本文整理匯總了C++中DD_ONE函數的典型用法代碼示例。如果您正苦於以下問題:C++ DD_ONE函數的具體用法?C++ DD_ONE怎麽用?C++ DD_ONE使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了DD_ONE函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Cudd_addTimes
/**Function********************************************************************
Synopsis [Integer and floating point multiplication.]
Description [Integer and floating point multiplication. Returns NULL
if not a terminal case; f * g otherwise. This function can be used also
to take the AND of two 0-1 ADDs.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addTimes(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *res;
DdNode *F, *G;
CUDD_VALUE_TYPE value;
F = *f; G = *g;
if (F == DD_ZERO(dd) || G == DD_ZERO(dd)) return(DD_ZERO(dd));
if (F == DD_ONE(dd)) return(G);
if (G == DD_ONE(dd)) return(F);
if (cuddIsConstant(F) && cuddIsConstant(G)) {
value = cuddV(F)*cuddV(G);
res = cuddUniqueConst(dd,value);
return(res);
}
if (F > G) { /* swap f and g */
*f = G;
*g = F;
}
return(NULL);
} /* end of Cudd_addTimes */
示例2: ddIsIthAddVarPair
/**Function********************************************************************
Synopsis [Comparison of a pair of functions to the i-th ADD variable.]
Description [Comparison of a pair of functions to the i-th ADD
variable. Returns 1 if the functions are the i-th ADD variable and its
complement; 0 otherwise.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DD_INLINE
static int
ddIsIthAddVarPair(
DdManager * dd,
DdNode * f,
DdNode * g,
unsigned int i)
{
return(f->index == i && g->index == i &&
cuddT(f) == DD_ONE(dd) && cuddE(f) == DD_ZERO(dd) &&
cuddT(g) == DD_ZERO(dd) && cuddE(g) == DD_ONE(dd));
} /* end of ddIsIthAddVarPair */
示例3: bddCheckPositiveCube
/**Function********************************************************************
Synopsis [Checks whether cube is an BDD representing the product of
positive literals.]
Description [Returns 1 in case of success; 0 otherwise.]
SideEffects [None]
******************************************************************************/
static int
bddCheckPositiveCube(
DdManager * manager,
DdNode * cube)
{
if (Cudd_IsComplement(cube)) return(0);
if (cube == DD_ONE(manager)) return(1);
if (cuddIsConstant(cube)) return(0);
if (cuddE(cube) == Cudd_Not(DD_ONE(manager))) {
return(bddCheckPositiveCube(manager, cuddT(cube)));
}
return(0);
} /* end of bddCheckPositiveCube */
示例4: Cudd_addLeq
/**Function********************************************************************
Synopsis [Determines whether f is less than or equal to g.]
Description [Returns 1 if f is less than or equal to g; 0 otherwise.
No new nodes are created. This procedure works for arbitrary ADDs.
For 0-1 ADDs Cudd_addEvalConst is more efficient.]
SideEffects [None]
SeeAlso [Cudd_addIteConstant Cudd_addEvalConst Cudd_bddLeq]
******************************************************************************/
int
Cudd_addLeq(
DdManager * dd,
DdNode * f,
DdNode * g)
{
DdNode *tmp, *fv, *fvn, *gv, *gvn;
unsigned int topf, topg, res;
/* Terminal cases. */
if (f == g) return(1);
statLine(dd);
if (cuddIsConstant(f)) {
if (cuddIsConstant(g)) return(cuddV(f) <= cuddV(g));
if (f == DD_MINUS_INFINITY(dd)) return(1);
if (f == DD_PLUS_INFINITY(dd)) return(0); /* since f != g */
}
if (g == DD_PLUS_INFINITY(dd)) return(1);
if (g == DD_MINUS_INFINITY(dd)) return(0); /* since f != g */
/* Check cache. */
tmp = cuddCacheLookup2(dd,(DD_CTFP)Cudd_addLeq,f,g);
if (tmp != NULL) {
return(tmp == DD_ONE(dd));
}
/* Compute cofactors. One of f and g is not constant. */
topf = cuddI(dd,f->index);
topg = cuddI(dd,g->index);
if (topf <= topg) {
fv = cuddT(f); fvn = cuddE(f);
} else {
fv = fvn = f;
}
if (topg <= topf) {
gv = cuddT(g); gvn = cuddE(g);
} else {
gv = gvn = g;
}
res = Cudd_addLeq(dd,fvn,gvn) && Cudd_addLeq(dd,fv,gv);
/* Store result in cache and return. */
cuddCacheInsert2(dd,(DD_CTFP) Cudd_addLeq,f,g,
Cudd_NotCond(DD_ONE(dd),res==0));
return(res);
} /* end of Cudd_addLeq */
示例5: cuddauxSupportRecur
/**Function********************************************************************
Synopsis [Performs the recursive step of Cuddaux_Support.]
