當前位置: 首頁>>代碼示例>>C++>>正文


C++ DMA_ClearFlag函數代碼示例

本文整理匯總了C++中DMA_ClearFlag函數的典型用法代碼示例。如果您正苦於以下問題:C++ DMA_ClearFlag函數的具體用法?C++ DMA_ClearFlag怎麽用?C++ DMA_ClearFlag使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了DMA_ClearFlag函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: DMA1_Channel1_IRQHandler

void DMA1_Channel1_IRQHandler(void) 
{
	uint8_t ii;

	/* Test DMA1 TC flag */
	if((DMA_GetFlagStatus(DMA1_FLAG_TC1)) != RESET ) 
	{
		/* Clear DMA TC flag */
		DMA_ClearFlag(DMA1_FLAG_TC1);
			
		if(Motor_State==INIT)
		{
			ADCTemp_Init(ADC_Tab);
		}
		else
		{						
			//LED_ON();
			if(FOC_Flag)
			{
				for(ii=0;ii<6;ii++)  TPWM_Cnt[ii+1]++;
				
				PWM_Cnt++;
				
				if(Limit_angle<(ANGLE_60D+ANGLE_60D/8))
				{
					SVM_Angle=SVM_Angle+Delta_angle;				
					Limit_angle+=Delta_angle;
				} 	
				
//  				SVM_Angle_Test=0;
//  				IQ_Reference=0;
// 				ID_Reference=1000;
// 				Test_Hall=HALL_DATA();				
			
				SVPWM_2ShuntGetPhaseCurrentValues(&Curr_a_b);
				Clarke(&Curr_alfa_beta,&Curr_a_b);
				Park(&Curr_q_d,&Curr_alfa_beta,SVM_Angle); 	//			
	#ifdef OPEN_I								
				Volt_q_d.qV_Component1=VQ_Reference;
	#else
				Volt_q_d.qV_Component1=PID_Regulator(IQ_Reference,Curr_q_d.qI_Component1,&IQ_PID_t);				//			
	#endif
				Volt_q_d.qV_Component2=PID_Regulator(ID_Reference,Curr_q_d.qI_Component2,&ID_PID_t);				

				RevPark_Circle_Limitation(&Volt_q_d);
				Rev_Park(&Volt_alfa_beta,&Volt_q_d);
				SVPWM_2ShuntCalcDutyCycles(&Volt_alfa_beta);											  				
			} else PWM_Cnt=1000;
			//LED_OFF();
			DAC_SetChannel1Data(DAC_Align_12b_R,SVM_Angle/16);	
		}			
		
		if(++T2ms_Temp>T2MSTEMP)			//2ms
		{	
			T2ms_Temp=0;
			T2ms_Flag=1;
		}	
		if(++T100ms_Temp>T100MSTEMP)	//100ms 
		{				
			T100ms_Temp=0;
			T100ms_Flag=1;
		}else{}

	}
}
開發者ID:Sailorwu,項目名稱:HallFocF051Focv7,代碼行數:65,代碼來源:stm32f0xx_it.c

示例2: I2C_Master_BufferWrite

/**
* @brief  Writes buffer of bytes.
* @param pBuffer: Buffer of bytes to be sent to the slave.
* @param NumByteToWrite: Number of bytes to be sent by the Master.
* @param Mode: Polling or DMA or Interrupt having the highest priority in the application.
* @param SlaveAddress: The address of the slave to be addressed by the Master.
* @retval : None.
*/
Status I2C_Master_BufferWrite(uint8_t* pBuffer,  uint32_t NumByteToWrite, uint8_t SlaveAddress )
{
  
  __IO uint32_t temp = 0;
  __IO uint32_t Timeout = 0;
  
  /* Enable Error IT (used in all modes: DMA, Polling and Interrupts */
  I2C1->CR2 |= I2C_IT_ERR;
#if I2C_METHOD == DMA   /* I2C1 Master Transmission using DMA */
  {
    Timeout = 0xFFFF;
    /* Configure the DMA channel for I2C1 transmission */
    I2CDMA_Set (pBuffer,NumByteToWrite, I2C_DIRECTION_TX);
    /* Enable the I2C1 DMA requests */
    I2C1->CR2 |= CR2_DMAEN_Set;
    /* Send START condition */
    I2C1->CR1 |= CR1_START_Set;
    /* Wait until SB flag is set: EV5 */
    while ((I2C1->SR1&0x0001) != 0x0001)
    {
      if (Timeout-- == 0)
        return Error;
    }
    Timeout = 0xFFFF;
    /* Send slave address */
    /* Reset the address bit0 for write */
    SlaveAddress &= OAR1_ADD0_Reset;
    Address = SlaveAddress;
    /* Send the slave address */
    I2C1->DR = Address;
    /* Wait until ADDR is set: EV6 */
    while ((I2C1->SR1&0x0002) != 0x0002)
    {
      if (Timeout-- == 0)
        return Error;
    }
    
    /* Clear ADDR flag by reading SR2 register */
    temp = I2C1->SR2;
    while (!DMA_GetFlagStatus(DMA1_FLAG_TC6));
    DMA_Cmd(DMA1_Channel6, DISABLE);
    DMA_ClearFlag(DMA1_FLAG_TC6);
    
    
    
    /* EV8_2: Wait until BTF is set before programming the STOP */
    while ((I2C1->SR1 & 0x00004) != 0x000004);
    /* Program the STOP */
    I2C1->CR1 |= CR1_STOP_Set;
    /* Make sure that the STOP bit is cleared by Hardware */
    while ((I2C1->CR1&0x200) == 0x200);
    
  }
#endif    
#if I2C_METHOD == POLLING /* I2C1 Master Transmission using Polling */
  {
    
    Timeout = 0xFFFF;
    /* Send START condition */
    I2C1->CR1 |= CR1_START_Set;
    /* Wait until SB flag is set: EV5 */
    while ((I2C1->SR1&0x0001) != 0x0001)
    {
      if (Timeout-- == 0)
        return Error;
    }
    
    /* Send slave address */
    /* Reset the address bit0 for write*/
    SlaveAddress &= OAR1_ADD0_Reset;
    Address = SlaveAddress;
    /* Send the slave address */
    I2C1->DR = Address;
    Timeout = 0xFFFF;
    /* Wait until ADDR is set: EV6 */
    while ((I2C1->SR1 &0x0002) != 0x0002)
    {
      if (Timeout-- == 0)
        return Error;
    }
    
