本文整理匯總了C++中DotProd函數的典型用法代碼示例。如果您正苦於以下問題:C++ DotProd函數的具體用法?C++ DotProd怎麽用?C++ DotProd使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了DotProd函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Normalize
void InterpolatorKNN::CalculateBaryzentricCoordinates(NNCandidate candidates[3], Vertex v) {
D3DXVECTOR3 v_01 = Normalize(candidates[1].vertex.pos-candidates[0].vertex.pos);
D3DXVECTOR3 v_02 = Normalize(candidates[2].vertex.pos-candidates[0].vertex.pos);
// project v onto plane <v_01, v_02> with hesse normal form
D3DXVECTOR3 normal = Normalize(CrossProd(v_01, v_02));
D3DXVECTOR3 pointOnPlane = candidates[0].vertex.pos;
float d = DotProd(normal, pointOnPlane);
float distance = DotProd(normal, v.pos) - d;
v.pos = v.pos + distance * (-normal);
float translate = 0.0f;
if(v.pos.x == 0 && v.pos.y == 0 && v.pos.z == 0) {
translate = 10;
}
candidates[0].vertex.pos.x += translate;
candidates[1].vertex.pos.x += translate;
candidates[2].vertex.pos.x += translate;
v.pos.x += translate;
D3DXVECTOR3 res = SolveLES( candidates[0].vertex.pos,
candidates[1].vertex.pos,
candidates[2].vertex.pos,
v.pos);
candidates[0].weight = res.x;
candidates[1].weight = res.y;
candidates[2].weight = res.z;
D3DXVECTOR3 check = candidates[0].weight * candidates[0].vertex.pos +
candidates[1].weight * candidates[1].vertex.pos +
candidates[2].weight * candidates[2].vertex.pos -
v.pos;
float error = abs(check.x) + abs(check.y) + abs(check.z);
if(error > 0.00001) {
PD(L"big error solving lgs: ", error);
}
}
示例2: computeStiffnessMat
inline void computeStiffnessMat(const double3x3& strainDeriv, const double& K, double3x3 *ppJacobian[3])
{
const Vector3d *a = (const Vector3d *)&strainDeriv.x[0];
const Vector3d *b = (const Vector3d *)&strainDeriv.x[3];
const Vector3d *c = (const Vector3d *)&strainDeriv.x[6];
const double aa = DotProd(*a, *a);
const double ab = DotProd(*a, *b);
const double ac = DotProd(*a, *c);
const double bb = DotProd(*b, *b);
const double bc = DotProd(*b, *c);
const double cc = DotProd(*c, *c);
const double S11 = aa*K;
const double S12 = (ab+ac)*K;
const double S22 = (bb+cc+bc+bc)*K;
ppJacobian[0]->ZeroMatrix();
ppJacobian[1]->ZeroMatrix();
ppJacobian[2]->ZeroMatrix();
double *x;
x=ppJacobian[0]->x;
x[0]=x[4]=x[8]=S11;
x=ppJacobian[1]->x;
x[0]=x[4]=x[8]=S12;
x=ppJacobian[2]->x;
x[0]=x[4]=x[8]=S22;
}
示例3: RefractVector
static Point3 RefractVector(ShadeContext &sc, Point3 N, Point3 V, float ior) {
float VN,nur,k1;
VN = DotProd(-V,N);
if (sc.backFace) nur = ior;
else nur = (ior!=0.0f) ? 1.0f/ior: 1.0f;
k1 = 1.0f-nur*nur*(1.0f-VN*VN);
if (k1<=0.0f) {
// Total internal reflection:
return FNormalize(2.0f*VN*N + V);
}
else
return (nur*VN-(float)sqrt(k1))*N + nur*V;
}
示例4: _computeElasticForce
//if damping is required, we compute additional damping force in the
//returned force vector
void CSpringElement::computeNodalForce(
const Vector3d &p0, //node 0's world position
const Vector3d &p1, //node 1's world position
const Vector3d &v0, //node 0's velocity
const Vector3d &v1, //node 1's velocity
Vector3d &f0, //elastic force for node 0
double3x3 *pstiffness)
{
Vector3d Xij;
