本文整理匯總了C++中CopyGuid函數的典型用法代碼示例。如果您正苦於以下問題:C++ CopyGuid函數的具體用法?C++ CopyGuid怎麽用?C++ CopyGuid使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了CopyGuid函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: ASSERT
/**
Builds a HOB for a loaded PE32 module.
This function builds a HOB for a loaded PE32 module.
It can only be invoked during PEI phase;
for DXE phase, it will ASSERT() since PEI HOB is read-only for DXE phase.
If ModuleName is NULL, then ASSERT().
If there is no additional space for HOB creation, then ASSERT().
@param ModuleName The GUID File Name of the module.
@param MemoryAllocationModule The 64 bit physical address of the module.
@param ModuleLength The length of the module in bytes.
@param EntryPoint The 64 bit physical address of the module's entry point.
**/
VOID
EFIAPI
GlueBuildModuleHob (
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
)
{
EFI_HOB_MEMORY_ALLOCATION_MODULE *Hob;
Hob = InternalPeiCreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, (UINT16) sizeof (EFI_HOB_MEMORY_ALLOCATION_MODULE));
if (Hob == NULL) {
return;
}
CopyGuid (&(Hob->MemoryAllocationHeader.Name), &gEfiHobMemoryAllocModuleGuid);
Hob->MemoryAllocationHeader.MemoryBaseAddress = MemoryAllocationModule;
Hob->MemoryAllocationHeader.MemoryLength = ModuleLength;
Hob->MemoryAllocationHeader.MemoryType = EfiBootServicesCode;
//
// Zero the reserved space to match HOB spec
//
ZeroMem (Hob->MemoryAllocationHeader.Reserved, sizeof (Hob->MemoryAllocationHeader.Reserved));
CopyGuid (&Hob->ModuleName, ModuleName);
Hob->EntryPoint = EntryPoint;
}
示例2: ASSERT
/**
Builds a HOB for a loaded PE32 module.
This function builds a HOB for a loaded PE32 module.
It can only be invoked during PEI phase;
for DXE phase, it will ASSERT() since PEI HOB is read-only for DXE phase.
If ModuleName is NULL, then ASSERT().
If there is no additional space for HOB creation, then ASSERT().
@param ModuleName The GUID File Name of the module.
@param MemoryAllocationModule The 64 bit physical address of the module.
@param ModuleLength The length of the module in bytes.
@param EntryPoint The 64 bit physical address of the module entry point.
**/
VOID
EFIAPI
BuildModuleHob (
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
)
{
EFI_HOB_MEMORY_ALLOCATION_MODULE *Hob;
ASSERT (((MemoryAllocationModule & (EFI_PAGE_SIZE - 1)) == 0) &&
((ModuleLength & (EFI_PAGE_SIZE - 1)) == 0));
Hob = CreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, sizeof (EFI_HOB_MEMORY_ALLOCATION_MODULE));
CopyGuid (&(Hob->MemoryAllocationHeader.Name), &gEfiHobMemoryAllocModuleGuid);
Hob->MemoryAllocationHeader.MemoryBaseAddress = MemoryAllocationModule;
Hob->MemoryAllocationHeader.MemoryLength = ModuleLength;
Hob->MemoryAllocationHeader.MemoryType = EfiBootServicesCode;
//
// Zero the reserved space to match HOB spec
//
ZeroMem (Hob->MemoryAllocationHeader.Reserved, sizeof (Hob->MemoryAllocationHeader.Reserved));
CopyGuid (&Hob->ModuleName, ModuleName);
Hob->EntryPoint = EntryPoint;
}
示例3: InitializePlatformBootManagerLib
EFI_STATUS
EFIAPI
InitializePlatformBootManagerLib (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_GUID *TerminalTypeGuid;
//
// Update UART device path nodes based on UART PCD settings