    /* Clear ADDR flag by reading SR2 register */
    temp = I2C1->SR2;
    /* Write the first data in DR register (EV8_1) */
    I2C1->DR = *pBuffer;
    /* Increment */
    pBuffer++;
    /* Decrement the number of bytes to be written */
    NumByteToWrite--;
    /* While there is data to be written */
    while (NumByteToWrite--)
    {
//.........這裏部分代碼省略.........
開發者ID:003900107,項目名稱:wpa900-base,代碼行數:101,代碼來源:I2CRoutines(PPW-THINK--ppw--2013-07-31-21,19,37).c

示例3: I2C_Master_BufferWrite

/**
 * @brief  Writes buffer of bytes.
 * @param pBuffer: Buffer of bytes to be sent to the slave.
 * @param NumByteToWrite: Number of bytes to be sent by the Master.
 * @param Mode: Polling or DMA or Interrupt having the highest priority in the application.
 * @param SlaveAddress: The address of the slave to be addressed by the Master.
 * @retval : None.
 */
ErrorStatus I2C_Master_BufferWrite(I2C_TypeDef* I2Cx, uint8_t* pBuffer,
    uint32_t NumByteToWrite, I2C_ProgrammingModel Mode, uint8_t SlaveAddress,
    uint32_t timeoutMs)
{

  __IO uint32_t temp = 0;
  __IO uint32_t Timeout = 0;

  /* Enable Error IT (used in all modes: DMA, Polling and Interrupts */
  I2Cx->CR2 |= I2C_IT_ERR;
  if (Mode == DMA) /* I2Cx Master Transmission using DMA */
  {
    Timeout = 0xFFFF;
    /* Configure the DMA channel for I2Cx transmission */
    I2C_DMAConfig(I2Cx, pBuffer, NumByteToWrite, I2C_DIRECTION_TX);
    /* Enable the I2Cx DMA requests */
    I2Cx->CR2 |= CR2_DMAEN_Set;
    /* Send START condition */
    I2Cx->CR1 |= CR1_START_Set;
    /* Wait until SB flag is set: EV5 */
    while ((I2Cx->SR1 & 0x0001) != 0x0001)
    {
      if (Timeout-- == 0)
        return ERROR;
    }
    Timeout = 0xFFFF;
    /* Send slave address */
    /* Reset the address bit0 for write */
    SlaveAddress &= OAR1_ADD0_Reset;
    Address = SlaveAddress;
    /* Send the slave address */
    I2Cx->DR = Address;
    /* Wait until ADDR is set: EV6 */
    while ((I2Cx->SR1 & 0x0002) != 0x0002)
    {
      if (Timeout-- == 0)
        return ERROR;
    }

    /* Clear ADDR flag by reading SR2 register */
    temp = I2Cx->SR2;
    if (I2Cx == I2C1)
    {
      /* Wait until DMA end of transfer */
//            while (!DMA_GetFlagStatus(DMA1_FLAG_TC6));
      xSemaphoreTake(i2cdevDmaEventI2c1, M2T(5));
      /* Disable the DMA1 Channel 6 */
      DMA_Cmd(I2C1_DMA_CHANNEL_TX, DISABLE);
      /* Clear the DMA Transfer complete flag */
      DMA_ClearFlag(DMA1_FLAG_TC6);
    }
    else /* I2Cx = I2C2 */
    {
      /* Wait until DMA end of transfer */
      //while (!DMA_GetFlagStatus(DMA1_FLAG_TC4))
      xSemaphoreTake(i2cdevDmaEventI2c2, M2T(5));
      /* Disable the DMA1 Channel 4 */
      DMA_Cmd(I2C2_DMA_CHANNEL_TX, DISABLE);
      /* Clear the DMA Transfer complete flag */
      DMA_ClearFlag(DMA1_FLAG_TC4);
    }

    /* EV8_2: Wait until BTF is set before programming the STOP */
    while ((I2Cx->SR1 & 0x00004) != 0x000004)
      ;
    /* Program the STOP */
    I2Cx->CR1 |= CR1_STOP_Set;
    /* Make sure that the STOP bit is cleared by Hardware */
    while ((I2Cx->CR1 & 0x200) == 0x200)
      ;
  }
  /* I2Cx Master Transmission using Interrupt with highest priority in the application */
  else
  {
    /* Enable EVT IT*/
    I2Cx->CR2 |= I2C_IT_EVT;
    /* Enable BUF IT */
    I2Cx->CR2 |= I2C_IT_BUF;
    /* Set the I2C direction to Transmission */
    I2CDirection = I2C_DIRECTION_TX;
    Buffer_Tx1 = pBuffer;
    SlaveAddress &= OAR1_ADD0_Reset;
    Address = SlaveAddress;
    if (I2Cx == I2C1)
      NumbOfBytes1 = NumByteToWrite;
    else
      NumbOfBytes2 = NumByteToWrite;
    /* Send START condition */
    I2Cx->CR1 |= CR1_START_Set;
    Timeout = timeoutMs * I2CDEV_LOOPS_PER_MS;
    /* Wait until the START condition is generated on the bus: the START bit is cleared by hardware */
    while ((I2Cx->CR1 & 0x100) == 0x100 && Timeout)
//.........這裏部分代碼省略.........
開發者ID:cross-sky,項目名稱:4axis,代碼行數:101,代碼來源:i2croutines.c

示例4: COMInit

void COMInit(COM_TypeDef COM)
{
	DMA_InitTypeDef DMA_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	GPIO_InitTypeDef GPIO_InitStructure;

	/* Enable GPIO clock */
	RCC_AHB1PeriphClockCmd(COM_TX_PORT_CLK[COM] | COM_RX_PORT_CLK[COM] | RCC_AHB1Periph_GPIOD, ENABLE);

	if (COM == USART_COM1)
	{
		/* Enable UART clock */
		RCC_APB2PeriphClockCmd(COM_USART_CLK[COM], ENABLE);
	}

	/* Connect PXx to USARTx_Tx*/
	GPIO_PinAFConfig(COM_TX_PORT[COM], COM_TX_PIN_SOURCE[COM], COM_TX_AF[COM]);

	/* Connect PXx to USARTx_Rx*/
	GPIO_PinAFConfig(COM_RX_PORT[COM], COM_RX_PIN_SOURCE[COM], COM_RX_AF[COM]);

	/* Configure USART Tx as alternate function  */
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

	GPIO_InitStructure.GPIO_Pin = COM_TX_PIN[COM];
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(COM_TX_PORT[COM], &GPIO_InitStructure);

	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
	GPIO_InitStructure.GPIO_Pin = COM_RX_PIN[COM];
	GPIO_Init(COM_RX_PORT[COM], &GPIO_InitStructure);

	/*USART Init code*/
	USART_OverSampling8Cmd(COM_USART[COM], ENABLE);
	USART_InitStructure.USART_BaudRate = 115200;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	USART_InitStructure.USART_Parity = USART_Parity_No;
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

