本文整理匯總了C++中DivU64x32函數的典型用法代碼示例。如果您正苦於以下問題:C++ DivU64x32函數的具體用法?C++ DivU64x32怎麽用?C++ DivU64x32使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了DivU64x32函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: InitializeDebugTimer
/**
Initialize CPU local APIC timer.
**/
VOID
InitializeDebugTimer (
VOID
)
{
UINTN ApicTimerDivisor;
UINT32 InitialCount;
GetApicTimerState (&ApicTimerDivisor, NULL, NULL);
//
// Cpu Local Apic timer interrupt frequency, it is set to 0.1s
//
InitialCount = (UINT32)DivU64x32 (
MultU64x64 (
PcdGet32(PcdFSBClock) / (UINT32)ApicTimerDivisor,
100
),
1000
);
InitializeApicTimer (ApicTimerDivisor, InitialCount, TRUE, DEBUG_TIMER_VECTOR);
if (MultiProcessorDebugSupport) {
mDebugMpContext.DebugTimerInitCount = InitialCount;
}
}
示例2: TimerDriverSetTimerPeriod
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
)
{
UINT64 TimerTicks;
// Always disable the timer
ArmArchTimerDisableTimer ();
if (TimerPeriod != 0) {
// Convert TimerPeriod to micro sec units
TimerTicks = DivU64x32 (TimerPeriod, 10);
TimerTicks = MultU64x32 (TimerTicks, (PcdGet32(PcdArmArchTimerFreqInHz)/1000000));
ArmArchTimerSetTimerVal((UINTN)TimerTicks);
// Enable the timer
ArmArchTimerEnableTimer ();
}
// Save the new timer period
mTimerPeriod = TimerPeriod;
return EFI_SUCCESS;
}
示例3: DebugAgentTimerSetPeriod
/**
Set the period for the debug agent timer. Zero means disable the timer.
@param[in] TimerPeriodMilliseconds Frequency of the debug agent timer.
**/
VOID
EFIAPI
DebugAgentTimerSetPeriod (
IN UINT32 TimerPeriodMilliseconds
)
{
UINT64 TimerCount;
INT32 LoadValue;
if (TimerPeriodMilliseconds == 0) {
// Turn off GPTIMER3
MmioWrite32 (gTCLR, TCLR_ST_OFF);
DisableInterruptSource ();
} else {
// Calculate required timer count
TimerCount = DivU64x32(TimerPeriodMilliseconds * 1000000, PcdGet32(PcdDebugAgentTimerFreqNanoSeconds));
// Set GPTIMER5 Load register
LoadValue = (INT32) -TimerCount;
MmioWrite32 (gTLDR, LoadValue);
MmioWrite32 (gTCRR, LoadValue);
// Enable Overflow interrupt
MmioWrite32 (gTIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_ENABLE | TIER_MAT_IT_DISABLE);
// Turn on GPTIMER3, it will reload at overflow
MmioWrite32 (gTCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
EnableInterruptSource ();
}
}
示例4: NanoSecondDelay
/**
Stalls the CPU for at least the given number of nanoseconds.
This function wraps EsalStall function of Extended SAL Stall Services Class.
It stalls the CPU for the number of nanoseconds specified by NanoSeconds.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return NanoSeconds
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
UINT64 MicroSeconds;
//
// The unit of ESAL Stall service is microsecond, so we turn the time interval
// from nanosecond to microsecond, using the ceiling value to ensure stalling
// at least the given number of nanoseconds.
//
MicroSeconds = DivU64x32 (NanoSeconds + 999, 1000);
EsalCall (
EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_LO,
EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_HI,
StallFunctionId,
MicroSeconds,
0,
0,
0,
0,
0,
0
);
return NanoSeconds;
}
示例5: RamDiskInitBlockIo
/**
Initialize the BlockIO & BlockIO2 protocol of a RAM disk device.
@param[in] PrivateData Points to RAM disk private data.