//
gPciUartDevicePath0.Uart.BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
gPciUartDevicePath0.Uart.DataBits = PcdGet8 (PcdUartDefaultDataBits);
gPciUartDevicePath0.Uart.Parity = PcdGet8 (PcdUartDefaultParity);
gPciUartDevicePath0.Uart.StopBits = PcdGet8 (PcdUartDefaultStopBits);
gPciUartDevicePath1.Uart.BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
gPciUartDevicePath1.Uart.DataBits = PcdGet8 (PcdUartDefaultDataBits);
gPciUartDevicePath1.Uart.Parity = PcdGet8 (PcdUartDefaultParity);
gPciUartDevicePath1.Uart.StopBits = PcdGet8 (PcdUartDefaultStopBits);
//
// Update Vendor device path nodes based on terminal type PCD settings
//
switch (PcdGet8 (PcdDefaultTerminalType)) {
case PCANSITYPE:
TerminalTypeGuid = &gEfiPcAnsiGuid;
break;
case VT100TYPE:
TerminalTypeGuid = &gEfiVT100Guid;
break;
case VT100PLUSTYPE:
TerminalTypeGuid = &gEfiVT100PlusGuid;
break;
case VTUTF8TYPE:
TerminalTypeGuid = &gEfiVTUTF8Guid;
break;
case TTYTERMTYPE:
TerminalTypeGuid = &gEfiTtyTermGuid;
break;
default:
TerminalTypeGuid = &gEfiPcAnsiGuid;
break;
}
CopyGuid (&gPciUartDevicePath0.TerminalType.Guid, TerminalTypeGuid);
CopyGuid (&gPciUartDevicePath1.TerminalType.Guid, TerminalTypeGuid);
return EFI_SUCCESS;
}
示例4: SmmAddToDriverList
/**
Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
and initilize any state variables. Read the Depex from the FV and store it
in DriverEntry. Pre-process the Depex to set the Before and After state.
The Discovered list is never free'ed and contains booleans that represent the
other possible SMM driver states.
@param Fv Fv protocol, needed to read Depex info out of
FLASH.
@param FvHandle Handle for Fv, needed in the
EFI_SMM_DRIVER_ENTRY so that the PE image can be
read out of the FV at a later time.
@param DriverName Name of driver to add to mDiscoveredList.
@retval EFI_SUCCESS If driver was added to the mDiscoveredList.
@retval EFI_ALREADY_STARTED The driver has already been started. Only one
DriverName may be active in the system at any one
time.
**/
EFI_STATUS
SmmAddToDriverList (
IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
IN EFI_HANDLE FvHandle,
IN EFI_GUID *DriverName
)
{
EFI_SMM_DRIVER_ENTRY *DriverEntry;
//
// Create the Driver Entry for the list. ZeroPool initializes lots of variables to
// NULL or FALSE.
//
DriverEntry = AllocateZeroPool (sizeof (EFI_SMM_DRIVER_ENTRY));
ASSERT (DriverEntry != NULL);
DriverEntry->Signature = EFI_SMM_DRIVER_ENTRY_SIGNATURE;
CopyGuid (&DriverEntry->FileName, DriverName);
DriverEntry->FvHandle = FvHandle;
DriverEntry->Fv = Fv;
DriverEntry->FvFileDevicePath = SmmFvToDevicePath (Fv, FvHandle, DriverName);
SmmGetDepexSectionAndPreProccess (DriverEntry);
InsertTailList (&mDiscoveredList, &DriverEntry->Link);
gRequestDispatch = TRUE;
return EFI_SUCCESS;
}
示例5: CreateThunkContextForUefiHiiHandle
/**
This function create a HII_THUNK_CONTEXT for the input UEFI HiiHandle
that is created when a package list registered by a module calling
EFI_HII_DATABASE_PROTOCOL.NewPackageList.
This function records the PackageListGuid of EFI_HII_PACKAGE_LIST_HEADER
into the TagGuid of the created HII_THUNK_CONTEXT.
@param UefiHiiHandle The UEFI HII Handle.
@return the new created Hii thunk context.
