當前位置: 首頁>>代碼示例>>C++>>正文


C++ DCHECK_LT函數代碼示例

本文整理匯總了C++中DCHECK_LT函數的典型用法代碼示例。如果您正苦於以下問題:C++ DCHECK_LT函數的具體用法?C++ DCHECK_LT怎麽用?C++ DCHECK_LT使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了DCHECK_LT函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: CHECK

void EmbedLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  CHECK(!propagate_down[0]) << "Can't backpropagate to EmbedLayer input.";
  if (this->param_propagate_down_[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const Dtype* bottom_data = bottom[0]->cpu_data();
    // Gradient with respect to weight
    Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
    int index;
    for (int n = 0; n < M_; ++n) {
      index = static_cast<int>(bottom_data[n]);
      DCHECK_GE(index, 0);
      DCHECK_LT(index, K_);
      DCHECK_EQ(static_cast<Dtype>(index), bottom_data[n])
          << "non-integer input";
      caffe_axpy(N_, Dtype(1), top_diff + n * N_, weight_diff + index * N_);
    }
  }
  if (bias_term_ && this->param_propagate_down_[1]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
    caffe_cpu_gemv<Dtype>(CblasTrans, M_, N_, Dtype(1), top_diff,
        bias_multiplier_.cpu_data(), Dtype(1), bias_diff);
  }
}
開發者ID:timlenertz,項目名稱:caffe,代碼行數:25,代碼來源:embed_layer.cpp

示例2: EmptyCopy

ColorHistogram ColorHistogram::ScaleHistogram(const vector<float>& gain) const {
  const ColorHistogramIndexLUT& lut =
    ColorHistogramIndexLUTFactory::Instance().GetLUT(
      lum_bins_, color_bins_, color_bins_);
  ColorHistogram result = EmptyCopy();
  if (!IsSparse()) {
    for (int i = 0; i < total_bins_; ++i) {
      const float value = bins_[i];
      if (value) {
        const std::tuple<int, int, int>& idx_3d = lut.Ind2Sub(i);
        const float bin_lum = std::min(lum_bins_ - 1.f, std::get<0>(idx_3d) * gain[0]);
        const float bin_col1 = std::min(color_bins_ - 1.f, std::get<1>(idx_3d) * gain[1]);
        const float bin_col2 = std::min(color_bins_ - 1.f, std::get<2>(idx_3d) * gain[2]);
        result.AddValueInterpolated(bin_lum, bin_col1, bin_col2, value);
      }
    }
  } else {
    for (const auto& bin : sparse_bins_) {
      const std::tuple<int, int, int>& idx_3d = lut.Ind2Sub(bin.first);
      const float bin_lum = std::min(lum_bins_ - 1.f, std::get<0>(idx_3d) * gain[0]);
      const float bin_col1 = std::min(color_bins_ - 1.f, std::get<1>(idx_3d) * gain[1]);
      const float bin_col2 = std::min(color_bins_ - 1.f, std::get<2>(idx_3d) * gain[2]);
      result.AddValueInterpolated(bin_lum, bin_col1, bin_col2, bin.second);
    }
  }
  DCHECK_LT(fabs(WeightSum() - result.WeightSum()), 1e-3f);

  return result;
}
開發者ID:CharlesShang,項目名稱:video_segment,代碼行數:29,代碼來源:histograms.cpp

示例3: DCHECK_GE

void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  // The forward pass computes the softmax prob values.
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.cpu_data();
  const Dtype* label = bottom[1]->cpu_data();
  int dim = prob_.count() / outer_num_;
  int count = 0;
  Dtype loss = 0;
  for (int i = 0; i < outer_num_; ++i) {
    for (int j = 0; j < inner_num_; j++) {
      const int label_value = static_cast<int>(label[i * inner_num_ + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, prob_.shape(softmax_axis_));
      loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
                           Dtype(FLT_MIN)));
      ++count;
    }
  }
  if (normalize_) {
    top[0]->mutable_cpu_data()[0] = loss / count;
  } else {
    top[0]->mutable_cpu_data()[0] = loss / outer_num_;
  }
  if (top.size() == 2) {
    top[1]->ShareData(prob_);
  }
}
開發者ID:105,項目名稱:caffe,代碼行數:31,代碼來源:softmax_loss_layer.cpp