Description [Performs the recursive step of Cuddaux_Support.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode*
cuddauxSupportRecur(DdManager* dd,
DdNode * f)
{
DdNode *one, *fv, *fvn, *T,*E, *res, *res1;
one = DD_ONE(dd);
if (cuddIsConstant(f)) {
return one;
}
fv = cuddT(f);
fvn = Cudd_Regular(cuddE(f));
if (cuddIsConstant(fv) && cuddIsConstant(fvn)){
return dd->vars[f->index];
}
/* Look in the cache */
res = cuddCacheLookup1(dd,Cuddaux_Support,f);
if (res != NULL)
return(res);
T = cuddIsConstant(fv) ? one : cuddauxSupportRecur(dd,fv);
if (T == NULL)
return(NULL);
cuddRef(T);
E = cuddIsConstant(fvn) ? one : cuddauxSupportRecur(dd,fvn);
if (E == NULL){
Cudd_IterDerefBdd(dd,T);
return(NULL);
}
if (T==E){
res = cuddUniqueInter(dd,f->index,T,Cudd_Not(one));
if (res == NULL){
Cudd_IterDerefBdd(dd,T);
return NULL;
}
cuddDeref(T);
}
else {
cuddRef(E);
res1 = cuddBddAndRecur(dd,T,E);
if (res1 == NULL){
Cudd_IterDerefBdd(dd,T);
Cudd_IterDerefBdd(dd,E);
return(NULL);
}
cuddRef(res1);
Cudd_IterDerefBdd(dd,T);
Cudd_IterDerefBdd(dd,E);
res = cuddUniqueInter(dd,f->index,res1,Cudd_Not(one));
if (res == NULL){
Cudd_IterDerefBdd(dd,T);
Cudd_IterDerefBdd(dd,E);
Cudd_IterDerefBdd(dd,res1);
return(NULL);
}
cuddDeref(res1);
}
cuddCacheInsert1(dd,Cuddaux_Support,f,res);
return(res);
} /* end of cuddauxSupportRecur */
示例6: cuddZddSubset0
/**Function********************************************************************
Synopsis [Computes the negative cofactor of a ZDD w.r.t. a variable.]
Description [Computes the negative cofactor of a ZDD w.r.t. a
variable. In terms of combinations, the result is the set of all
combinations in which the variable is negated. Returns a pointer to
the result if successful; NULL otherwise. cuddZddSubset0 performs
the same function as Cudd_zddSubset0, but does not restart if
reordering has taken place. Therefore it can be called from within a
recursive procedure.]
SideEffects [None]
SeeAlso [cuddZddSubset1 Cudd_zddSubset0]
******************************************************************************/
DdNode *
cuddZddSubset0(
DdManager * dd,
DdNode * P,
int var)
{
DdNode *zvar, *r;
DdNode *base, *empty;
base = DD_ONE(dd);
empty = DD_ZERO(dd);
zvar = cuddUniqueInterZdd(dd, var, base, empty);
if (zvar == NULL) {
return(NULL);
} else {
cuddRef(zvar);
r = zdd_subset0_aux(dd, P, zvar);
if (r == NULL) {
Cudd_RecursiveDerefZdd(dd, zvar);
return(NULL);
}
cuddRef(r);
Cudd_RecursiveDerefZdd(dd, zvar);
}
cuddDeref(r);
return(r);
} /* end of cuddZddSubset0 */
示例7: cuddauxIsVarInRecur
/**Function********************************************************************
Synopsis [Performs the recursive step of Cuddaux_IsVarIn.]