	USART_Init(COM_USART[COM], &USART_InitStructure);

	/*USART Interrupt code*/

	/*USART TX interrupt*/
	NVIC_InitStructure.NVIC_IRQChannel = COM_DMA_TX_IRQn[COM];
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = COM_TX_DMA_PREPRIO[COM];
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = COM_TX_DMA_SUBPRIO[COM];
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

	NVIC_Init(&NVIC_InitStructure);

	/*USART RX interrupt*/
	NVIC_InitStructure.NVIC_IRQChannel = COM_DMA_RX_IRQn[COM];
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = COM_RX_DMA_PREPRIO[COM];
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = COM_RX_DMA_SUBPRIO[COM];
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

	NVIC_Init(&NVIC_InitStructure);

	RCC_AHB1PeriphClockCmd(COM_DMA_CLK[COM], ENABLE);

	/*USART TX clean up*/
	DMA_ClearFlag(COM_TX_DMA_STREAM[COM], COM_TX_DMA_FLAG_FEIF[COM] | COM_TX_DMA_FLAG_DMEIF[COM] | COM_TX_DMA_FLAG_TEIF[COM] | COM_TX_DMA_FLAG_HTIF[COM] | COM_TX_DMA_FLAG_TCIF[COM]);
	DMA_Cmd(COM_TX_DMA_STREAM[COM], DISABLE);
	DMA_DeInit(COM_TX_DMA_STREAM[COM]);

	/*USART RX Clean up*/
	DMA_ClearFlag(COM_RX_DMA_STREAM[COM], COM_RX_DMA_FLAG_FEIF[COM] | COM_RX_DMA_FLAG_DMEIF[COM] | COM_RX_DMA_FLAG_TEIF[COM] | COM_RX_DMA_FLAG_HTIF[COM] | COM_RX_DMA_FLAG_TCIF[COM]);
	DMA_Cmd(COM_RX_DMA_STREAM[COM], DISABLE);
	DMA_DeInit(COM_RX_DMA_STREAM[COM]);

	/*USART TX Config*/
	DMA_InitStructure.DMA_Channel = COM_TX_DMA_CHANNEL[COM];
	DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) COM_DR_ADDRESS[COM];
	DMA_InitStructure.DMA_Memory0BaseAddr = COM_TX_BUFFER[COM]; /* This parameter will be configured durig communication */
	DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral; /* This parameter will be configured durig communication */
	DMA_InitStructure.DMA_BufferSize = 0xFF; /* This parameter will be configured durig communication */
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
	DMA_InitStructure.DMA_Priority = DMA_Priority_High;
	DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable;
	DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
	DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
	DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;

	DMA_Init(COM_TX_DMA_STREAM[COM], &DMA_InitStructure);
	//DMA_ITConfig(COM_TX_DMA_STREAM[COM], DMA_IT_TC, ENABLE);

	/*USART RX Config*/
	DMA_InitStructure.DMA_Channel = COM_RX_DMA_CHANNEL[COM];
	DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) COM_DR_ADDRESS[COM];
	DMA_InitStructure.DMA_Memory0BaseAddr = COM_RX_BUFFER[COM]; /* This parameter will be configured durig communication */
//.........這裏部分代碼省略.........
開發者ID:imawolfking,項目名稱:narwhalroboticsquad,代碼行數:101,代碼來源:stm32f4_USART.c

示例5: analogRead

/*
 * @brief Read the analog value of a pin.
 * Should return a 16-bit value, 0-65536 (0 = LOW, 65536 = HIGH)
 * Note: ADC is 12-bit. Currently it returns 0-4096
 */
int32_t analogRead(uint16_t pin)
{
	// Allow people to use 0-7 to define analog pins by checking to see if the values are too low.
	if (pin < FIRST_ANALOG_PIN)
	{
		pin = pin + FIRST_ANALOG_PIN;
	}

	// SPI safety check
	if (SPI.isEnabled() == true && (pin == SCK || pin == MOSI || pin == MISO))
	{
		return LOW;
	}

	// I2C safety check
	if (Wire.isEnabled() == true && (pin == SCL || pin == SDA))
	{
		return LOW;
	}

	// Serial1 safety check
	if (Serial1.isEnabled() == true && (pin == RX || pin == TX))
	{
		return LOW;
	}

	if (pin >= TOTAL_PINS || PIN_MAP[pin].adc_channel == NONE )
	{
		return LOW;
	}

	int i = 0;

	if (adcChannelConfigured != PIN_MAP[pin].adc_channel)
	{
		digitalPinModeSaved = PIN_MAP[pin].pin_mode;
		pinMode(pin, AN_INPUT);
	}

	if (adcInitFirstTime == true)
	{
		ADC_DMA_Init();
		adcInitFirstTime = false;
	}

	if (adcChannelConfigured != PIN_MAP[pin].adc_channel)
	{
		// ADC1 regular channel configuration
		ADC_RegularChannelConfig(ADC1, PIN_MAP[pin].adc_channel, 1, ADC_Sample_Time);
		// ADC2 regular channel configuration
		ADC_RegularChannelConfig(ADC2, PIN_MAP[pin].adc_channel, 1, ADC_Sample_Time);
		// Save the ADC configured channel
		adcChannelConfigured = PIN_MAP[pin].adc_channel;
	}

	for(i = 0 ; i < ADC_DMA_BUFFERSIZE ; i++)
	{
		ADC_DualConvertedValues[i] = 0;
	}

	// Reset the number of data units in the DMA1 Channel1 transfer
	DMA_SetCurrDataCounter(DMA1_Channel1, ADC_DMA_BUFFERSIZE);

	// Enable ADC2 external trigger conversion
	ADC_ExternalTrigConvCmd(ADC2, ENABLE);

	// Enable DMA1 Channel1
	DMA_Cmd(DMA1_Channel1, ENABLE);

	// Enable ADC1 DMA
	ADC_DMACmd(ADC1, ENABLE);

	// Start ADC1 Software Conversion
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);

	// Test on Channel 1 DMA1_FLAG_TC flag
	while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));

	// Clear Channel 1 DMA1_FLAG_TC flag
	DMA_ClearFlag(DMA1_FLAG_TC1);

	// Disable ADC1 DMA
	ADC_DMACmd(ADC1, DISABLE);

	// Disable DMA1 Channel1
	DMA_Cmd(DMA1_Channel1, DISABLE);

	uint16_t ADC1_ConvertedValue = 0;
	uint16_t ADC2_ConvertedValue = 0;
	uint32_t ADC_SummatedValue = 0;
	uint16_t ADC_AveragedValue = 0;

	for(int i = 0 ; i < ADC_DMA_BUFFERSIZE ; i++)
	{
		// Retrieve the ADC2 converted value and add to ADC_SummatedValue
//.........這裏部分代碼省略.........
開發者ID:kevinkessler,項目名稱:core-firmware,代碼行數:101,代碼來源:spark_wiring.cpp