示例4: DCHECK

void IOBuf::coalesceSlow(size_t maxLength) {
  // coalesceSlow() should only be called if we are part of a chain of multiple
  // IOBufs.  The caller should have already verified this.
  DCHECK(isChained());
  DCHECK_LT(length_, maxLength);

  // Compute the length of the entire chain
  uint64_t newLength = 0;
  IOBuf* end = this;
  while (true) {
    newLength += end->length_;
    end = end->next_;
    if (newLength >= maxLength) {
      break;
    }
    if (end == this) {
      throw std::overflow_error("attempted to coalesce more data than "
                                "available");
    }
  }

  coalesceAndReallocate(newLength, end);
  // We should have the requested length now
  DCHECK_GE(length_, maxLength);
}
開發者ID:charsyam,項目名稱:folly,代碼行數:25,代碼來源:IOBuf.cpp

示例5: appendUntypedValue

 /**
  * @brief Append an untyped value to this NativeColumnVector.
  * @warning Appending a new value must not cause the number of values in this
  *          NativeColumnVector to exceed the reserved length supplied to the
  *          constructor.
  * @warning Do not use this with NULL values. Use appendNullValue() instead.
  *
  * @param value A pointer to an untyped value to append to this
  *        NativeColumnVector.
  **/
 inline void appendUntypedValue(const void *value) {
   DCHECK_LT(actual_length_, reserved_length_);
   std::memcpy((static_cast<char*>(values_) + (actual_length_ * type_length_)),
               value,
               type_length_);
   ++actual_length_;
 }
開發者ID:apache,項目名稱:incubator-quickstep,代碼行數:17,代碼來源:ColumnVector.hpp

示例6: degree_

LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
    uint32_t degree,
    Weighting weighting)
    : degree_(degree), weighting_(weighting) {
  DCHECK_LT(degree_, static_cast<uint32_t>(Estimator::kMaxDegree));
  Clear();
}
開發者ID:ksimbili,項目名稱:sky_engine,代碼行數:7,代碼來源:VelocityTracker.cpp

示例7: DCHECK_GE

void WeightedSoftmaxWithLossLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  // The forward pass computes the softmax prob values.
  softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  const Dtype* prob_data = prob_.cpu_data();
  const Dtype* label = bottom[1]->cpu_data();
  const Dtype* sample_weight = bottom[2]->cpu_data();
  int num = prob_.num();
  int dim = prob_.count() / num;
  int spatial_dim = prob_.height() * prob_.width();
  int count = 0;
  Dtype loss = 0;
  for (int i = 0; i < num; ++i) {
    for (int j = 0; j < spatial_dim; j++) {
      const int label_value = static_cast<int>(label[i * spatial_dim + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, prob_.channels());
      Dtype w = sample_weight[i * spatial_dim + j];
      loss -= w * log(std::max(prob_data[i * dim + label_value * spatial_dim + j],
                               Dtype(FLT_MIN)));
      ++count;
    }
  }
  if (normalize_) {
    top[0]->mutable_cpu_data()[0] = loss / count;
  } else {
    top[0]->mutable_cpu_data()[0] = loss / num;
  }
  if (top.size() == 2) {
    top[1]->ShareData(prob_);
  }
}
開發者ID:201power,項目名稱:caffe,代碼行數:35,代碼來源:weighted_softmax_loss_layer.cpp

示例8: DCHECK

void ScriptProcessorHandler::fireProcessEventForOfflineAudioContext(
    unsigned doubleBufferIndex,
    WaitableEvent* waitableEvent) {
  DCHECK(isMainThread());

  DCHECK_LT(doubleBufferIndex, 2u);
  if (doubleBufferIndex > 1) {
    waitableEvent->signal();
    return;
  }

  AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get();
  AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get();
  DCHECK(outputBuffer);
  if (!outputBuffer) {
    waitableEvent->signal();
    return;
  }

  if (node() && context() && context()->getExecutionContext()) {
    // We do not need a process lock here because the offline render thread
    // is locked by the waitable event.
    double playbackTime = (context()->currentSampleFrame() + m_bufferSize) /
                          static_cast<double>(context()->sampleRate());
    node()->dispatchEvent(
        AudioProcessingEvent::create(inputBuffer, outputBuffer, playbackTime));
  }

  waitableEvent->signal();
}
開發者ID:mirror,項目名稱:chromium,代碼行數:30,代碼來源:ScriptProcessorNode.cpp