Description [Performs the recursive step of Cuddaux_IsVarIn. var is
supposed to be a BDD projection function. Returns the logical one or
zero.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode*
cuddauxIsVarInRecur(DdManager* manager, DdNode* f, DdNode* Var)
{
DdNode *zero,*one, *F, *res;
int topV,topF;
one = DD_ONE(manager);
zero = Cudd_Not(one);
F = Cudd_Regular(f);
if (cuddIsConstant(F)) return zero;
if (Var==F) return(one);
topV = Var->index;
topF = F->index;
if (topF == topV) return(one);
if (cuddI(manager,topV) < cuddI(manager,topF)) return(zero);
res = cuddCacheLookup2(manager,cuddauxIsVarInRecur, F, Var);
if (res != NULL) return(res);
res = cuddauxIsVarInRecur(manager,cuddT(F),Var);
if (res==zero){
res = cuddauxIsVarInRecur(manager,cuddE(F),Var);
}
cuddCacheInsert2(manager,cuddauxIsVarInRecur,F,Var,res);
return(res);
}
示例8: Cudd_bddBooleanDiff
/**
@brief Computes the boolean difference of f with respect to x.
@details Computes the boolean difference of f with respect to the
variable with index x.
@return the %BDD of the boolean difference if successful; NULL
otherwise.
@sideeffect None
*/
DdNode *
Cudd_bddBooleanDiff(
DdManager * manager,
DdNode * f,
int x)
{
DdNode *res, *var;
/* If the variable is not currently in the manager, f cannot
** depend on it.
*/
if (x >= manager->size) return(Cudd_Not(DD_ONE(manager)));
var = manager->vars[x];
do {
manager->reordered = 0;
res = cuddBddBooleanDiffRecur(manager, Cudd_Regular(f), var);
} while (manager->reordered == 1);
if (manager->errorCode == CUDD_TIMEOUT_EXPIRED && manager->timeoutHandler) {
manager->timeoutHandler(manager, manager->tohArg);
}
return(res);
} /* end of Cudd_bddBooleanDiff */
示例9: zddPrintCoverAux
/**Function********************************************************************
Synopsis [Performs the recursive step of Cudd_zddPrintCover.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
static void
zddPrintCoverAux(
DdManager * zdd /* manager */,
DdNode * node /* current node */,
int level /* depth in the recursion */,
int * list /* current recursion path */)
{
DdNode *Nv, *Nnv;
int i, v;
DdNode *base = DD_ONE(zdd);
if (Cudd_IsConstant(node)) {
if (node == base) {
/* Check for missing variable. */
if (level != zdd->sizeZ) {
list[zdd->invpermZ[level]] = 0;
zddPrintCoverAux(zdd, node, level + 1, list);
return;
}
/* Terminal case: Print one cube based on the current recursion
** path.
*/
for (i = 0; i < zdd->sizeZ; i += 2) {
v = list[i] * 4 + list[i+1];
if (v == 0)
(void) fprintf(zdd->out,"-");
else if (v == 4)
(void) fprintf(zdd->out,"1");
else if (v == 1)
(void) fprintf(zdd->out,"0");
else
(void) fprintf(zdd->out,"@"); /* should never happen */
}
(void) fprintf(zdd->out," 1\n");
}
} else {
/* Check for missing variable. */
if (level != cuddIZ(zdd,node->index)) {
list[zdd->invpermZ[level]] = 0;
zddPrintCoverAux(zdd, node, level + 1, list);
return;
}
Nnv = cuddE(node);
Nv = cuddT(node);
if (Nv == Nnv) {
list[node->index] = 2;
zddPrintCoverAux(zdd, Nnv, level + 1, list);
return;
}
list[node->index] = 1;
zddPrintCoverAux(zdd, Nv, level + 1, list);
list[node->index] = 0;
zddPrintCoverAux(zdd, Nnv, level + 1, list);
}
return;
} /* end of zddPrintCoverAux */
示例10: bddAnnotateMintermCount
/**Function********************************************************************
Synopsis [Annotates every node in the BDD node with its minterm count.]