**/
HII_THUNK_CONTEXT *
CreateThunkContextForUefiHiiHandle (
IN EFI_HII_HANDLE UefiHiiHandle
)
{
EFI_STATUS Status;
EFI_GUID PackageGuid;
HII_THUNK_CONTEXT *ThunkContext;
ThunkContext = AllocateZeroPool (sizeof (*ThunkContext));
ASSERT (ThunkContext != NULL);
ThunkContext->Signature = HII_THUNK_CONTEXT_SIGNATURE;
Status = AllocateHiiHandle (&ThunkContext->FwHiiHandle);
if (EFI_ERROR (Status)) {
return NULL;
}
ThunkContext->UefiHiiHandle = UefiHiiHandle;
Status = ExtractGuidFromHiiHandle (UefiHiiHandle, &PackageGuid);
ASSERT_EFI_ERROR (Status);
CopyGuid(&ThunkContext->TagGuid, &PackageGuid);
return ThunkContext;
}
示例6: GetFormSetGuid
/**
Get FormSet GUID.
ASSERT if no FormSet Opcode is found.
@param Packages Form Framework Package.
@param FormSetGuid Return the FormSet Guid.
**/
VOID
GetFormSetGuid (
IN EFI_HII_PACKAGE_HEADER *Package,
OUT EFI_GUID *FormSetGuid
)
{
UINTN Offset;
EFI_IFR_OP_HEADER *OpCode;
EFI_IFR_FORM_SET *FormSet;
Offset = sizeof (EFI_HII_PACKAGE_HEADER);
while (Offset < Package->Length) {
OpCode = (EFI_IFR_OP_HEADER *)((UINT8 *) Package + Offset);
switch (OpCode->OpCode) {
case EFI_IFR_FORM_SET_OP:
FormSet = (EFI_IFR_FORM_SET *) OpCode;
CopyGuid (FormSetGuid, (EFI_GUID *)(VOID *)&FormSet->Guid);
return;
default:
break;
}
Offset += OpCode->Length;
}
//
// A proper IFR must have a formset opcode.
//
ASSERT (FALSE);
}
示例7: RecordCapsuleStatusVariable
/**
Record capsule status variable and to local cache.
@param[in] CapsuleHeader The capsule image header
@param[in] CapsuleStatus The capsule process stauts
@retval EFI_SUCCESS The capsule status variable is recorded.
@retval EFI_OUT_OF_RESOURCES No resource to record the capsule status variable.
**/
EFI_STATUS
RecordCapsuleStatusVariable (
IN EFI_CAPSULE_HEADER *CapsuleHeader,
IN EFI_STATUS CapsuleStatus
)
{
EFI_CAPSULE_RESULT_VARIABLE_HEADER CapsuleResultVariable;
EFI_STATUS Status;
CapsuleResultVariable.VariableTotalSize = sizeof(CapsuleResultVariable);
CopyGuid (&CapsuleResultVariable.CapsuleGuid, &CapsuleHeader->CapsuleGuid);
ZeroMem(&CapsuleResultVariable.CapsuleProcessed, sizeof(CapsuleResultVariable.CapsuleProcessed));
gRT->GetTime(&CapsuleResultVariable.CapsuleProcessed, NULL);
CapsuleResultVariable.CapsuleStatus = CapsuleStatus;
//
// Save Local Cache
//
Status = WriteNewCapsuleResultVariableCache(&CapsuleResultVariable, sizeof(CapsuleResultVariable));
if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) != 0) {
Status = WriteNewCapsuleResultVariable(&CapsuleResultVariable, sizeof(CapsuleResultVariable));
}
return Status;
}
示例8: GetAllSmmGaugeDataEx
EFIAPI
GetAllSmmGaugeDataEx (VOID)
{
EFI_STATUS Status;
EFI_SMM_COMMUNICATE_HEADER *SmmCommBufferHeader;
SMM_PERF_COMMUNICATE_EX *SmmPerfCommData;
UINTN CommSize;
UINTN DataSize;
if (mGaugeDataEx != NULL) {
return mGaugeDataEx;
}
Status = GetCommunicationProtocol ();
if (EFI_ERROR (Status)) {
return NULL;
}
//
// Initialize communicate buffer
//
SmmCommBufferHeader = (EFI_SMM_COMMUNICATE_HEADER *)mSmmPerformanceBuffer;