示例6: SPI_DMA_Transmit8

/* Envía y recibe datos de 8 bits (SPI-DMA) */
uint8_t SPI_DMA_Transmit8(SPI_TypeDef* SPIx, const uint8_t* pTData, uint8_t* pRData, uint16_t pSize){
	uint32_t Dummy = 0xFF;
	
	/* Establece el tamaño de 8 bits al bus de datos a transmitir */
	SPI_DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
	SPI_DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
	
	/* Configura la dirección del Periférico y la cantidad de bytes a escribir */
	SPI_DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)(&(SPIx->DR));
	SPI_DMA_InitStruct.DMA_BufferSize = pSize;
	
	/* 8 bits */
	SPI_DataSizeConfig(SPIx, SPI_DataSize_8b);
	
	/*********************** TRANSMIT ****************************/
	/* Configura el TX DMA */
	SPI_DMA_InitStruct.DMA_DIR = SPI_DMA_DIR_TX; /* Memory to Peripheral */
	
	if(pTData){
		SPI_DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)pTData;
		SPI_DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
	}else{
		SPI_DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)&Dummy;
		SPI_DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Disable;
	}
	
	/* Clear TX DMA1 FLAG y comienza la transmisión */
	if(SPIx == SPI1){
		DMA_ClearFlag(SPI1_TX_DMA_CHANNEL_FLAG); /* SPI1 */
		DMA_Init(SPI1_TX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	else if(SPIx == SPI2){	
		DMA_ClearFlag(SPI2_TX_DMA_CHANNEL_FLAG); /* SPI2 */
		DMA_Init(SPI2_TX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	#if defined(L152RE)
	else{	
		DMA_ClearFlag(SPI3_TX_DMA_CHANNEL_FLAG); /* SPI3 */
		DMA_Init(SPI3_TX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	#endif
	
	/************************** RECEIVE ****************************/
	/* Configura el RX DMA */
	SPI_DMA_InitStruct.DMA_DIR = SPI_DMA_DIR_RX; /* Peripheral to Memory */

	if(pRData){
		SPI_DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)pRData;
		SPI_DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
	}else{
		SPI_DMA_InitStruct.DMA_MemoryBaseAddr = (uint32_t)&Dummy;
		SPI_DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Disable;
	}
	
	/* Clear RX DMA1 FLAG y comienza la transmisión */
	if(SPIx == SPI1){
		DMA_ClearFlag(SPI1_RX_DMA_CHANNEL_FLAG); /* SPI1 */
		DMA_Init(SPI1_RX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	else if(SPIx == SPI2){	
		DMA_ClearFlag(SPI2_RX_DMA_CHANNEL_FLAG); /* SPI2 */
		DMA_Init(SPI2_RX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	#if defined(L152RE)
	else{	
		DMA_ClearFlag(SPI3_RX_DMA_CHANNEL_FLAG); /* SPI3 */
		DMA_Init(SPI3_RX_DMA_CHANNEL,&SPI_DMA_InitStruct);
	}
	#endif
	
	/************************ HABILITACIÓN **************************/
	if(SPIx == SPI1){
		DMA_Cmd(SPI1_TX_DMA_CHANNEL,ENABLE);
		DMA_Cmd(SPI1_RX_DMA_CHANNEL,ENABLE);
		
		SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
	
		while ((DMA_GetFlagStatus(SPI1_RX_DMA_CHANNEL_FLAG) == RESET) | SPI_IS_BUSY(SPI1));
	
		DMA_Cmd(SPI1_TX_DMA_CHANNEL,DISABLE);
		DMA_Cmd(SPI1_RX_DMA_CHANNEL,DISABLE);
		
		CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN);
	}
	else if(SPIx == SPI2){
		DMA_Cmd(SPI2_TX_DMA_CHANNEL,ENABLE);
		DMA_Cmd(SPI2_RX_DMA_CHANNEL,ENABLE);
		
		SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
	
		while ((DMA_GetFlagStatus(SPI2_RX_DMA_CHANNEL_FLAG) == RESET) | SPI_IS_BUSY(SPI2));
	
		DMA_Cmd(SPI2_TX_DMA_CHANNEL,DISABLE);
		DMA_Cmd(SPI2_RX_DMA_CHANNEL,DISABLE);
		
		CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN);
		
	}
	#if defined(L152RE)
//.........這裏部分代碼省略.........
開發者ID:FPablo10,項目名稱:Platformio,代碼行數:101,代碼來源:spi_l1.c

示例7: main


//.........這裏部分代碼省略.........
    /* NVIC configuration ------------------------------------------------------*/
    NVIC_Configuration();

    /* GPIO configuration ------------------------------------------------------*/
    GPIO_Configuration();

    /* TIM1 configuration ------------------------------------------------------*/
    /* Time Base configuration */
    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
    TIM_TimeBaseStructure.TIM_Period = 0xFF;
    TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
    TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
    /* TIM1 channel1 configuration in PWM mode */
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 0x7F;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
    TIM_OC1Init(TIM1, &TIM_OCInitStructure);

    /* DMA1 Channel1 Configuration ----------------------------------------------*/
    DMA_DeInit(DMA1_Channel1);
    DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_RegularConvertedValueTab;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
    DMA_InitStructure.DMA_BufferSize = 32;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);

    /* Enable DMA1 channel1 */
    DMA_Cmd(DMA1_Channel1, ENABLE);

    /* ADC1 configuration ------------------------------------------------------*/
    ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_InitStructure.ADC_ScanConvMode = DISABLE;
    ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
    ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfChannel = 1;
    ADC_Init(ADC1, &ADC_InitStructure);

    /* ADC1 regular channel14 configuration */
    ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_13Cycles5);

    /* Set injected sequencer length */
    ADC_InjectedSequencerLengthConfig(ADC1, 1);
    /* ADC1 injected channel Configuration */
    ADC_InjectedChannelConfig(ADC1, ADC_Channel_11, 1, ADC_SampleTime_71Cycles5);
    /* ADC1 injected external trigger configuration */
    ADC_ExternalTrigInjectedConvConfig(ADC1, ADC_ExternalTrigInjecConv_None);

    /* Enable automatic injected conversion start after regular one */
    ADC_AutoInjectedConvCmd(ADC1, ENABLE);

    /* Enable ADC1 DMA */
    ADC_DMACmd(ADC1, ENABLE);