Description [Annotates every node in the BDD node with its minterm count.
In this function, every node and the minterm count represented by it are
stored in a hash table.]
SideEffects [Fills up 'table' with the pair <node,minterm_count>.]
******************************************************************************/
static double
bddAnnotateMintermCount(
DdManager * manager,
DdNode * node,
double max,
st_table * table)
{
DdNode *N,*Nv,*Nnv;
register double min_v,min_nv;
register double min_N;
double *pmin;
double *dummy;
statLine(manager);
N = Cudd_Regular(node);
if (cuddIsConstant(N)) {
if (node == DD_ONE(manager)) {
return(max);
} else {
return(0.0);
}
}
if (st_lookup(table, node, &dummy)) {
return(*dummy);
}
Nv = cuddT(N);
Nnv = cuddE(N);
if (N != node) {
Nv = Cudd_Not(Nv);
Nnv = Cudd_Not(Nnv);
}
/* Recur on the two branches. */
min_v = bddAnnotateMintermCount(manager,Nv,max,table) / 2.0;
if (min_v == (double)CUDD_OUT_OF_MEM)
return ((double)CUDD_OUT_OF_MEM);
min_nv = bddAnnotateMintermCount(manager,Nnv,max,table) / 2.0;
if (min_nv == (double)CUDD_OUT_OF_MEM)
return ((double)CUDD_OUT_OF_MEM);
min_N = min_v + min_nv;
pmin = ALLOC(double,1);
if (pmin == NULL) {
manager->errorCode = CUDD_MEMORY_OUT;
return((double)CUDD_OUT_OF_MEM);
}
*pmin = min_N;
if (st_insert(table,(char *)node, (char *)pmin) == ST_OUT_OF_MEM) {
FREE(pmin);
return((double)CUDD_OUT_OF_MEM);
}
return(min_N);
} /* end of bddAnnotateMintermCount */
示例11: cuddauxAddGuardOfNodeRecur
DdNode*
cuddauxAddGuardOfNodeRecur(DdManager* manager, DdNode* f, DdNode* h)
{
DdNode *one, *res, *T, *E;
int topf, toph;
/* Handle terminal cases */
one = DD_ONE(manager);
if (f==h){
return(one);
}
topf = cuddI(manager,f->index);
toph = cuddI(manager,h->index);
if (topf >= toph){
return Cudd_Not(one);
}
/* Look in the cache */
res = cuddCacheLookup2(manager,Cuddaux_addGuardOfNode,f,h);
if (res != NULL)
return(res);
T = cuddauxAddGuardOfNodeRecur(manager,cuddT(f),h);
if (T == NULL)
return(NULL);
cuddRef(T);
E = cuddauxAddGuardOfNodeRecur(manager,cuddE(f),h);
if (E == NULL){
Cudd_IterDerefBdd(manager, T);
return(NULL);
}
cuddRef(E);
if (T == E){
res = T;
}
else {
if (Cudd_IsComplement(T)){
res = cuddUniqueInter(manager,f->index,Cudd_Not(T),Cudd_Not(E));
if (res == NULL) {
Cudd_IterDerefBdd(manager, T);
Cudd_IterDerefBdd(manager, E);
return(NULL);
}
res = Cudd_Not(res);
}
else {
res = cuddUniqueInter(manager,f->index,T,E);
if (res == NULL) {
Cudd_IterDerefBdd(manager, T);
Cudd_IterDerefBdd(manager, E);
return(NULL);
}
}
}
cuddDeref(T);
cuddDeref(E);
cuddCacheInsert2(manager,Cuddaux_addGuardOfNode,f,h,res);
return(res);
}
示例12: variables
/**Function********************************************************************
Synopsis [Reads in a sparse matrix.]
Description [Reads in a sparse matrix specified in a simple format.