SmmPerfCommData = (SMM_PERF_COMMUNICATE_EX *)SmmCommBufferHeader->Data;
ZeroMem((UINT8*)SmmPerfCommData, sizeof(SMM_PERF_COMMUNICATE_EX));
CopyGuid (&SmmCommBufferHeader->HeaderGuid, &gSmmPerformanceExProtocolGuid);
SmmCommBufferHeader->MessageLength = sizeof(SMM_PERF_COMMUNICATE_EX);
CommSize = SMM_PERFORMANCE_COMMUNICATION_BUFFER_SIZE;
//
// Get totol number of SMM gauge entries
//
SmmPerfCommData->Function = SMM_PERF_FUNCTION_GET_GAUGE_ENTRY_NUMBER;
Status = mSmmCommunication->Communicate (mSmmCommunication, mSmmPerformanceBuffer, &CommSize);
if (EFI_ERROR (Status) || EFI_ERROR (SmmPerfCommData->ReturnStatus) || SmmPerfCommData->NumberOfEntries == 0) {
return NULL;
}
mGaugeNumberOfEntriesEx = SmmPerfCommData->NumberOfEntries;
DataSize = mGaugeNumberOfEntriesEx * sizeof(GAUGE_DATA_ENTRY_EX);
mGaugeDataEx = AllocateZeroPool(DataSize);
ASSERT (mGaugeDataEx != NULL);
//
// Get all SMM gauge data
//
SmmPerfCommData->Function = SMM_PERF_FUNCTION_GET_GAUGE_DATA;
SmmPerfCommData->LogEntryKey = 0;
SmmPerfCommData->NumberOfEntries = mGaugeNumberOfEntriesEx;
SmmPerfCommData->GaugeDataEx = mGaugeDataEx;
Status = mSmmCommunication->Communicate (mSmmCommunication, mSmmPerformanceBuffer, &CommSize);
if (EFI_ERROR (Status) || EFI_ERROR (SmmPerfCommData->ReturnStatus)) {
FreePool (mGaugeDataEx);
mGaugeDataEx = NULL;
mGaugeNumberOfEntriesEx = 0;
}
return mGaugeDataEx;
}
示例9: BuildGuidHob
EFIAPI
BuildGuidHob (
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
)
{
EFI_HOB_GUID_TYPE *Hob;
//
// Make sure Guid is valid
//
ASSERT (Guid != NULL);
//
// Make sure that data length is not too long.
//
ASSERT (DataLength <= (0xffff - sizeof (EFI_HOB_GUID_TYPE)));
Hob = InternalPeiCreateHob (EFI_HOB_TYPE_GUID_EXTENSION, (UINT16) (sizeof (EFI_HOB_GUID_TYPE) + DataLength));
if (Hob == NULL) {
return Hob;
}
CopyGuid (&Hob->Name, Guid);
return Hob + 1;
}
示例10: ASSERT
/**
Builds a HOB for the Stack.
This function builds a HOB for the stack.
It can only be invoked during PEI phase;
for DXE phase, it will ASSERT() since PEI HOB is read-only for DXE phase.
If there is no additional space for HOB creation, then ASSERT().
@param BaseAddress The 64 bit physical address of the Stack.
@param Length The length of the stack in bytes.
**/
VOID
EFIAPI
BuildStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_HOB_MEMORY_ALLOCATION_STACK *Hob;
ASSERT (((BaseAddress & (EFI_PAGE_SIZE - 1)) == 0) &&
((Length & (EFI_PAGE_SIZE - 1)) == 0));
Hob = InternalPeiCreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, (UINT16) sizeof (EFI_HOB_MEMORY_ALLOCATION_STACK));
if (Hob == NULL) {
return;
}
CopyGuid (&(Hob->AllocDescriptor.Name), &gEfiHobMemoryAllocStackGuid);
Hob->AllocDescriptor.MemoryBaseAddress = BaseAddress;
Hob->AllocDescriptor.MemoryLength = Length;
Hob->AllocDescriptor.MemoryType = EfiBootServicesData;
//
// Zero the reserved space to match HOB spec
//
ZeroMem (Hob->AllocDescriptor.Reserved, sizeof (Hob->AllocDescriptor.Reserved));
}
示例11: VirtioRngGetInfo
/**
Returns information about the random number generation implementation.