    /* Enable ADC1 external trigger */
    ADC_ExternalTrigConvCmd(ADC1, ENABLE);

    /* Enable JEOC interrupt */
    ADC_ITConfig(ADC1, ADC_IT_JEOC, ENABLE);

    /* Enable ADC1 */
    ADC_Cmd(ADC1, ENABLE);

    /* Enable ADC1 reset calibration register */
    ADC_ResetCalibration(ADC1);
    /* Check the end of ADC1 reset calibration register */
    while(ADC_GetResetCalibrationStatus(ADC1));

    /* Start ADC1 calibration */
    ADC_StartCalibration(ADC1);
    /* Check the end of ADC1 calibration */
    while(ADC_GetCalibrationStatus(ADC1));

    /* TIM1 counter enable */
    TIM_Cmd(TIM1, ENABLE);
    /* TIM1 main Output Enable */
    TIM_CtrlPWMOutputs(TIM1, ENABLE);

    /* Test on channel1 transfer complete flag */
    while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
    /* Clear channel1 transfer complete flag */
    DMA_ClearFlag(DMA1_FLAG_TC1);

    /* TIM1 counter disable */
    TIM_Cmd(TIM1, DISABLE);

    while (1)
    {
    }
}
開發者ID:WildfireTeamPRJ,項目名稱:wildfire_stm32_iso,代碼行數:101,代碼來源:main.c

示例8: SPIData_DMA_Enable

void SPIData_DMA_Enable(FunctionalState isEnable)
{
	DMA_ClearFlag(DMA2_Stream0, DMA_FLAG_TCIF0);
	DMA_Cmd(DMA2_Stream0,isEnable);
}
開發者ID:agb861,項目名稱:STM32F,代碼行數:5,代碼來源:stm32_SPI1_RxData.c

示例9: LM75_ReadConfReg

/**
  * @brief  Read the configuration register from the LM75.
  * @param  None
  * @retval LM75 configuration register value.
  */
uint8_t LM75_ReadConfReg(void)
{
  uint8_t LM75_BufferRX[2] ={0,0};

  /* Test on BUSY Flag */
  LM75_Timeout = LM75_LONG_TIMEOUT;
  while (I2C_GetFlagStatus(LM75_I2C,I2C_FLAG_BUSY))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Configure DMA Peripheral */
  LM75_DMA_Config(LM75_DMA_RX, (uint8_t*)LM75_BufferRX, 2);

  /* Enable DMA NACK automatic generation */
  I2C_DMALastTransferCmd(LM75_I2C, ENABLE);

  /* Enable the I2C peripheral */
  I2C_GenerateSTART(LM75_I2C, ENABLE);

  /* Test on SB Flag */
  LM75_Timeout = LM75_FLAG_TIMEOUT;
  while (!I2C_GetFlagStatus(LM75_I2C,I2C_FLAG_SB))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Send device address for write */
  I2C_Send7bitAddress(LM75_I2C, LM75_ADDR, I2C_Direction_Transmitter);

  /* Test on ADDR Flag */
  LM75_Timeout = LM75_FLAG_TIMEOUT;
  while (!I2C_CheckEvent(LM75_I2C, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Send the device's internal address to write to */
  I2C_SendData(LM75_I2C, LM75_REG_CONF);

  /* Test on TXE FLag (data sent) */
  LM75_Timeout = LM75_FLAG_TIMEOUT;
  while ((!I2C_GetFlagStatus(LM75_I2C,I2C_FLAG_TXE)) && (!I2C_GetFlagStatus(LM75_I2C,I2C_FLAG_BTF)))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Send START condition a second time */
  I2C_GenerateSTART(LM75_I2C, ENABLE);

  /* Test on SB Flag */
  LM75_Timeout = LM75_FLAG_TIMEOUT;
  while (!I2C_GetFlagStatus(LM75_I2C,I2C_FLAG_SB))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Send LM75 address for read */
  I2C_Send7bitAddress(LM75_I2C, LM75_ADDR, I2C_Direction_Receiver);

  /* Test on ADDR Flag */
  LM75_Timeout = LM75_FLAG_TIMEOUT;
  while (!I2C_CheckEvent(LM75_I2C, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Enable I2C DMA request */
  I2C_DMACmd(LM75_I2C,ENABLE);

  /* Enable DMA RX Channel */
  DMA_Cmd(LM75_DMA_RX_CHANNEL, ENABLE);

  /* Wait until DMA Transfer Complete */
  LM75_Timeout = LM75_LONG_TIMEOUT;
  while (!DMA_GetFlagStatus(LM75_DMA_RX_TCFLAG))
  {
    if((LM75_Timeout--) == 0) return LM75_TIMEOUT_UserCallback();
  }

  /* Send STOP Condition */
  I2C_GenerateSTOP(LM75_I2C, ENABLE);

  /* Disable DMA RX Channel */
  DMA_Cmd(LM75_DMA_RX_CHANNEL, DISABLE);

  /* Disable I2C DMA request */
  I2C_DMACmd(LM75_I2C,DISABLE);

  /* Clear DMA RX Transfer Complete Flag */
  DMA_ClearFlag(LM75_DMA_RX_TCFLAG);

  /*!< Return Temperature value */
  return (uint8_t)LM75_BufferRX[0];
}
開發者ID:szymon2103,項目名稱:Stm32,代碼行數:100,代碼來源:stm32_eval_i2c_tsensor.c

示例10: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       files (startup_stm32f40_41xxx.s/startup_stm32f427_437xx.s/startup_stm32f429_439xx.s)
       before to branch to application main.
     */ 
  
  /* SPI configuration */
  SPI_Config();
  
  /* SysTick configuration */
  SysTickConfig();
  
  /* Initialize LEDs mounted on EVAL board */     
  STM_EVAL_LEDInit(LED1);
  STM_EVAL_LEDInit(LED2);
  STM_EVAL_LEDInit(LED3);
  STM_EVAL_LEDInit(LED4);
  
#ifdef SPI_MASTER
  /* Master board configuration */    
  /* Initializes the SPI communication */
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_Init(SPIx, &SPI_InitStructure);
  
  /* The Data transfer is performed in the SPI using Direct Memory Access */

  /* Enable DMA SPI TX Stream */
  DMA_Cmd(SPIx_TX_DMA_STREAM,ENABLE);

  /* Enable DMA SPI RX Stream */
  DMA_Cmd(SPIx_RX_DMA_STREAM,ENABLE);

  /* Enable SPI DMA TX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Tx, ENABLE);

  /* Enable SPI DMA RX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Rx, ENABLE);
  
  /* Configure the Tamper Button */
  STM_EVAL_PBInit(BUTTON_TAMPER,BUTTON_MODE_GPIO);
  
