本文整理匯總了C++中DD_ZERO函數的典型用法代碼示例。如果您正苦於以下問題:C++ DD_ZERO函數的具體用法?C++ DD_ZERO怎麽用?C++ DD_ZERO使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了DD_ZERO函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Cudd_addTimes
/**Function********************************************************************
Synopsis [Integer and floating point multiplication.]
Description [Integer and floating point multiplication. Returns NULL
if not a terminal case; f * g otherwise. This function can be used also
to take the AND of two 0-1 ADDs.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addTimes(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *res;
DdNode *F, *G;
CUDD_VALUE_TYPE value;
F = *f; G = *g;
if (F == DD_ZERO(dd) || G == DD_ZERO(dd)) return(DD_ZERO(dd));
if (F == DD_ONE(dd)) return(G);
if (G == DD_ONE(dd)) return(F);
if (cuddIsConstant(F) && cuddIsConstant(G)) {
value = cuddV(F)*cuddV(G);
res = cuddUniqueConst(dd,value);
return(res);
}
if (F > G) { /* swap f and g */
*f = G;
*g = F;
}
return(NULL);
} /* end of Cudd_addTimes */
示例2: cuddZddChangeAux
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_zddChange.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
cuddZddChangeAux(
DdManager * zdd,
DdNode * P,
DdNode * zvar)
{
int top_var, level;
DdNode *res, *t, *e;
DdNode *base = DD_ONE(zdd);
DdNode *empty = DD_ZERO(zdd);
statLine(zdd);
if (P == empty)
return(empty);
if (P == base)
return(zvar);
/* Check cache. */
res = cuddCacheLookup2Zdd(zdd, cuddZddChangeAux, P, zvar);
if (res != NULL)
return(res);
top_var = zdd->permZ[P->index];
level = zdd->permZ[zvar->index];
if (top_var > level) {
res = cuddZddGetNode(zdd, zvar->index, P, DD_ZERO(zdd));
if (res == NULL) return(NULL);
} else if (top_var == level) {
res = cuddZddGetNode(zdd, zvar->index, cuddE(P), cuddT(P));
if (res == NULL) return(NULL);
} else {
t = cuddZddChangeAux(zdd, cuddT(P), zvar);
if (t == NULL) return(NULL);
cuddRef(t);
e = cuddZddChangeAux(zdd, cuddE(P), zvar);
if (e == NULL) {
Cudd_RecursiveDerefZdd(zdd, t);
return(NULL);
}
cuddRef(e);
res = cuddZddGetNode(zdd, P->index, t, e);
if (res == NULL) {
Cudd_RecursiveDerefZdd(zdd, t);
Cudd_RecursiveDerefZdd(zdd, e);
return(NULL);
}
cuddDeref(t);
cuddDeref(e);
}
cuddCacheInsert2(zdd, cuddZddChangeAux, P, zvar, res);
return(res);
} /* end of cuddZddChangeAux */
示例3: ddIsIthAddVarPair
/**Function********************************************************************
Synopsis [Comparison of a pair of functions to the i-th ADD variable.]
Description [Comparison of a pair of functions to the i-th ADD
variable. Returns 1 if the functions are the i-th ADD variable and its
complement; 0 otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DD_INLINE
static int
ddIsIthAddVarPair(
DdManager * dd,
DdNode * f,
DdNode * g,
unsigned int i)
{
return(f->index == i && g->index == i &&
cuddT(f) == DD_ONE(dd) && cuddE(f) == DD_ZERO(dd) &&
cuddT(g) == DD_ZERO(dd) && cuddE(g) == DD_ONE(dd));
} /* end of ddIsIthAddVarPair */
示例4: Cudd_addSetNZ
/**Function********************************************************************
Synopsis [This operator sets f to the value of g wherever g != 0.]
Description [This operator sets f to the value of g wherever g != 0.
Returns NULL if not a terminal case; f op g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addSetNZ(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *F, *G;
F = *f; G = *g;
if (F == DD_ZERO(dd)) return(G);
if (G == DD_ZERO(dd)) return(F);
if (cuddIsConstant(G)) return(G);
return(NULL);
} /* end of Cudd_addSetNZ */
示例5: cuddZddSubset0
/**Function********************************************************************
Synopsis [Computes the negative cofactor of a ZDD w.r.t. a variable.]