**/
VOID
RamDiskInitBlockIo (
IN RAM_DISK_PRIVATE_DATA *PrivateData
)
{
EFI_BLOCK_IO_PROTOCOL *BlockIo;
EFI_BLOCK_IO2_PROTOCOL *BlockIo2;
EFI_BLOCK_IO_MEDIA *Media;
BlockIo = &PrivateData->BlockIo;
BlockIo2 = &PrivateData->BlockIo2;
Media = &PrivateData->Media;
CopyMem (BlockIo, &mRamDiskBlockIoTemplate, sizeof (EFI_BLOCK_IO_PROTOCOL));
CopyMem (BlockIo2, &mRamDiskBlockIo2Template, sizeof (EFI_BLOCK_IO2_PROTOCOL));
BlockIo->Media = Media;
BlockIo2->Media = Media;
Media->RemovableMedia = FALSE;
Media->MediaPresent = TRUE;
Media->LogicalPartition = FALSE;
Media->ReadOnly = FALSE;
Media->WriteCaching = FALSE;
Media->BlockSize = RAM_DISK_BLOCK_SIZE;
Media->LastBlock = DivU64x32 (
PrivateData->Size + RAM_DISK_BLOCK_SIZE - 1,
RAM_DISK_BLOCK_SIZE
) - 1;
}
示例6: NanoSecondDelay
/**
Stalls the CPU for at least the given number of nanoseconds.
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return The value of NanoSeconds inputted.
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
EFI_STATUS Status;
UINT64 HundredNanoseconds;
UINTN Index;
if ((gTimerPeriod != 0) &&
((UINT64)NanoSeconds > gTimerPeriod) &&
(EfiGetCurrentTpl () == TPL_APPLICATION)) {
//
// This stall is long, so use gBS->WaitForEvent () to yield CPU to DXE Core
//
HundredNanoseconds = DivU64x32 (NanoSeconds, 100);
Status = gBS->SetTimer (gTimerEvent, TimerRelative, HundredNanoseconds);
ASSERT_EFI_ERROR (Status);
Status = gBS->WaitForEvent (sizeof (gTimerEvent)/sizeof (EFI_EVENT), &gTimerEvent, &Index);
ASSERT_EFI_ERROR (Status);
} else {
gEmuThunk->Sleep (NanoSeconds);
}
return NanoSeconds;
}
示例7: EmuTimerDriverSetTimerPeriod
EFI_STATUS
EFIAPI
EmuTimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
)
/*++
Routine Description:
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
Arguments:
This - The EFI_TIMER_ARCH_PROTOCOL instance.
TimerPeriod - The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
Returns:
EFI_SUCCESS - The timer period was changed.
EFI_UNSUPPORTED - The platform cannot change the period of the timer interrupt.
EFI_DEVICE_ERROR - The timer period could not be changed due to a device error.
**/
{
//
// If TimerPeriod is 0, then the timer thread should be canceled
// If the TimerPeriod is valid, then create and/or adjust the period of the timer thread
//
if (TimerPeriod == 0
|| ((TimerPeriod > TIMER_MINIMUM_VALUE)
&& (TimerPeriod < TIMER_MAXIMUM_VALUE))) {
mTimerPeriodMs = DivU64x32 (TimerPeriod + 5000, 10000);
gEmuThunk->SetTimer (mTimerPeriodMs, TimerCallback);
}
return EFI_SUCCESS;
}
示例8: SP805SetTimerPeriod
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
STATIC
EFI_STATUS
EFIAPI
SP805SetTimerPeriod (
IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod // In 100ns units
)
{
EFI_STATUS Status;
UINT64 Ticks64bit;
SP805Unlock ();
Status = EFI_SUCCESS;
if (TimerPeriod == 0) {
// This is a watchdog stop request
SP805Stop ();
} else {
// Calculate the Watchdog ticks required for a delay of (TimerTicks * 100) nanoseconds
// The SP805 will count down to zero and generate an interrupt.