  /* Wait until Tamper Button is pressed */
  while (STM_EVAL_PBGetState(BUTTON_TAMPER));
  
  /* Enable the SPI peripheral */
  SPI_Cmd(SPIx, ENABLE);
  
#endif /* SPI_MASTER */
  
#ifdef SPI_SLAVE
  /* Slave board configuration */
  /* Initializes the SPI communication */
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPIx, &SPI_InitStructure);

  /* Enable DMA SPI TX Stream */
  DMA_Cmd(SPIx_TX_DMA_STREAM,ENABLE);

  /* Enable DMA SPI RX Stream */
  DMA_Cmd(SPIx_RX_DMA_STREAM,ENABLE);  
  
  /* Enable SPI DMA TX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Tx, ENABLE);

  /* Enable SPI DMA RX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Rx, ENABLE);

  /* Enable the SPI peripheral */
  SPI_Cmd(SPIx, ENABLE);
 
#endif /* SPI_SLAVE */

  /* Waiting the end of Data transfer */
  while (DMA_GetFlagStatus(SPIx_TX_DMA_STREAM,SPIx_TX_DMA_FLAG_TCIF)==RESET);
  while (DMA_GetFlagStatus(SPIx_RX_DMA_STREAM,SPIx_RX_DMA_FLAG_TCIF)==RESET);
  
  /* Clear DMA Transfer Complete Flags */
  DMA_ClearFlag(SPIx_TX_DMA_STREAM,SPIx_TX_DMA_FLAG_TCIF);
  DMA_ClearFlag(SPIx_RX_DMA_STREAM,SPIx_RX_DMA_FLAG_TCIF);  
  
  /* Disable DMA SPI TX Stream */
  DMA_Cmd(SPIx_TX_DMA_STREAM,DISABLE);

  /* Disable DMA SPI RX Stream */
  DMA_Cmd(SPIx_RX_DMA_STREAM,DISABLE);  
  
  /* Disable SPI DMA TX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Tx, DISABLE);

  /* Disable SPI DMA RX Requsts */
  SPI_I2S_DMACmd(SPIx, SPI_I2S_DMAReq_Rx, DISABLE);

  /* Disable the SPI peripheral */
//.........這裏部分代碼省略.........
開發者ID:xrecord,項目名稱:pocker,代碼行數:101,代碼來源:main.c

示例11: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       files (startup_stm32f40_41xxx.s/startup_stm32f427_437xx.s/startup_stm32f429_439xx.s)
       before to branch to application main. 
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f4xx.c file
     */
  
  /* USART configuration -----------------------------------------------------*/
  USART_Config();
  
  /* SysTick configuration ---------------------------------------------------*/
  SysTickConfig();
  
  /* LEDs configuration ------------------------------------------------------*/
  STM_EVAL_LEDInit(LED1);
  STM_EVAL_LEDInit(LED2);
  STM_EVAL_LEDInit(LED3);
  
#ifdef USART_TRANSMITTER
  
  /* Tamper Button Configuration ---------------------------------------------*/
  STM_EVAL_PBInit(BUTTON_TAMPER,BUTTON_MODE_GPIO);
  
  /* Enable DMA USART TX Stream */
  DMA_Cmd(USARTx_TX_DMA_STREAM,ENABLE);
  
  /* Wait until Tamper Button is pressed */
  while (STM_EVAL_PBGetState(BUTTON_TAMPER));  
  
  /* Enable USART DMA TX Requsts */
  USART_DMACmd(USARTx, USART_DMAReq_Tx, ENABLE);

  /* Waiting the end of Data transfer */
  while (USART_GetFlagStatus(USARTx,USART_FLAG_TC)==RESET);    
  while (DMA_GetFlagStatus(USARTx_TX_DMA_STREAM,USARTx_TX_DMA_FLAG_TCIF)==RESET);
  
  /* Clear DMA Transfer Complete Flags */
  DMA_ClearFlag(USARTx_TX_DMA_STREAM,USARTx_TX_DMA_FLAG_TCIF);
  /* Clear USART Transfer Complete Flags */
  USART_ClearFlag(USARTx,USART_FLAG_TC);  
  
#endif /* USART_TRANSMITTER */
  
#ifdef USART_RECEIVER
  
  /* Enable DMA USART RX Stream */
  DMA_Cmd(USARTx_RX_DMA_STREAM,ENABLE);
  
  /* Enable USART DMA RX Requsts */
  USART_DMACmd(USARTx, USART_DMAReq_Rx, ENABLE);
  
  /* Waiting the end of Data transfer */
  while (USART_GetFlagStatus(USARTx,USART_FLAG_TC)==RESET);    
  while (DMA_GetFlagStatus(USARTx_RX_DMA_STREAM,USARTx_RX_DMA_FLAG_TCIF)==RESET);
         
  /* Clear DMA Transfer Complete Flags */
  DMA_ClearFlag(USARTx_RX_DMA_STREAM,USARTx_RX_DMA_FLAG_TCIF);
  /* Clear USART Transfer Complete Flags */
  USART_ClearFlag(USARTx,USART_FLAG_TC);

  if (Buffercmp(aTxBuffer, aRxBuffer, BUFFERSIZE) != FAILED)
  {
    /* Turn ON LED2 */
    STM_EVAL_LEDOn(LED2);
  }
  else
  {
    /* Turn ON LED3 */
    STM_EVAL_LEDOn(LED3);
  }
  
#endif /* USART_RECEIVER */
         
  while (1)
  { 
  }
}
開發者ID:CristianKrieger,項目名稱:InterfazAdquisicionNTSC,代碼行數:85,代碼來源:main.c

示例12: I2C1_EV_IRQHandler

/* 
	Only 1 byte READ using Interrupt or Polling otherwise using DMA
*/
void I2C1_EV_IRQHandler()
{
	__IO uint16_t regSR1, regSR2;
	__IO uint32_t regSR;
	int i=10;

	rt_interrupt_enter();
	//rt_hw_led_on(10);
	regSR1 = I2C1->SR1;
	regSR2 = I2C1->SR2;
	regSR =  (regSR2 << 16) | regSR1;
	//rt_kprintf("EV=> SR1: 0x%x\tSR2: 0x%x\tSR: 0x%x status: %d\n", regSR1, regSR2, regSR, i2cStatus);
 
	if( (regSR & I2C_EVENT_MASTER_MODE_SELECT) == I2C_EVENT_MASTER_MODE_SELECT)	//EV5
	{

		if( i2cStatus == S1 ) //Send TX Command
		{
			I2C1->DR = DevAddr & 0xFE;
			i2cStatus = S2;
		}
		else if( i2cStatus == S4 ) //Send RX Command
		{
			I2C1->DR = DevAddr | 0x01;
			i2cStatus = S5;
		}


		regSR1 = 0;
		regSR2 = 0;