@param[in] This A pointer to the EFI_RNG_PROTOCOL
instance.
@param[in,out] RNGAlgorithmListSize On input, the size in bytes of
RNGAlgorithmList.
On output with a return code of
EFI_SUCCESS, the size in bytes of the
data returned in RNGAlgorithmList. On
output with a return code of
EFI_BUFFER_TOO_SMALL, the size of
RNGAlgorithmList required to obtain the
list.
@param[out] RNGAlgorithmList A caller-allocated memory buffer filled
by the driver with one EFI_RNG_ALGORITHM
element for each supported RNG algorithm.
The list must not change across multiple
calls to the same driver. The first
algorithm in the list is the default
algorithm for the driver.
@retval EFI_SUCCESS The RNG algorithm list was returned
successfully.
@retval EFI_UNSUPPORTED The services is not supported by this
driver.
@retval EFI_DEVICE_ERROR The list of algorithms could not be
retrieved due to a hardware or firmware
error.
@retval EFI_INVALID_PARAMETER One or more of the parameters are
incorrect.
@retval EFI_BUFFER_TOO_SMALL The buffer RNGAlgorithmList is too small
to hold the result.
**/
STATIC
EFI_STATUS
EFIAPI
VirtioRngGetInfo (
IN EFI_RNG_PROTOCOL *This,
IN OUT UINTN *RNGAlgorithmListSize,
OUT EFI_RNG_ALGORITHM *RNGAlgorithmList
)
{
if (This == NULL || RNGAlgorithmListSize == NULL) {
return EFI_INVALID_PARAMETER;
}
if (*RNGAlgorithmListSize < sizeof (EFI_RNG_ALGORITHM)) {
*RNGAlgorithmListSize = sizeof (EFI_RNG_ALGORITHM);
return EFI_BUFFER_TOO_SMALL;
}
if (RNGAlgorithmList == NULL) {
return EFI_INVALID_PARAMETER;
}
*RNGAlgorithmListSize = sizeof (EFI_RNG_ALGORITHM);
CopyGuid (RNGAlgorithmList, &gEfiRngAlgorithmRaw);
return EFI_SUCCESS;
}
示例12: InitCommunicateBuffer
/**
Initialize the communicate buffer using DataSize and Function number.
@param[out] CommunicateBuffer The communicate buffer. Caller should free it after use.
@param[out] DataPtr Points to the data in the communicate buffer. Caller should not free it.
@param[in] DataSize The payload size.
@param[in] Function The function number used to initialize the communicate header.
**/
VOID
InitCommunicateBuffer (
OUT VOID **CommunicateBuffer,
OUT VOID **DataPtr,
IN UINTN DataSize,
IN UINTN Function
)
{
EFI_SMM_COMMUNICATE_HEADER *SmmCommunicateHeader;
SMM_FTW_COMMUNICATE_FUNCTION_HEADER *SmmFtwFunctionHeader;
//
// The whole buffer size: SMM_COMMUNICATE_HEADER_SIZE + SMM_FTW_COMMUNICATE_HEADER_SIZE + DataSize.
//
SmmCommunicateHeader = AllocateZeroPool (DataSize + SMM_COMMUNICATE_HEADER_SIZE + SMM_FTW_COMMUNICATE_HEADER_SIZE);
ASSERT (SmmCommunicateHeader != NULL);
//
// Prepare data buffer.
//
CopyGuid (&SmmCommunicateHeader->HeaderGuid, &gEfiSmmFaultTolerantWriteProtocolGuid);
SmmCommunicateHeader->MessageLength = DataSize + SMM_FTW_COMMUNICATE_HEADER_SIZE;
SmmFtwFunctionHeader = (SMM_FTW_COMMUNICATE_FUNCTION_HEADER *) SmmCommunicateHeader->Data;
SmmFtwFunctionHeader->Function = Function;
*CommunicateBuffer = SmmCommunicateHeader;
if (DataPtr != NULL) {
*DataPtr = SmmFtwFunctionHeader->Data;
}
}
示例13: FtwAllocate
/**
Allocates space for the protocol to maintain information about writes.