Description [Computes the negative cofactor of a ZDD w.r.t. a
variable. In terms of combinations, the result is the set of all
combinations in which the variable is negated. Returns a pointer to
the result if successful; NULL otherwise. cuddZddSubset0 performs
the same function as Cudd_zddSubset0, but does not restart if
reordering has taken place. Therefore it can be called from within a
recursive procedure.]
SideEffects [None]
SeeAlso [cuddZddSubset1 Cudd_zddSubset0]
******************************************************************************/
DdNode *
cuddZddSubset0(
DdManager * dd,
DdNode * P,
int var)
{
DdNode *zvar, *r;
DdNode *base, *empty;
base = DD_ONE(dd);
empty = DD_ZERO(dd);
zvar = cuddUniqueInterZdd(dd, var, base, empty);
if (zvar == NULL) {
return(NULL);
} else {
cuddRef(zvar);
r = zdd_subset0_aux(dd, P, zvar);
if (r == NULL) {
Cudd_RecursiveDerefZdd(dd, zvar);
return(NULL);
}
cuddRef(r);
Cudd_RecursiveDerefZdd(dd, zvar);
}
cuddDeref(r);
return(r);
} /* end of cuddZddSubset0 */
示例6: variables
/**Function********************************************************************
Synopsis [Reads in a sparse matrix.]
Description [Reads in a sparse matrix specified in a simple format.
The first line of the input contains the numbers of rows and columns.
The remaining lines contain the elements of the matrix, one per line.
Given a background value
(specified by the background field of the manager), only the values
different from it are explicitly listed. Each foreground element is
described by two integers, i.e., the row and column number, and a
real number, i.e., the value.<p>
Cudd_addRead produces an ADD that depends on two sets of variables: x
and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and
the y variables (y\[0\] ... y\[ny-1\]) encode the column index.
x\[0\] and y\[0\] are the most significant bits in the indices.
The variables may already exist or may be created by the function.
The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.<p>
On input, nx and ny hold the numbers
of row and column variables already in existence. On output, they
hold the numbers of row and column variables actually used by the
matrix. When Cudd_addRead creates the variable arrays,
the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.
When some variables already exist Cudd_addRead expects the indices
of the existing x variables to be bx+i*sx, and the indices of the
existing y variables to be by+i*sy.<p>
m and n are set to the numbers of rows and columns of the
matrix. Their values on input are immaterial.
The ADD for the
sparse matrix is returned in E, and its reference count is > 0.
Cudd_addRead returns 1 in case of success; 0 otherwise.]
SideEffects [nx and ny are set to the numbers of row and column
variables. m and n are set to the numbers of rows and columns. x and y
are possibly extended to represent the array of row and column
variables. Similarly for xn and yn_, which hold on return from
Cudd_addRead the complements of the row and column variables.]
SeeAlso [Cudd_addHarwell Cudd_bddRead]
******************************************************************************/
int
Cudd_addRead(
FILE * fp /* input file pointer */,
DdManager * dd /* DD manager */,
DdNode ** E /* characteristic function of the graph */,
DdNode *** x /* array of row variables */,
DdNode *** y /* array of column variables */,
DdNode *** xn /* array of complemented row variables */,
DdNode *** yn_ /* array of complemented column variables */,
int * nx /* number or row variables */,
int * ny /* number or column variables */,
int * m /* number of rows */,
int * n /* number of columns */,
int bx /* first index of row variables */,
int sx /* step of row variables */,
int by /* first index of column variables */,
int sy /* step of column variables */)
{
DdNode *one, *zero;
DdNode *w, *neW;
DdNode *minterm1;
int u, v, err, i, nv;
int lnx, lny;
CUDD_VALUE_TYPE val;
DdNode **lx, **ly, **lxn, **lyn;
one = DD_ONE(dd);
zero = DD_ZERO(dd);
err = fscanf(fp, "%d %d", &u, &v);
if (err == EOF) {
return(0);
} else if (err != 2) {
return(0);
}
*m = u;
/* Compute the number of x variables. */
lx = *x; lxn = *xn;
u--; /* row and column numbers start from 0 */
for (lnx=0; u > 0; lnx++) {
u >>= 1;
}
/* Here we rely on the fact that REALLOC of a null pointer is
** translates to an ALLOC.
*/
if (lnx > *nx) {
*x = lx = REALLOC(DdNode *, *x, lnx);
if (lx == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*xn = lxn = REALLOC(DdNode *, *xn, lnx);
if (lxn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
}
示例7: Cudd_addNand
/**Function********************************************************************
Synopsis [NAND of two 0-1 ADDs.]