The first line of the input contains the numbers of rows and columns.
The remaining lines contain the elements of the matrix, one per line.
Given a background value
(specified by the background field of the manager), only the values
different from it are explicitly listed. Each foreground element is
described by two integers, i.e., the row and column number, and a
real number, i.e., the value.<p>
Cudd_addRead produces an ADD that depends on two sets of variables: x
and y. The x variables (x\[0\] ... x\[nx-1\]) encode the row index and
the y variables (y\[0\] ... y\[ny-1\]) encode the column index.
x\[0\] and y\[0\] are the most significant bits in the indices.
The variables may already exist or may be created by the function.
The index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.<p>
On input, nx and ny hold the numbers
of row and column variables already in existence. On output, they
hold the numbers of row and column variables actually used by the
matrix. When Cudd_addRead creates the variable arrays,
the index of x\[i\] is bx+i*sx, and the index of y\[i\] is by+i*sy.
When some variables already exist Cudd_addRead expects the indices
of the existing x variables to be bx+i*sx, and the indices of the
existing y variables to be by+i*sy.<p>
m and n are set to the numbers of rows and columns of the
matrix. Their values on input are immaterial.
The ADD for the
sparse matrix is returned in E, and its reference count is > 0.
Cudd_addRead returns 1 in case of success; 0 otherwise.]
SideEffects [nx and ny are set to the numbers of row and column
variables. m and n are set to the numbers of rows and columns. x and y
are possibly extended to represent the array of row and column
variables. Similarly for xn and yn_, which hold on return from
Cudd_addRead the complements of the row and column variables.]
SeeAlso [Cudd_addHarwell Cudd_bddRead]
******************************************************************************/
int
Cudd_addRead(
FILE * fp /* input file pointer */,
DdManager * dd /* DD manager */,
DdNode ** E /* characteristic function of the graph */,
DdNode *** x /* array of row variables */,
DdNode *** y /* array of column variables */,
DdNode *** xn /* array of complemented row variables */,
DdNode *** yn_ /* array of complemented column variables */,
int * nx /* number or row variables */,
int * ny /* number or column variables */,
int * m /* number of rows */,
int * n /* number of columns */,
int bx /* first index of row variables */,
int sx /* step of row variables */,
int by /* first index of column variables */,
int sy /* step of column variables */)
{
DdNode *one, *zero;
DdNode *w, *neW;
DdNode *minterm1;
int u, v, err, i, nv;
int lnx, lny;
CUDD_VALUE_TYPE val;
DdNode **lx, **ly, **lxn, **lyn;
one = DD_ONE(dd);
zero = DD_ZERO(dd);
err = fscanf(fp, "%d %d", &u, &v);
if (err == EOF) {
return(0);
} else if (err != 2) {
return(0);
}
*m = u;
/* Compute the number of x variables. */
lx = *x; lxn = *xn;
u--; /* row and column numbers start from 0 */
for (lnx=0; u > 0; lnx++) {
u >>= 1;
}
/* Here we rely on the fact that REALLOC of a null pointer is
** translates to an ALLOC.
*/
if (lnx > *nx) {
*x = lx = REALLOC(DdNode *, *x, lnx);
if (lx == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
*xn = lxn = REALLOC(DdNode *, *xn, lnx);
if (lxn == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
}
示例13: mintermsFromUniverse
/**Function********************************************************************
Synopsis [Recursive procedure to extract n mintems from constant 1.]
Description [Recursive procedure to extract n mintems from constant 1.]