示例9: addBlockToPartition

 /**
  * @brief Add a block to a partition.
  *
  * @param block_id The id of the block to be added to the partition.
  * @param part_id The id of the partition to add the block to.
  **/
 inline void addBlockToPartition(const block_id block,
                                 const partition_id part_id) {
   DCHECK_LT(part_id, num_partitions_);
   SpinSharedMutexExclusiveLock<false> lock(
       blocks_in_partition_mutexes_[part_id]);
   blocks_in_partition_[part_id].insert(block);
 }
開發者ID:d-dash,項目名稱:quickstep,代碼行數:13,代碼來源:PartitionScheme.hpp

示例10: getTypedValue

 /**
  * @brief Get a value in this NativeColumnVector as a TypedValue.
  *
  * @param position The position of the value to get.
  * @return The value at position.
  **/
 inline TypedValue getTypedValue(const std::size_t position) const {
   DCHECK_LT(position, actual_length_);
   return (null_bitmap_ && null_bitmap_->getBit(position))
       ? type_.makeNullValue()
       : type_.makeValue(static_cast<const char*>(values_) + (position * type_length_),
                         type_length_);
 }
開發者ID:apache,項目名稱:incubator-quickstep,代碼行數:13,代碼來源:ColumnVector.hpp

示例11: bottom_data_vector

void AccuracyLayer<Ftype, Btype>::Forward_cpu(const vector<Blob*>& bottom,
    const vector<Blob*>& top) {
  float accuracy = 0.F;
  const Ftype* bottom_data = bottom[0]->cpu_data<Ftype>();
  const Ftype* bottom_label = bottom[1]->cpu_data<Ftype>();
  const int dim = bottom[0]->count() / outer_num_;
  const int num_labels = bottom[0]->shape(label_axis_);
  if (top.size() > 1) {
    nums_buffer_.set_data(0.F);
    top[1]->set_data(0.F);
  }
  std::vector<std::pair<float, int>> bottom_data_vector(num_labels);
  int count = 0;
  for (int i = 0; i < outer_num_; ++i) {
    for (int j = 0; j < inner_num_; ++j) {
      const int label_value = static_cast<int>(bottom_label[i * inner_num_ + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      if (top.size() > 1) {
        ++nums_buffer_.mutable_cpu_data()[label_value];
      }
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, num_labels);
      // Top-k accuracy
      for (int k = 0; k < num_labels; ++k) {
        bottom_data_vector[k] = std::make_pair(
            static_cast<float>(bottom_data[i * dim + k * inner_num_ + j]), k);
      }

      std::partial_sort(
          bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_,
          bottom_data_vector.end(), std::greater<std::pair<float, int>>());

      // check if true label is in top k predictions
      for (int k = 0; k < top_k_; k++) {
        if (bottom_data_vector[k].second == label_value) {
          accuracy += 1.F;
          if (top.size() > 1) {
            Ftype* top_label = top[1]->mutable_cpu_data<Ftype>();
            top_label[label_value] = top_label[label_value] + 1.;
          }
          break;
        }
      }
      ++count;
    }
  }

  top[0]->mutable_cpu_data<Ftype>()[0] = accuracy / count;
  if (top.size() > 1) {
    for (int i = 0; i < top[1]->count(); ++i) {
      const float num = nums_buffer_.cpu_data()[i];
      Ftype* top_label = top[1]->mutable_cpu_data<Ftype>();
      top_label[i] = num == 0.F ? 0. : top_label[i] / num;
    }
  }
  // Accuracy layer should not be used as a loss function.
}
開發者ID:Caffe-MPI,項目名稱:Caffe-MPI.github.io,代碼行數:59,代碼來源:accuracy_layer.cpp

示例12: getBlocksInPartition

 /**
  * @brief Get all the blocks from a particular partition.
  *
  * @param part_id The id of the partition to retrieve the blocks from.
  * @return The block_ids of blocks belonging to this partition at the moment
  *         when this method is called.
  **/
 inline const std::vector<block_id> getBlocksInPartition(
     const partition_id part_id) const {
   DCHECK_LT(part_id, num_partitions_);
   SpinSharedMutexSharedLock<false> lock(
       blocks_in_partition_mutexes_[part_id]);
   return std::vector<block_id>(blocks_in_partition_[part_id].begin(),
                                blocks_in_partition_[part_id].end());
 }
開發者ID:d-dash,項目名稱:quickstep,代碼行數:15,代碼來源:PartitionScheme.hpp