_computeElasticForce(p0, p1, f0, Xij);
if (m_Kd > 1e-10){
Vector3d Vij = v0 - v1;
const double dot1 = DotProd(Vij, Xij);
const double dot2 = DotProd(Xij, Xij);
Vector3d Fvisco = (m_Kd*dot1/dot2)*Xij;
f0+=Fvisco;
}
if (pstiffness){
}
}
示例5: Normalize
int DGCubeMap::_getCloestAnchorVertex(const Vector3d &pos, const AnchorVertexInfo *pVertex, const int nv) const
{
const Vector3d n = Normalize(pos);
double maxdotval = -100000.0;
int index=-1;
for (int i=0; i<nv; i++){
double dotval = DotProd(n, pVertex[i].m_dir);
if (maxdotval<dotval){
maxdotval = dotval, index = i;
}
}
return index;
}
示例6: CrossProd
void InterpolatorKNN::KollinearWithDistinctPositions(NNCandidate candidates[3], Vertex v) {
// project v onto line <v_01, v_02> with hesse normal form
D3DXVECTOR3 v_01 = candidates[1].vertex.pos-candidates[0].vertex.pos;
D3DXVECTOR3 v_02 = candidates[2].vertex.pos-candidates[0].vertex.pos;
D3DXVECTOR3 v_0v = v.pos-candidates[0].vertex.pos;
D3DXVECTOR3 v_1v = v.pos-candidates[1].vertex.pos;
D3DXVECTOR3 v_2v = v.pos-candidates[2].vertex.pos;
D3DXVECTOR3 v_2 = CrossProd(v_01, v_0v);
if(v_2.x != 0.0f || v_2.y != 0.0f || v_2.z != 0.0f) {
D3DXVECTOR3 normal = Normalize(CrossProd(v_01, v_2));
D3DXVECTOR3 pointOnPlane = candidates[0].vertex.pos;
float d = DotProd(normal, pointOnPlane);
float distance = DotProd(normal, v.pos) - d;
v.pos = v.pos + distance * (-normal);
}
if(DotProd(v_01, v_02) < -0.9f) {
// 0 is in the middle
if(DotProd(v_01, v_0v) > 0.9f){
// v on the same side as 1
InterpolateLinear(candidates[0], candidates[1], v);
candidates[2].weight = 0.0f;
}
else{
// v on the same side as 2
InterpolateLinear(candidates[0], candidates[2], v);
candidates[1].weight = 0.0f;
}
}
if(Length(v_01) < Length(v_02)) {
// 1 is in the middle
if(DotProd(-v_01, v_1v) > 0.9f){
// v on the same side as 0
InterpolateLinear(candidates[1], candidates[0], v);
candidates[2].weight = 0.0f;
}
else{
// v on the same side as 2
InterpolateLinear(candidates[1], candidates[2], v);
candidates[0].weight = 0.0f;
}
}
else{
// 2 is in the middle
if(DotProd(-v_02, v_2v) > 0.9f){
// v on the same side as 0
InterpolateLinear(candidates[2], candidates[0], v);
candidates[1].weight = 0.0f;
}
else{
// v on the same side as 1
InterpolateLinear(candidates[2], candidates[1], v);
candidates[0].weight = 0.0f;
}
}
}
示例7: max
void InterpolatorKNN::AllSamePosition(NNCandidate candidates[3], Vertex v) {
float weights[3];
float sum = 0.0f;
for(int i=0; i < 3; ++i) {
weights[i] = max(0, DotProd(candidates[i].vertex.normal, v.normal));
sum += weights[i];
}
if(sum == 0){
sum = 3.0f;
weights[0] = 1.0f; weights[1] = 1.0f; weights[2] = 1.0f;
}
candidates[0].weight = weights[0] / sum;
candidates[1].weight = weights[1] / sum;
candidates[2].weight = weights[2] / sum;
}
示例8: switch
float BerconGradient::getGradientValueDist(ShadeContext& sc) {
switch (p_normalType) {
case 0: { // View
return -sc.P().z; //Length(sc.OrigView()); //(sc.PointTo(sc.P(), REF_CAMERA)).z;
}
case 1: { // Local X
return (sc.PointTo(sc.P(), REF_OBJECT)).x;
}
case 2: { // Local Y
return (sc.PointTo(sc.P(), REF_OBJECT)).y;
}
case 3: { // Local Z