Since writes must be completed in a fault-tolerant manner and multiple
writes require more resources to be successful, this function
enables the protocol to ensure that enough space exists to track
information about upcoming writes.
@param[in] This A pointer to the calling context.
@param[in] CallerId The GUID identifying the write.
@param[in] PrivateDataSize The size of the caller's private data that must be
recorded for each write.
@param[in] NumberOfWrites The number of fault tolerant block writes that will
need to occur.
@retval EFI_SUCCESS The function completed successfully
@retval EFI_ABORTED The function could not complete successfully.
@retval EFI_ACCESS_DENIED Not all allocated writes have been completed. All
writes must be completed or aborted before another
fault tolerant write can occur.
**/
EFI_STATUS
EFIAPI
FtwAllocate (
IN EFI_FAULT_TOLERANT_WRITE_PROTOCOL *This,
IN EFI_GUID *CallerId,
IN UINTN PrivateDataSize,
IN UINTN NumberOfWrites
)
{
EFI_STATUS Status;
UINTN PayloadSize;
EFI_SMM_COMMUNICATE_HEADER *SmmCommunicateHeader;
SMM_FTW_ALLOCATE_HEADER *SmmFtwAllocateHeader;
//
// Initialize the communicate buffer.
//
PayloadSize = sizeof (SMM_FTW_ALLOCATE_HEADER);
InitCommunicateBuffer ((VOID **)&SmmCommunicateHeader, (VOID **)&SmmFtwAllocateHeader, PayloadSize, FTW_FUNCTION_ALLOCATE);
CopyGuid (&SmmFtwAllocateHeader->CallerId, CallerId);
SmmFtwAllocateHeader->PrivateDataSize = PrivateDataSize;
SmmFtwAllocateHeader->NumberOfWrites = NumberOfWrites;
//
// Send data to SMM.
//
Status = SendCommunicateBuffer (SmmCommunicateHeader, PayloadSize);
if (!EFI_ERROR( Status)) {
mPrivateDataSize = PrivateDataSize;
}
FreePool (SmmCommunicateHeader);
return Status;
}
示例14: ASSERT
/**
Registers handlers of type EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER and EXTRACT_GUIDED_SECTION_DECODE_HANDLER
for a specific GUID section type.
Registers the handlers specified by GetInfoHandler and DecodeHandler with the GUID specified by SectionGuid.
If the GUID value specified by SectionGuid has already been registered, then return RETURN_ALREADY_STARTED.
If there are not enough resources available to register the handlers then RETURN_OUT_OF_RESOURCES is returned.
If SectionGuid is NULL, then ASSERT().
If GetInfoHandler is NULL, then ASSERT().
If DecodeHandler is NULL, then ASSERT().
@param[in] SectionGuid A pointer to the GUID associated with the the handlers
of the GUIDed section type being registered.
@param[in] GetInfoHandler The pointer to a function that examines a GUIDed section and returns the
size of the decoded buffer and the size of an optional scratch buffer
required to actually decode the data in a GUIDed section.
@param[in] DecodeHandler The pointer to a function that decodes a GUIDed section into a caller
allocated output buffer.
@retval RETURN_SUCCESS The handlers were registered.
@retval RETURN_OUT_OF_RESOURCES There are not enough resources available to register the handlers.
**/
RETURN_STATUS
EFIAPI
ExtractGuidedSectionRegisterHandlers (
IN CONST GUID *SectionGuid,
IN EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER GetInfoHandler,
IN EXTRACT_GUIDED_SECTION_DECODE_HANDLER DecodeHandler
)
{
UINT32 Index;
RETURN_STATUS Status;
EXTRACT_GUIDED_SECTION_HANDLER_INFO *HandlerInfo;
//
// Check input paramter
//
ASSERT (SectionGuid != NULL);
ASSERT (GetInfoHandler != NULL);
ASSERT (DecodeHandler != NULL);
//
// Get the registered handler information
//
Status = GetExtractGuidedSectionHandlerInfo (&HandlerInfo);
if (RETURN_ERROR (Status)) {
return Status;
}
//
// Search the match registered GetInfo handler for the input guided section.