//
// WatchdogTicks = ((TimerPeriod * 100 * SP805_CLOCK_FREQUENCY) / 1GHz);
//
// i.e.:
//
// WatchdogTicks = (TimerPeriod * SP805_CLOCK_FREQUENCY) / 10 MHz ;
Ticks64bit = MultU64x32 (TimerPeriod, PcdGet32 (PcdSP805WatchdogClockFrequencyInHz));
Ticks64bit = DivU64x32 (Ticks64bit, 10 * 1000 * 1000);
// The registers in the SP805 are only 32 bits
if (Ticks64bit > MAX_UINT32) {
// We could load the watchdog with the maximum supported value but
// if a smaller value was requested, this could have the watchdog
// triggering before it was intended.
// Better generate an error to let the caller know.
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// Update the watchdog with a 32-bit value.
MmioWrite32 (SP805_WDOG_LOAD_REG, (UINT32)Ticks64bit);
// Start the watchdog
SP805Start ();
}
mTimerPeriod = TimerPeriod;
EXIT:
// Ensure the watchdog is locked before exiting.
SP805Lock ();
ASSERT_EFI_ERROR (Status);
return Status;
}
示例9: as
/**
Calculate the Duration in microseconds.
Duration is multiplied by 1000, instead of Frequency being divided by 1000 or
multiplying the result by 1000, in order to maintain precision. Since Duration is
a 64-bit value, multiplying it by 1000 is unlikely to produce an overflow.
The time is calculated as (Duration * 1000) / Timer_Frequency.
@param[in] Duration The event duration in timer ticks.
@return A 64-bit value which is the Elapsed time in microseconds.
**/
UINT64
DurationInMicroSeconds (
IN UINT64 Duration
)
{
UINT64 Temp;
Temp = MultU64x32 (Duration, 1000);
return DivU64x32 (Temp, TimerInfo.Frequency);
}
示例10: SP805SetTimerPeriod
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
SP805SetTimerPeriod (
IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod // In 100ns units
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT64 Ticks64bit;
SP805Unlock();
if( TimerPeriod == 0 ) {
// This is a watchdog stop request
SP805Stop();
goto EXIT;
} else {
// Calculate the Watchdog ticks required for a delay of (TimerTicks * 100) nanoseconds
// The SP805 will count down to ZERO once, generate an interrupt and
// then it will again reload the initial value and start again.
// On the second time when it reaches ZERO, it will actually reset the board.
// Therefore, we need to load half the required delay.
//
// WatchdogTicks = ((TimerPeriod * 100 * SP805_CLOCK_FREQUENCY) / 1GHz) / 2 ;
//
// i.e.:
//
// WatchdogTicks = (TimerPeriod * SP805_CLOCK_FREQUENCY) / 20 MHz ;
Ticks64bit = DivU64x32(MultU64x32(TimerPeriod, (UINTN)PcdGet32(PcdSP805WatchdogClockFrequencyInHz)), 20000000);
// The registers in the SP805 are only 32 bits
if(Ticks64bit > (UINT64)0xFFFFFFFF) {
// We could load the watchdog with the maximum supported value but
// if a smaller value was requested, this could have the watchdog
// triggering before it was intended.
// Better generate an error to let the caller know.
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// Update the watchdog with a 32-bit value.
MmioWrite32(SP805_WDOG_LOAD_REG, (UINT32)Ticks64bit);
// Start the watchdog
SP805Start();
}
EXIT:
// Ensure the watchdog is locked before exiting.
SP805Lock();
return Status;
}
示例11: PlatfomrSmbiosDriverEntryPoint
/**
Main entry for this driver.
@param ImageHandle Image handle this driver.
@param SystemTable Pointer to SystemTable.
@retval EFI_SUCESS This function always complete successfully.
**/
EFI_STATUS
EFIAPI
PlatfomrSmbiosDriverEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_SMBIOS_HANDLE SmbiosHandle;
SMBIOS_STRUCTURE_POINTER Smbios;
// Phase 0 - Patch table to make SMBIOS 2.7 structures smaller to conform
// to an early version of the specification.