return (sc.PointTo(sc.P(), REF_OBJECT)).z;
}
case 4: { // World X
return (sc.PointTo(sc.P(), REF_WORLD)).x;
}
case 5: { // World Y
return (sc.PointTo(sc.P(), REF_WORLD)).y;
}
case 6: { // World Z
return (sc.PointTo(sc.P(), REF_WORLD)).z;
}
case 7: { // Camera X
return sc.P().x; //(sc.PointTo(sc.P(), REF_CAMERA)).x;
}
case 8: { // Camera Y
return sc.P().y; //(sc.PointTo(sc.P(), REF_CAMERA)).y;
}
case 9: { // Camera Z
return -sc.P().z; //-(sc.PointTo(sc.P(), REF_CAMERA)).z;
}
case 10: { // To Object
if (sc.InMtlEditor() || !p_node)
return -sc.P().z; //(sc.PointTo(sc.P(), REF_CAMERA)).z;
return Length((p_node->GetNodeTM(sc.CurTime())).GetTrans() - sc.PointTo(sc.P(), REF_WORLD));
}
case 11: { // Object Z
if (sc.InMtlEditor() || !p_node)
return -sc.P().z; //(sc.PointTo(sc.P(), REF_CAMERA)).z;
Matrix3 tm = p_node->GetNodeTM(sc.CurTime());
Point3 a = tm.GetTrans() - sc.PointTo(sc.P(), REF_WORLD);
Point3 b = FNormalize(tm.GetRow(2));
return (-DotProd(b, a) / Length(b));
}
}
return 0.f;
}
示例9: DotProd
void SymmetryMod::WeldTriObject (Mesh & mesh, Point3 & N, float offset, float threshold) {
// Find vertices in target zone of mirror plane:
BitArray targetVerts;
targetVerts.SetSize (mesh.numVerts, true);
targetVerts.ClearAll ();
for (int i=0; i<mesh.numVerts; i++) {
float dist = DotProd (N, mesh.verts[i]) - offset;
if (fabsf(dist) > threshold) continue;
targetVerts.Set (i);
}
// Weld the suitable border vertices:
MeshDelta tmd(mesh);
BOOL found = tmd.WeldByThreshold (mesh, targetVerts, threshold);
tmd.Apply (mesh);
}
示例10: Normal
// Foley & vanDam: Computer Graphics: Principles and Practice,
// 2nd Ed. pp 756ff.
Point3 SContext::RefractVector(float ior)
{
Point3 N = Normal();
float VN,nur,k;
VN = DotProd(-viewDir,N);
if (backFace) nur = ior;
else nur = (ior!=0.0f) ? 1.0f/ior: 1.0f;
k = 1.0f-nur*nur*(1.0f-VN*VN);
if (k<=0.0f) {
// Total internal reflection:
return ReflectVector();
}
else {
return (nur*VN-(float)sqrt(k))*N + nur*viewDir;
}
}
示例11: NormalAngle
/*
====================
NormalAngle
====================
*/
static float NormalAngle( Point3 v1, Point3 v2 )
{
float len = Length( v1 );
if (len == 0) return 0;
v1 /= len;
len = Length( v2 );
if (len == 0) return 0;
v2 /= len;
float normal_angle = DotProd( v1, v2 );
normal_angle = min( 1.f, max( normal_angle, -1.f ) );
return acosf( normal_angle );
}
示例12: location
/* Apply the method developed by Matthew Brown (see BMVC 02 paper) to
fit a 3D quadratic function through the DOG function values around
the location (s,r,c), i.e., (scale,row,col), at which a peak has
been detected. Return the interpolated peak position by setting
the vector "offset", which gives offset from position (s,r,c). The
returned function value is the interpolated DOG magnitude at this peak.
*/
float FitQuadratic(float offset[3], Image *dogs, int s, int r, int c)
{
float g[3], **dog0, **dog1, **dog2;
static float **H = NULL;
/* First time through, allocate space for Hessian matrix, H. */
if (H == NULL)
H = AllocMatrix(3, 3, PERM_POOL);
/* Select the dog images at peak scale, dog1, as well as the scale
below, dog0, and scale above, dog2.