Description [NAND of two 0-1 ADDs. Returns NULL
if not a terminal case; f NAND g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addNand(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *F, *G;
F = *f; G = *g;
if (F == DD_ZERO(dd) || G == DD_ZERO(dd)) return(DD_ONE(dd));
if (cuddIsConstant(F) && cuddIsConstant(G)) return(DD_ZERO(dd));
if (F > G) { /* swap f and g */
*f = G;
*g = F;
}
return(NULL);
} /* end of Cudd_addNand */
示例8: zdd_subset1_aux
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_zddSubset1.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
static DdNode *
zdd_subset1_aux(
DdManager * zdd,
DdNode * P,
DdNode * zvar)
{
int top_var, level;
DdNode *res, *t, *e;
DdNode *empty;
statLine(zdd);
empty = DD_ZERO(zdd);
/* Check cache. */
res = cuddCacheLookup2Zdd(zdd, zdd_subset1_aux, P, zvar);
if (res != NULL)
return(res);
if (cuddIsConstant(P)) {
res = empty;
cuddCacheInsert2(zdd, zdd_subset1_aux, P, zvar, res);
return(res);
}
top_var = zdd->permZ[P->index];
level = zdd->permZ[zvar->index];
if (top_var > level) {
res = empty;
} else if (top_var == level) {
res = cuddT(P);
} else {
t = zdd_subset1_aux(zdd, cuddT(P), zvar);
if (t == NULL) return(NULL);
cuddRef(t);
e = zdd_subset1_aux(zdd, cuddE(P), zvar);
if (e == NULL) {
Cudd_RecursiveDerefZdd(zdd, t);
return(NULL);
}
cuddRef(e);
res = cuddZddGetNode(zdd, P->index, t, e);
if (res == NULL) {
Cudd_RecursiveDerefZdd(zdd, t);
Cudd_RecursiveDerefZdd(zdd, e);
return(NULL);
}
cuddDeref(t);
cuddDeref(e);
}
cuddCacheInsert2(zdd, zdd_subset1_aux, P, zvar, res);
return(res);
} /* end of zdd_subset1_aux */
示例9: g
/**Function********************************************************************
Synopsis [Returns 1 if f > g and 0 otherwise.]
Description [Returns 1 if f > g (both should be terminal cases) and 0
otherwise. Used in conjunction with Cudd_addApply. Returns NULL if not a
terminal case.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addOneZeroMaximum(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
if (*g == DD_PLUS_INFINITY(dd))
return DD_ZERO(dd);
if (cuddIsConstant(*f) && cuddIsConstant(*g)) {
if (cuddV(*f) > cuddV(*g)) {
return(DD_ONE(dd));
} else {
return(DD_ZERO(dd));
}
}
return(NULL);
} /* end of Cudd_addOneZeroMaximum */
示例10: Cudd_addMinus
/**Function********************************************************************
Synopsis [Integer and floating point subtraction.]
Description [Integer and floating point subtraction. Returns NULL if
not a terminal case; f - g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addMinus(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *res;
DdNode *F, *G;
CUDD_VALUE_TYPE value;
F = *f; G = *g;
if (F == DD_ZERO(dd)) return(cuddAddNegateRecur(dd,G));
if (G == DD_ZERO(dd)) return(F);
if (cuddIsConstant(F) && cuddIsConstant(G)) {
value = cuddV(F)-cuddV(G);
res = cuddUniqueConst(dd,value);
return(res);
}
return(NULL);
} /* end of Cudd_addMinus */
示例11: Cudd_addDivide
/**Function********************************************************************
Synopsis [Integer and floating point division.]
Description [Integer and floating point division. Returns NULL if not
a terminal case; f / g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addDivide(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *res;
DdNode *F, *G;
CUDD_VALUE_TYPE value;
F = *f; G = *g;
if (F == DD_ZERO(dd)) return(DD_ZERO(dd));
if (G == DD_ONE(dd)) return(F);
if (cuddIsConstant(F) && cuddIsConstant(G)) {
value = cuddV(F)/cuddV(G);
res = cuddUniqueConst(dd,value);
return(res);
}
return(NULL);
} /* end of Cudd_addDivide */
示例12: addDoIthBit
/**Function********************************************************************
Synopsis [Performs the recursive step for Cudd_addIthBit.]
Description [Performs the recursive step for Cudd_addIthBit.