	}
	if( (regSR & I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)== I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED )			//EV6
	{
		switch( i2cStatus )
		{
			case S2: //Send 1st memory address phase
			{
				//I2C_DMACmd(I2C1, ENABLE);
				I2C1->DR = MemAddr[0];
				if( memtype == I2C_MEM_1Byte ) 
					i2cStatus = S2_2;
				else if( memtype == I2C_MEM_2Bytes )
					i2cStatus = S2_1;
			}
			break;
			case S5: //Set RX buffer phase
			{
				if( i2cFlag == I2C_READ_DMA )
				{
					I2C_DMAConfig(I2C1, i2c_buf, BufSize, I2C_DIRECTION_RX);
					I2C1->CR2 |= CR2_LAST_Set | CR2_DMAEN_Set;
					DMA_ITConfig( I2C1_DMA_CHANNEL_RX, DMA_IT_TC, ENABLE);
				}
				else if( i2cFlag == I2C_READ_INTERRUPT )
				{ 
					I2C1->CR2 |= I2C_IT_BUF;
					I2C1->CR1 &= CR1_ACK_Reset;
	                /* Program the STOP */
	                I2C1->CR1 |= CR1_STOP_Set;
				}
				i2cStatus = S6;
			}
			break;
		}
		
		regSR1 = 0;
		regSR2 = 0;
		//dump_i2c_register(I2C1);
	}
	if((regSR & I2C_EVENT_MASTER_BYTE_RECEIVED) == I2C_EVENT_MASTER_BYTE_RECEIVED) //EV7
	{
		//Interrupt RX complete phase
		if( i2cStatus == S6	&& i2cFlag == I2C_READ_INTERRUPT )
		{
			*i2c_buf = I2C1->DR;
			i2cStatus = S_STOP;
			rt_event_send(&i2c_event, I2C_COMPLETE);
		}
	} 
	if( (regSR & I2C_EVENT_MASTER_BYTE_TRANSMITTED) == I2C_EVENT_MASTER_BYTE_TRANSMITTED ) //EV8_2
	{
		//Start TX/RX phase
		if(i2cStatus == S3)
		{
			DMA_ClearFlag(I2C1_DMA_CHANNEL_TX, DMA_FLAG_TCIF6 );
			DMA_Cmd(I2C1_DMA_CHANNEL_TX, DISABLE);
			switch (i2cFlag)
			{
				case I2C_WRITE:
					i2cStatus = S_STOP;
					I2C1->CR1 |= CR1_STOP_Set;
					rt_event_send(&i2c_event, I2C_COMPLETE);					
				break;

				case I2C_READ_DMA:
					i2cStatus = S4;
//.........這裏部分代碼省略.........
開發者ID:bright-pan,項目名稱:smart-lock,代碼行數:101,代碼來源:i2c.c

示例13: serialUSART1

serialPort_t *serialOpen(USART_TypeDef *USARTx, unsigned int baud, uint16_t flowControl, unsigned int rxBufSize, unsigned int txBufSize) {
    DMA_InitTypeDef DMA_InitStructure;
    serialPort_t *s = 0;

    // Enable USART clocks/ports
#ifdef SERIAL_UART1_PORT
    if (USARTx == USART1) {
	s = serialUSART1(flowControl, rxBufSize, txBufSize);
    }
#endif

#ifdef SERIAL_UART2_PORT
    if (USARTx == USART2) {
	s = serialUSART2(flowControl, rxBufSize, txBufSize);
    }
#endif

#ifdef SERIAL_UART3_PORT
    if (USARTx == USART3) {
	s = serialUSART3(flowControl, rxBufSize, txBufSize);
    }
#endif

#ifdef SERIAL_UART4_PORT
    if (USARTx == UART4) {
	s = serialUSART4(flowControl, rxBufSize, txBufSize);
    }
#endif

#ifdef SERIAL_UART5_PORT
    if (USARTx == UART5) {
	s = serialUSART5(flowControl, rxBufSize, txBufSize);
    }
#endif

#ifdef SERIAL_UART6_PORT
    if (USARTx == USART6) {
	s = serialUSART6(flowControl, rxBufSize, txBufSize);
    }
#endif

    s->waitFlag = CoCreateFlag(0, 0);	// manual reset
    s->USARTx = USARTx;
    s->rxHead = s->rxTail = 0;
    s->txHead = s->txTail = 0;
    s->baudRate = baud;
    s->flowControl = flowControl;
    s->parity = USART_Parity_No;
    s->stopBits = USART_StopBits_1;

    serialOpenUART(s);

    DMA_StructInit(&DMA_InitStructure);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)USARTx + 0x04;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    DMA_InitStructure.DMA_Priority = DMA_Priority_Low;
    DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;

    // Configure DMA for rx
    if (s->rxDMAStream) {
	DMA_DeInit(s->rxDMAStream);
	DMA_InitStructure.DMA_Channel = s->rxDMAChannel;
	DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)s->rxBuf;
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
	DMA_InitStructure.DMA_BufferSize = s->rxBufSize;
	DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
	DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
	DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
	DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
	DMA_Init(s->rxDMAStream, &DMA_InitStructure);

	DMA_ClearFlag(s->rxDMAStream, s->rxDmaFlags);

	DMA_Cmd(s->rxDMAStream, ENABLE);

	USART_DMACmd(USARTx, USART_DMAReq_Rx, ENABLE);
	s->rxPos = DMA_GetCurrDataCounter(s->rxDMAStream);
    }
    // otherwise use ISR
    else {
	USART_ITConfig(USARTx, USART_IT_RXNE, ENABLE);
    }

    // Configure DMA for tx
    if (s->txDMAStream) {
	DMA_DeInit(s->txDMAStream);
	DMA_InitStructure.DMA_Channel = s->txDMAChannel;
	DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
	DMA_InitStructure.DMA_BufferSize = (s->txBufSize != 0) ? s->txBufSize : 16;
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
	DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable;
	DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_INC4;
	DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
	DMA_Init(s->txDMAStream, &DMA_InitStructure);

	DMA_SetCurrDataCounter(s->txDMAStream, 0);
	DMA_ITConfig(s->txDMAStream, DMA_IT_TC, ENABLE);
//.........這裏部分代碼省略.........
開發者ID:ChrelleP,項目名稱:autoquad,代碼行數:101,代碼來源:serial.c

示例14: USART3_IRQHandler

void USART3_IRQHandler(void)
{
    volatile u32 tem_reg;
    volatile u16 u16BufferUsedLen = 0;
    BaseType_t xHigherPriorityTaskWoken, xResult;