示例13: addWorkOrderProto

  /**
   * @brief Add a WorkOrder generated from a given
   *        operator.
   *
   * @param workorder A pointer to the WorkOrder to be added.
   * @param operator_index The index of the operator in the query DAG.
   **/
  void addWorkOrderProto(serialization::WorkOrder *proto,
                         const std::size_t operator_index) {
    DCHECK(proto != nullptr);
    DCHECK_LT(operator_index, num_operators_);

    operator_containers_[operator_index].emplace(
        std::unique_ptr<serialization::WorkOrder>(proto));
  }
開發者ID:HanumathRao,項目名稱:incubator-quickstep,代碼行數:15,代碼來源:WorkOrderProtosContainer.hpp

示例14: positionalWriteUntypedValue

 /**
  * @brief Overwrite the value at the specified position with the supplied
  *        untyped value.
  * @warning Do not use this with NULL values. Use positionalWriteNullValue()
  *          instead.
  * @warning You must call prepareForPositionalWrites() BEFORE calling this
  *          method.
  * @warning Do NOT use positional writes in combination with appends.
  * @warning It is intended that this and other positional write methods
  *          should be called exactly once for each position (if this is
  *          violated, NULLs may not be tracked properly).
  *
  * @param position The position of the value in this NativeColumnVector to
  *        overwrite.
  * @param value A pointer to an untyped value to write into this
  *        NativeColumnVector.
  **/
 inline void positionalWriteUntypedValue(const std::size_t position,
                                         const void *value) {
   DCHECK_LT(position, actual_length_);
   DCHECK(value != nullptr);
   std::memcpy((static_cast<char*>(values_) + (position * type_length_)),
               value,
               type_length_);
 }
開發者ID:apache,項目名稱:incubator-quickstep,代碼行數:25,代碼來源:ColumnVector.hpp

示例15: maxval

void AccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  Dtype accuracy = 0;
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_label = bottom[1]->cpu_data();
  const int dim = bottom[0]->count() / outer_num_;
  const int num_labels = bottom[0]->shape(label_axis_);
  vector<Dtype> maxval(top_k_+1);
  vector<int> max_id(top_k_+1);
  if (top.size() > 1) {
    caffe_set(nums_buffer_.count(), Dtype(0), nums_buffer_.mutable_cpu_data());
    caffe_set(top[1]->count(), Dtype(0), top[1]->mutable_cpu_data());
  }
  int count = 0;
  for (int i = 0; i < outer_num_; ++i) {
    for (int j = 0; j < inner_num_; ++j) {
      const int label_value =
          static_cast<int>(bottom_label[i * inner_num_ + j]);
      if (has_ignore_label_ && label_value == ignore_label_) {
        continue;
      }
      if (top.size() > 1) ++nums_buffer_.mutable_cpu_data()[label_value];
      DCHECK_GE(label_value, 0);
      DCHECK_LT(label_value, num_labels);
      // Top-k accuracy
      std::vector<std::pair<Dtype, int> > bottom_data_vector;
      for (int k = 0; k < num_labels; ++k) {
        bottom_data_vector.push_back(std::make_pair(
            bottom_data[i * dim + k * inner_num_ + j], k));
      }
      std::partial_sort(
          bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_,
          bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >());
      // check if true label is in top k predictions
      for (int k = 0; k < top_k_; k++) {
        if (bottom_data_vector[k].second == label_value &&
           (threshold_ <= 0 || bottom_data_vector[k].first >= threshold_ ))
        {
          ++accuracy;
          if (top.size() > 1) ++top[1]->mutable_cpu_data()[label_value];
          break;
        }
      }
      ++count;
    }
  }

  // LOG(INFO) << "Accuracy: " << accuracy;
  top[0]->mutable_cpu_data()[0] = accuracy / count;
  if (top.size() > 1) {
    for (int i = 0; i < top[1]->count(); ++i) {
      top[1]->mutable_cpu_data()[i] =
          nums_buffer_.cpu_data()[i] == 0 ? 0
          : top[1]->cpu_data()[i] / nums_buffer_.cpu_data()[i];
    }
  }
  // Accuracy layer should not be used as a loss function.
}
開發者ID:capeanalytics,項目名稱:caffe,代碼行數:58,代碼來源:accuracy_layer.cpp


注:本文中的DCHECK_LT函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。