SideEffects [None]
******************************************************************************/
static DdNode *
mintermsFromUniverse(
DdManager * manager,
DdNode ** vars,
int numVars,
double n,
int index)
{
DdNode *one, *zero;
DdNode *q, *result;
double max, max2;
statLine(manager);
one = DD_ONE(manager);
zero = Cudd_Not(one);
max = pow(2.0, (double)numVars);
max2 = max / 2.0;
if (n == max)
return(one);
if (n == 0.0)
return(zero);
/* if n == 2^(numVars-1), return a single variable */
if (n == max2)
return vars[index];
else if (n > max2) {
/* When n > 2^(numVars-1), a single variable vars[index]
** contains 2^(numVars-1) minterms. The rest are extracted
** from a constant with 1 less variable.
*/
q = mintermsFromUniverse(manager,vars,numVars-1,(n-max2),index+1);
if (q == NULL)
return(NULL);
cuddRef(q);
result = cuddBddIteRecur(manager,vars[index],one,q);
} else {
/* When n < 2^(numVars-1), a literal of variable vars[index]
** is selected. The required n minterms are extracted from a
** constant with 1 less variable.
*/
q = mintermsFromUniverse(manager,vars,numVars-1,n,index+1);
if (q == NULL)
return(NULL);
cuddRef(q);
result = cuddBddAndRecur(manager,vars[index],q);
}
if (result == NULL) {
Cudd_RecursiveDeref(manager,q);
return(NULL);
}
cuddRef(result);
Cudd_RecursiveDeref(manager,q);
cuddDeref(result);
return(result);
} /* end of mintermsFromUniverse */
示例14: Cudd_addNor
/**Function********************************************************************
Synopsis [NOR of two 0-1 ADDs.]
Description [NOR of two 0-1 ADDs. Returns NULL
if not a terminal case; f NOR g otherwise.]
SideEffects [None]
SeeAlso [Cudd_addApply]
******************************************************************************/
DdNode *
Cudd_addNor(
DdManager * dd,
DdNode ** f,
DdNode ** g)
{
DdNode *F, *G;
F = *f; G = *g;
if (F == DD_ONE(dd) || G == DD_ONE(dd)) return(DD_ZERO(dd));
if (cuddIsConstant(F) && cuddIsConstant(G)) return(DD_ONE(dd));
if (F > G) { /* swap f and g */
*f = G;
*g = F;
}
return(NULL);
} /* end of Cudd_addNor */
示例15: cuddBddBooleanDiffRecur
/**Function********************************************************************
Synopsis [Performs the recursive steps of Cudd_bddBoleanDiff.]
Description [Performs the recursive steps of Cudd_bddBoleanDiff.
Returns the BDD obtained by XORing the cofactors of f with respect to
var if successful; NULL otherwise. Exploits the fact that dF/dx =
dF'/dx.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
cuddBddBooleanDiffRecur(
DdManager * manager,
DdNode * f,
DdNode * var)
{
DdNode *T, *E, *res, *res1, *res2;
statLine(manager);
if (cuddI(manager,f->index) > manager->perm[var->index]) {
/* f does not depend on var. */
return(Cudd_Not(DD_ONE(manager)));
}
/* From now on, f is non-constant. */
/* If the two indices are the same, so are their levels. */
if (f->index == var->index) {
res = cuddBddXorRecur(manager, cuddT(f), cuddE(f));
return(res);
}
/* From now on, cuddI(manager,f->index) < cuddI(manager,cube->index). */
/* Check the cache. */
res = cuddCacheLookup2(manager, cuddBddBooleanDiffRecur, f, var);
if (res != NULL) {
return(res);
}
/* Compute the cofactors of f. */
T = cuddT(f); E = cuddE(f);
res1 = cuddBddBooleanDiffRecur(manager, T, var);
if (res1 == NULL) return(NULL);
cuddRef(res1);
res2 = cuddBddBooleanDiffRecur(manager, Cudd_Regular(E), var);
if (res2 == NULL) {
Cudd_IterDerefBdd(manager, res1);
return(NULL);
}
cuddRef(res2);
/* ITE takes care of possible complementation of res1 and of the
** case in which res1 == res2. */
res = cuddBddIteRecur(manager, manager->vars[f->index], res1, res2);
if (res == NULL) {
Cudd_IterDerefBdd(manager, res1);
Cudd_IterDerefBdd(manager, res2);
return(NULL);
}
cuddDeref(res1);
cuddDeref(res2);
cuddCacheInsert2(manager, cuddBddBooleanDiffRecur, f, var, res);
return(res);
} /* end of cuddBddBooleanDiffRecur */