    // xHigherPriorityTaskWoken must be initialised to pdFALSE.
    xHigherPriorityTaskWoken = pdFALSE;
    
    // error happen
    if(USART_GetITStatus(USART3, USART_IT_PE) != RESET)
    {
        USART_ClearITPendingBit(USART3, USART_IT_PE);
        xSerialRxParityFlag = DMA_UART_PACKET_PARITY_ERR;
    }
    
    // uart idle interrupt
    if(USART_GetITStatus(USART3, USART_IT_IDLE) != RESET)
    {
        USART_ClearITPendingBit(USART3, USART_IT_IDLE);
        DMA_ClearFlag(DMA1_FLAG_GL3);//clear all interrupt flags     
        DMA_Cmd(DMA1_Channel3, DISABLE); //close DMA incase receive data while handling
        
        xResult = xSemaphoreTakeFromISR( xSerialRxHandleLock, &xHigherPriorityTaskWoken);
        if( pdTRUE == xResult)
        {
            if (uart3_rx_dma_buf.IdleBufferIndex) //buf1 busy, buf2 idle
            {
                u16BufferUsedLen = uart3_rx_dma_buf.nBuff1MaxLength - DMA_GetCurrDataCounter(DMA1_Channel3); 
                if (u16BufferUsedLen > 0)
                {
                    uart3_rx_dma_buf.nBuff1Offset = u16BufferUsedLen;
                    DMA1_Channel3->CMAR = (uint32_t)uart3_rx_dma_buf.pPingPongBuff2;
                    DMA1_Channel3->CNDTR = uart3_rx_dma_buf.nBuff2MaxLength;
                    uart3_rx_dma_buf.IdleBufferIndex = 0;
                }
            }
            else
            {
                u16BufferUsedLen = uart3_rx_dma_buf.nBuff2MaxLength - DMA_GetCurrDataCounter(DMA1_Channel3); 
                if (u16BufferUsedLen > 0)
                {
                    uart3_rx_dma_buf.nBuff2Offset = u16BufferUsedLen;
                    DMA1_Channel3->CMAR = (uint32_t)uart3_rx_dma_buf.pPingPongBuff1;
                    DMA1_Channel3->CNDTR = uart3_rx_dma_buf.nBuff1MaxLength;
                    uart3_rx_dma_buf.IdleBufferIndex = 1;
                }
            }
            xResult = xSemaphoreGiveFromISR( xSerialRxHandleLock ,&xHigherPriorityTaskWoken);

            if (u16BufferUsedLen > 0)
            {
                //boardcast message to handle
                xResult = xEventGroupSetBitsFromISR(
                                xUart3RxEventGroup,	// The event group being updated.
                                UART_DMA_RX_INCOMPLETE_EVENT_BIT,// The bits being set.
                                &xHigherPriorityTaskWoken );
            } //End if u16BufferUsedLen > 0
        }// End if pdTRUE == xSemaphoreTakeFromISR
        DMA_Cmd(DMA1_Channel3, ENABLE);                 //open DMA after handled
        
        //clear Idle flag by read SR and DR
        tem_reg = USART3->SR;
        tem_reg = USART3->DR;
        tem_reg = tem_reg; // slove warning 
    }// End if USART_IT_IDLE
    
    if(USART_GetITStatus(USART3, USART_IT_FE | USART_IT_NE) != RESET)
    {
        USART_ClearITPendingBit(USART3, USART_IT_FE | USART_IT_NE);
    }

    if( xResult == pdPASS )
    {
        // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
        // switch should be requested.  The macro used is port specific and 
        // will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - 
        // refer to the documentation page for the port being used.
        portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
    }
}
開發者ID:webom2008,項目名稱:AIO.TestFixture,代碼行數:81,代碼來源:driver_uart3.c

示例15: main

/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* DMA1 channel1 configuration ----------------------------------------------*/
  DMA_DeInit(DMA1_Channel1);
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_Address;
  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_DualConvertedValueTab;
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
  DMA_InitStructure.DMA_BufferSize = 16;
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;
  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
  DMA_Init(DMA1_Channel1, &DMA_InitStructure);
  /* Enable DMA1 Channel1 */
  DMA_Cmd(DMA1_Channel1, ENABLE);

  /* ADC1 configuration ------------------------------------------------------*/
  ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfChannel = 2;
  ADC_Init(ADC1, &ADC_InitStructure);
  /* ADC1 regular channels configuration */ 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_239Cycles5);    
  ADC_RegularChannelConfig(ADC1, ADC_Channel_17, 2, ADC_SampleTime_239Cycles5);
  /* Enable ADC1 DMA */
  ADC_DMACmd(ADC1, ENABLE);

  /* ADC2 configuration ------------------------------------------------------*/
  ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfChannel = 2;
  ADC_Init(ADC2, &ADC_InitStructure);
  /* ADC2 regular channels configuration */ 
  ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_239Cycles5);
  ADC_RegularChannelConfig(ADC2, ADC_Channel_12, 2, ADC_SampleTime_239Cycles5);
  /* Enable ADC2 external trigger conversion */
  ADC_ExternalTrigConvCmd(ADC2, ENABLE);

  /* Enable ADC1 */
  ADC_Cmd(ADC1, ENABLE);
  /* Enable Vrefint channel17 */
  ADC_TempSensorVrefintCmd(ENABLE);

  /* Enable ADC1 reset calibaration register */   
  ADC_ResetCalibration(ADC1);
  /* Check the end of ADC1 reset calibration register */
  while(ADC_GetResetCalibrationStatus(ADC1));

  /* Start ADC1 calibaration */
  ADC_StartCalibration(ADC1);
  /* Check the end of ADC1 calibration */
  while(ADC_GetCalibrationStatus(ADC1));

  /* Enable ADC2 */
  ADC_Cmd(ADC2, ENABLE);

  /* Enable ADC2 reset calibaration register */   
  ADC_ResetCalibration(ADC2);
  /* Check the end of ADC2 reset calibration register */
  while(ADC_GetResetCalibrationStatus(ADC2));

  /* Start ADC2 calibaration */
  ADC_StartCalibration(ADC2);
  /* Check the end of ADC2 calibration */
  while(ADC_GetCalibrationStatus(ADC2));

  /* Start ADC1 Software Conversion */ 
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);

  /* Test on DMA1 channel1 transfer complete flag */
  while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
  /* Clear DMA1 channel1 transfer complete flag */
  DMA_ClearFlag(DMA1_FLAG_TC1);
//.........這裏部分代碼省略.........
開發者ID:Dzenik,項目名稱:QuadVolucer,代碼行數:101,代碼來源:main.c


注:本文中的DMA_ClearFlag函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。