pecking"),
prfbuf, primebitlen) < 0)
goto fail;
BN_bin2bn(prfbuf, primebytelen, x_candidate);
/*
* eap_pwd_kdf() returns a string of bits 0..primebitlen but
* BN_bin2bn will treat that string of bits as a big endian
* number. If the primebitlen is not an even multiple of 8
* then excessive bits-- those _after_ primebitlen-- so now
* we have to shift right the amount we masked off.
*/
if (primebitlen % 8)
BN_rshift(x_candidate, x_candidate,
(8 - (primebitlen % 8)));
if (BN_ucmp(x_candidate, grp->prime) >= 0)
continue;
wpa_hexdump(MSG_DEBUG, "EAP-pwd: x_candidate",
prfbuf, primebytelen);
/*
* need to unambiguously identify the solution, if there is
* one...
*/
if (BN_is_odd(rnd))
is_odd = 1;
else
is_odd = 0;
/*
* solve the quadratic equation, if it's not solvable then we
* don't have a point
*/
if (!EC_POINT_set_compressed_coordinates_GFp(grp->group,
grp->pwe,
x_candidate,
is_odd, NULL))
continue;
/*
* If there's a solution to the equation then the point must be
* on the curve so why check again explicitly? OpenSSL code
* says this is required by X9.62. We're not X9.62 but it can't
* hurt just to be sure.
*/
if (!EC_POINT_is_on_curve(grp->group, grp->pwe, NULL)) {
wpa_printf(MSG_INFO, "EAP-pwd: point is not on curve");
continue;
}
if (BN_cmp(cofactor, BN_value_one())) {
/* make sure the point is not in a small sub-group */
if (!EC_POINT_mul(grp->group, grp->pwe, NULL, grp->pwe,
cofactor, NULL)) {
wpa_printf(MSG_INFO, "EAP-pwd: cannot "
"multiply generator by order");
continue;
}
if (EC_POINT_is_at_infinity(grp->group, grp->pwe)) {
wpa_printf(MSG_INFO, "EAP-pwd: point is at "
"infinity");
continue;
}
}
/* if we got here then we have a new generator. */
break;
}
wpa_printf(MSG_DEBUG, "EAP-pwd: found a PWE in %d tries", ctr);
grp->group_num = num;
if (0) {
fail:
EC_GROUP_free(grp->group);
grp->group = NULL;
EC_POINT_free(grp->pwe);
grp->pwe = NULL;
BN_free(grp->order);
grp->order = NULL;
BN_free(grp->prime);
grp->prime = NULL;
ret = 1;
}
/* cleanliness and order.... */
BN_free(cofactor);
BN_free(x_candidate);
BN_free(rnd);
os_free(prfbuf);
return ret;
}
示例7: ec_GFp_simple_oct2point
static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
const uint8_t *buf, size_t len,
BN_CTX *ctx) {
point_conversion_form_t form;
int y_bit;
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
size_t field_len, enc_len;
int ret = 0;
if (len == 0) {
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
return 0;
}
form = buf[0];
y_bit = form & 1;
form = form & ~1U;
if ((form != POINT_CONVERSION_COMPRESSED &&
form != POINT_CONVERSION_UNCOMPRESSED) ||
(form == POINT_CONVERSION_UNCOMPRESSED && y_bit)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
return 0;
}
field_len = BN_num_bytes(&group->field);
enc_len =
(form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len;
if (len != enc_len) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (x == NULL || y == NULL) {
goto err;
}
if (!BN_bin2bn(buf + 1, field_len, x)) {
goto err;
}
if (BN_ucmp(x, &group->field) >= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
goto err;
}
if (form == POINT_CONVERSION_COMPRESSED) {
if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) {
goto err;
}
} else {
if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) {
goto err;
}
if (BN_ucmp(y, &group->field) >= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
goto err;
}
if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
goto err;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
示例8: prime_field_tests
void prime_field_tests()
{
BN_CTX *ctx = NULL;
BIGNUM *p, *a, *b;
EC_GROUP *group;
EC_GROUP *P_160 = NULL, *P_192 = NULL, *P_224 = NULL, *P_256 = NULL, *P_384 = NULL, *P_521 = NULL;
EC_POINT *P, *Q, *R;
BIGNUM *x, *y, *z;
unsigned char buf[100];
size_t i, len;
int k;
#if 1 /* optional */
ctx = BN_CTX_new();
if (!ctx) ABORT;
#endif
p = BN_new();
a = BN_new();
b = BN_new();
if (!p || !a || !b) ABORT;
if (!BN_hex2bn(&p, "17")) ABORT;
if (!BN_hex2bn(&a, "1")) ABORT;
if (!BN_hex2bn(&b, "1")) ABORT;
group = EC_GROUP_new(EC_GFp_mont_method()); /* applications should use EC_GROUP_new_curve_GFp
* so that the library gets to choose the EC_METHOD */
if (!group) ABORT;
if (!EC_GROUP_set_curve_GFp(group, p, a, b, ctx)) ABORT;
{
EC_GROUP *tmp;
tmp = EC_GROUP_new(EC_GROUP_method_of(group));
if (!tmp) ABORT;
if (!EC_GROUP_copy(tmp, group)) ABORT;
EC_GROUP_free(group);
group = tmp;
}
if (!EC_GROUP_get_curve_GFp(group, p, a, b, ctx)) ABORT;
fprintf(stdout, "Curve defined by Weierstrass equation\n y^2 = x^3 + a*x + b (mod 0x");
BN_print_fp(stdout, p);
fprintf(stdout, ")\n a = 0x");
BN_print_fp(stdout, a);
fprintf(stdout, "\n b = 0x");
BN_print_fp(stdout, b);
fprintf(stdout, "\n");
P = EC_POINT_new(group);
Q = EC_POINT_new(group);
R = EC_POINT_new(group);
if (!P || !Q || !R) ABORT;
if (!EC_POINT_set_to_infinity(group, P)) ABORT;
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
buf[0] = 0;
if (!EC_POINT_oct2point(group, Q, buf, 1, ctx)) ABORT;
if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
x = BN_new();
y = BN_new();
z = BN_new();
if (!x || !y || !z) ABORT;
if (!BN_hex2bn(&x, "D")) ABORT;
if (!EC_POINT_set_compressed_coordinates_GFp(group, Q, x, 1, ctx)) ABORT;
if (!EC_POINT_is_on_curve(group, Q, ctx))
{
if (!EC_POINT_get_affine_coordinates_GFp(group, Q, x, y, ctx)) ABORT;
fprintf(stderr, "Point is not on curve: x = 0x");
BN_print_fp(stderr, x);
fprintf(stderr, ", y = 0x");
BN_print_fp(stderr, y);
fprintf(stderr, "\n");
ABORT;
}
fprintf(stdout, "A cyclic subgroup:\n");
k = 100;
do
{
if (k-- == 0) ABORT;
if (EC_POINT_is_at_infinity(group, P))
fprintf(stdout, " point at infinity\n");
else
{
if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
fprintf(stdout, " x = 0x");
BN_print_fp(stdout, x);
fprintf(stdout, ", y = 0x");
BN_print_fp(stdout, y);
fprintf(stdout, "\n");
//.........這裏部分代碼省略.........