//
ASSERT (HandlerInfo != NULL);
for (Index = 0; Index < HandlerInfo->NumberOfExtractHandler; Index ++) {
if (CompareGuid (HandlerInfo->ExtractHandlerGuidTable + Index, SectionGuid)) {
//
// If the guided handler has been registered before, only update its handler.
//
HandlerInfo->ExtractDecodeHandlerTable [Index] = DecodeHandler;
HandlerInfo->ExtractGetInfoHandlerTable [Index] = GetInfoHandler;
return RETURN_SUCCESS;
}
}
//
// Check the global table is enough to contain new Handler.
//
if (HandlerInfo->NumberOfExtractHandler >= PcdGet32 (PcdMaximumGuidedExtractHandler)) {
return RETURN_OUT_OF_RESOURCES;
}
//
// Register new Handler and guid value.
//
CopyGuid (HandlerInfo->ExtractHandlerGuidTable + HandlerInfo->NumberOfExtractHandler, SectionGuid);
HandlerInfo->ExtractDecodeHandlerTable [HandlerInfo->NumberOfExtractHandler] = DecodeHandler;
HandlerInfo->ExtractGetInfoHandlerTable [HandlerInfo->NumberOfExtractHandler++] = GetInfoHandler;
return RETURN_SUCCESS;
}
示例15: FvFillFfsFile
/**
Create entire FFS file.
@param FileHeader Starting Address of a Buffer that hold the FFS File image.
@param FfsFileBuffer The source buffer that contains the File Data.
@param BufferSize The length of FfsFileBuffer.
@param ActualFileSize Size of FFS file.
@param FileName The Guid of Ffs File.
@param FileType The type of the written Ffs File.
@param FileAttributes The attributes of the written Ffs File.
@retval EFI_INVALID_PARAMETER File type is not valid.
@retval EFI_SUCCESS FFS file is successfully created.
**/
EFI_STATUS
FvFillFfsFile (
OUT EFI_FFS_FILE_HEADER *FileHeader,
IN UINT8 *FfsFileBuffer,
IN UINTN BufferSize,
IN UINTN ActualFileSize,
IN EFI_GUID *FileName,
IN EFI_FV_FILETYPE FileType,
IN EFI_FV_FILE_ATTRIBUTES FileAttributes
)
{
EFI_FFS_FILE_ATTRIBUTES TmpFileAttribute;
EFI_FFS_FILE_HEADER *TmpFileHeader;
//
// File Type value 0x0E~0xE0 are reserved
//
if ((FileType > EFI_FV_FILETYPE_SMM_CORE) && (FileType < 0xE0)) {
return EFI_INVALID_PARAMETER;
}
TmpFileHeader = (EFI_FFS_FILE_HEADER *) FfsFileBuffer;
//
// First fill all fields ready in FfsFileBuffer
//
CopyGuid (&TmpFileHeader->Name, FileName);
TmpFileHeader->Type = FileType;
//
// Convert the FileAttributes to FFSFileAttributes
//
FvFileAttrib2FfsFileAttrib (FileAttributes, &TmpFileAttribute);
TmpFileHeader->Attributes = TmpFileAttribute;
if (ActualFileSize > 0x00FFFFFF) {
((EFI_FFS_FILE_HEADER2 *) FileHeader)->ExtendedSize = (UINT32) ActualFileSize;
*(UINT32 *) FileHeader->Size &= 0xFF000000;
FileHeader->Attributes |= FFS_ATTRIB_LARGE_FILE;
} else {
*(UINT32 *) FileHeader->Size &= 0xFF000000;
*(UINT32 *) FileHeader->Size |= ActualFileSize;
}
SetHeaderChecksum (TmpFileHeader);
SetFileChecksum (TmpFileHeader, ActualFileSize);
SetFileState (EFI_FILE_HEADER_CONSTRUCTION, TmpFileHeader);
SetFileState (EFI_FILE_HEADER_VALID, TmpFileHeader);
SetFileState (EFI_FILE_DATA_VALID, TmpFileHeader);
//
// Copy data from FfsFileBuffer to FileHeader(cache)
//
CopyMem (FileHeader, FfsFileBuffer, BufferSize);
return EFI_SUCCESS;
}