*/
dog0 = dogs[s-1]->pixels;
dog1 = dogs[s]->pixels;
dog2 = dogs[s+1]->pixels;
/* Fill in the values of the gradient from pixel differences. */
g[0] = (dog2[r][c] - dog0[r][c]) / 2.0;
g[1] = (dog1[r+1][c] - dog1[r-1][c]) / 2.0;
g[2] = (dog1[r][c+1] - dog1[r][c-1]) / 2.0;
/* Fill in the values of the Hessian from pixel differences. */
H[0][0] = dog0[r][c] - 2.0 * dog1[r][c] + dog2[r][c];
H[1][1] = dog1[r-1][c] - 2.0 * dog1[r][c] + dog1[r+1][c];
H[2][2] = dog1[r][c-1] - 2.0 * dog1[r][c] + dog1[r][c+1];
H[0][1] = H[1][0] = ((dog2[r+1][c] - dog2[r-1][c]) -
(dog0[r+1][c] - dog0[r-1][c])) / 4.0;
H[0][2] = H[2][0] = ((dog2[r][c+1] - dog2[r][c-1]) -
(dog0[r][c+1] - dog0[r][c-1])) / 4.0;
H[1][2] = H[2][1] = ((dog1[r+1][c+1] - dog1[r+1][c-1]) -
(dog1[r-1][c+1] - dog1[r-1][c-1])) / 4.0;
/* Solve the 3x3 linear sytem, Hx = -g. Result gives peak offset.
Note that SolveLinearSystem destroys contents of H.
*/
offset[0] = - g[0];
offset[1] = - g[1];
offset[2] = - g[2];
SolveLinearSystem(offset, H, 3);
/* Also return value of DOG at peak location using initial value plus
0.5 times linear interpolation with gradient to peak position
(this is correct for a quadratic approximation).
*/
return (dog1[r][c] + 0.5 * DotProd(offset, g, 3));
}
示例13: WebRate
static void WebRate(realtype xx, realtype yy, realtype *cxy, realtype *ratesxy,
void *user_data)
{
long int i;
realtype fac;
UserData data;
data = (UserData)user_data;
for (i = 0; i<NUM_SPECIES; i++)
ratesxy[i] = DotProd(NUM_SPECIES, cxy, acoef[i]);
fac = ONE + ALPHA * xx * yy;
for (i = 0; i < NUM_SPECIES; i++)
ratesxy[i] = cxy[i] * ( bcoef[i] * fac + ratesxy[i] );
}
示例14: LUSolveSymm
/* const removal: const R8 **a */
void LUSolveSymm(const IX neq, R8 **a, R8 *b)
{
IX i;
for(i=2; i<=neq; i++) { /* forward substitution */
b[i] -= DotProd(i-1, a[i], b);
}
for(i=neq; i; i--) {
b[i] *= a[i][i];
}
for(i=neq; i>1; i--) { /* back substitution */
DAXpY(i-1, -b[i], a[i], b);
}
} /* end of LUSolveSymm */
示例15: default
//TODO MDInitialize vorticities
int
InitializeTurbModes
(
const MDConstants K,
const Molecule* molecule,
const TurbConstVecs* turb_vecs,
const TurbConsts* turb,
KraichnanMode** kraich_modes,
const unsigned t
)
{
//TODO profile & parallelise
//TODO check valid input/output
/*
#pragma omp parallel for default (none) \
shared (K.PartNum, molecule, turb_vecs, turb, K.Lx, K.Ly, K.Lz, t, delta_t, NF)\
schedule(dynamic, 5000)
*/
for(unsigned i = 0; i < K.PartNum; ++i)
{
for(unsigned modeIndex = 0; modeIndex < K.NF; ++modeIndex)
{
double pos_vec[kDIM] = {0};
NormalizeVector (K.L, molecule[i].position, pos_vec);
double kn_dot_x = DotProd ( turb_vecs[modeIndex].kn, pos_vec);
unsigned real_time = t * K.delta_t;
//in LaTeX would be: \Omega_n = |\kappa| (\vec k \cdot \vec x) + |\omega| t
double Omega_n = turb[modeIndex].k * kn_dot_x +
turb[modeIndex].omega * real_time;
//cos and sin
kraich_modes[i][modeIndex].sin = sin (Omega_n);
kraich_modes[i][modeIndex].cos = cos (Omega_n);
assert (kraich_modes[i][modeIndex].sin < 1);
assert (kraich_modes[i][modeIndex].sin > -1);
assert (kraich_modes[i][modeIndex].cos < 1);
assert (kraich_modes[i][modeIndex].cos > -1);
}
}
return 0;
}