// Phase 1 - Initialize SMBIOS tables from template
Status = SmbiosLibInitializeFromTemplate (gSmbiosTemplate);
ASSERT_EFI_ERROR (Status);
// Phase 2 - Patch SMBIOS table entries
Smbios.Hdr = SmbiosLibGetRecord (EFI_SMBIOS_TYPE_BIOS_INFORMATION, 0, &SmbiosHandle);
if (Smbios.Type0 != NULL) {
// 64K * (n+1) bytes
Smbios.Type0->BiosSize = (UINT8)DivU64x32 (FixedPcdGet64 (PcdEmuFirmwareFdSize), 64*1024) - 1;
SmbiosLibUpdateUnicodeString (
SmbiosHandle,
Smbios.Type0->BiosVersion,
(CHAR16 *) PcdGetPtr (PcdFirmwareVersionString)
);
SmbiosLibUpdateUnicodeString (
SmbiosHandle,
Smbios.Type0->BiosReleaseDate,
(CHAR16 *) PcdGetPtr (PcdFirmwareReleaseDateString)
);
}
// Phase 3 - Create tables from scratch
// Create Type 13 record from EFI Variables
// Do we need this record for EFI as the info is availible from EFI varaibles
// Also language types don't always match between EFI and SMBIOS
// CreateSmbiosLanguageInformation (1, gSmbiosLangToEfiLang);
CreatePlatformSmbiosMemoryRecords ();
return EFI_SUCCESS;
}
示例12: MicroSecondDelay
/**
Stalls the CPU for at least the given number of microseconds.
Stalls the CPU for the number of microseconds specified by MicroSeconds.
@param MicroSeconds The minimum number of microseconds to delay.
@return MicroSeconds
**/
UINTN
EFIAPI
MicroSecondDelay (
IN UINTN MicroSeconds
)
{
InternalAcpiDelay (
(UINT32)DivU64x32 (
MultU64x32 (
MicroSeconds,
V_ACPI_TMR_FREQUENCY
),
1000000u
)
);
return MicroSeconds;
}
示例13: NanoSecondDelay
/**
Stalls the CPU for at least the given number of nanoseconds.
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return NanoSeconds
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
InternalAcpiDelay (
(UINT32)DivU64x32 (
MultU64x32 (
NanoSeconds,
ACPI_TIMER_FREQUENCY
),
1000000000u
)
);
return NanoSeconds;
}
示例14: NanoSecondDelay
/**
Stalls the CPU for at least the given number of nanoseconds.
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return The value of NanoSeconds inputted.
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
InternalX86Delay (
(UINT32)DivU64x32 (
MultU64x64 (
InternalX86GetTimerFrequency (),
NanoSeconds
),
1000000000u
)
);
return NanoSeconds;
}
示例15: UnixMetronomeDriverWaitForTick
EFI_STATUS
EFIAPI
UnixMetronomeDriverWaitForTick (
IN EFI_METRONOME_ARCH_PROTOCOL *This,
IN UINT32 TickNumber
)
/*++
Routine Description:
The WaitForTick() function waits for the number of ticks specified by
TickNumber from a known time source in the platform. If TickNumber of
ticks are detected, then EFI_SUCCESS is returned. The actual time passed
between entry of this function and the first tick is between 0 and
TickPeriod 100 nS units. If you want to guarantee that at least TickPeriod
time has elapsed, wait for two ticks. This function waits for a hardware
event to determine when a tick occurs. It is possible for interrupt
processing, or exception processing to interrupt the execution of the
WaitForTick() function. Depending on the hardware source for the ticks, it
is possible for a tick to be missed. This function cannot guarantee that
ticks will not be missed. If a timeout occurs waiting for the specified
number of ticks, then EFI_TIMEOUT is returned.
Arguments:
This - The EFI_METRONOME_ARCH_PROTOCOL instance.
TickNumber - Number of ticks to wait.
Returns:
EFI_SUCCESS - The wait for the number of ticks specified by TickNumber
succeeded.
--*/
{
UINT64 SleepTime;
//
// Calculate the time to sleep. Win API smallest unit to sleep is 1 millisec
// Tick Period is in 100ns units, divide by 10000 to convert to ms
//
SleepTime = DivU64x32 (MultU64x32 ((UINT64) TickNumber, TICK_PERIOD) + 9999, 10000);
gUnix->Sleep ((UINT32) SleepTime);
return EFI_SUCCESS;
}