Returns a pointer to the BDD if successful; NULL otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
static DdNode *
addDoIthBit(
DdManager * dd,
DdNode * f,
DdNode * index)
{
DdNode *res, *T, *E;
DdNode *fv, *fvn;
int mask, value;
int v;
statLine(dd);
/* Check terminal case. */
if (cuddIsConstant(f)) {
mask = 1 << ((int) cuddV(index));
value = (int) cuddV(f);
return((value & mask) == 0 ? DD_ZERO(dd) : DD_ONE(dd));
}
/* Check cache. */
res = cuddCacheLookup2(dd,addDoIthBit,f,index);
if (res != NULL) return(res);
/* Recursive step. */
v = f->index;
fv = cuddT(f); fvn = cuddE(f);
T = addDoIthBit(dd,fv,index);
if (T == NULL) return(NULL);
cuddRef(T);
E = addDoIthBit(dd,fvn,index);
if (E == NULL) {
Cudd_RecursiveDeref(dd, T);
return(NULL);
}
cuddRef(E);
res = (T == E) ? T : cuddUniqueInter(dd,v,T,E);
if (res == NULL) {
Cudd_RecursiveDeref(dd, T);
Cudd_RecursiveDeref(dd, E);
return(NULL);
}
cuddDeref(T);
cuddDeref(E);
/* Store result. */
cuddCacheInsert2(dd,addDoIthBit,f,index,res);
return(res);
} /* end of addDoIthBit */
示例13: Cudd_addDivide
/**Function********************************************************************
Synopsis [Integer and floating point division.]
Description [Integer and floating point division. Returns NULL if not
a terminal case; f / g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addDivide(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *res;
DdNode *F, *G;
CUDD_VALUE_TYPE value;
F = *f; G = *g;
/* We would like to use F == G -> F/G == 1, but F and G may
** contain zeroes. */
if (F == DD_ZERO(dd)) return(DD_ZERO(dd));
if (G == DD_ONE(dd)) return(F);
if (cuddIsConstant(F) && cuddIsConstant(G)) {
value = cuddV(F)/cuddV(G);
res = cuddUniqueConst(dd,value);
return(res);
}
return(NULL);
} /* end of Cudd_addDivide */
示例14: addCheckPositiveCube
/**Function********************************************************************
Synopsis [Checks whether cube is an ADD representing the product
of positive literals.]
Description [Checks whether cube is an ADD representing the product of
positive literals. Returns 1 in case of success; 0 otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
static int
addCheckPositiveCube(
DdManager * manager,
DdNode * cube)
{
if (Cudd_IsComplement(cube)) return(0);
if (cube == DD_ONE(manager)) return(1);
if (cuddIsConstant(cube)) return(0);
if (cuddE(cube) == DD_ZERO(manager)) {
return(addCheckPositiveCube(manager, cuddT(cube)));
}
return(0);
} /* end of addCheckPositiveCube */
示例15: ZDDs
/**Function********************************************************************
Synopsis [Performs the inclusion test for ZDDs (P implies Q).]
Description [Inclusion test for ZDDs (P implies Q). No new nodes are
generated by this procedure. Returns empty if true;
a valid pointer different from empty or DD_NON_CONSTANT otherwise.]
SideEffects [None]
SeeAlso [Cudd_zddDiff]
******************************************************************************/
DdNode *
Cudd_zddDiffConst(
DdManager * zdd,
DdNode * P,
DdNode * Q)
{
int p_top, q_top;
DdNode *empty = DD_ZERO(zdd), *t, *res;
DdManager *table = zdd;
statLine(zdd);
if (P == empty)
return(empty);
if (Q == empty)
return(P);
if (P == Q)
return(empty);
/* Check cache. The cache is shared by cuddZddDiff(). */
res = cuddCacheLookup2Zdd(table, cuddZddDiff, P, Q);
if (res != NULL)
return(res);
if (cuddIsConstant(P))
p_top = P->index;
else
p_top = zdd->permZ[P->index];
if (cuddIsConstant(Q))
q_top = Q->index;
else
q_top = zdd->permZ[Q->index];
if (p_top < q_top) {
res = DD_NON_CONSTANT;
} else if (p_top > q_top) {
res = Cudd_zddDiffConst(zdd, P, cuddE(Q));
} else {
t = Cudd_zddDiffConst(zdd, cuddT(P), cuddT(Q));
if (t != empty)
res = DD_NON_CONSTANT;
else
res = Cudd_zddDiffConst(zdd, cuddE(P), cuddE(Q));
}
cuddCacheInsert2(table, cuddZddDiff, P, Q, res);
return(res);
} /* end of Cudd_zddDiffConst */