本文整理匯總了C++中Complex函數的典型用法代碼示例。如果您正苦於以下問題:C++ Complex函數的具體用法?C++ Complex怎麽用?C++ Complex使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Complex函數的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Complex
Complex Complex::operator + (const Complex &c2) const
{
return Complex(real+c2.real,image+c2.image);
}
示例2: Complex
Complex Complex::cc() const {
return Complex(real(), -imag());
}
示例3: ComplexLUDecompose
int ComplexLUDecompose(pcomplex **a, int n, double *vv, int *indx, double *pd)
// pcomplex **a; the matrix whose LU-decomposition is wanted
// int n; order of a
// double *vv; work vector of size n (stores implicit
// scaling of each row)
// int *indx; => row permutation according to partial
// pivoting sequence
// double *pd; => 1 if number of row interchanges was even,
// -1 if odd (NULL OK)
{
int i, imax, j, k;
double big, dum, temp, d;
pcomplex sum, cdum;
d = 1.0;
imax = 0; // only to shut the compiler up.
for (i = 0; i < n; i++) {
big = 0.0;
for (j = 0; j < n; j++) {
if ((temp = Cabs(a[i][j])) > big)
big = temp;
}
if (big == 0.0) {
printf("singular matrix in routine ComplexLUDecompose\n");
return 1;
}
vv[i] = 1.0 / big;
}
for (j = 0; j < n; j++) {
for (i = 0; i < j; i++) {
sum = a[i][j];
for (k = 0; k < i; k++)
sum = Csub(sum, Cmul(a[i][k], a[k][j]));
a[i][j] = sum;
}
big = 0.0;
for (i = j; i < n; i++) {
sum = a[i][j];
for (k = 0; k < j; k++)
sum = Csub(sum, Cmul(a[i][k], a[k][j]));
a[i][j] = sum;
dum = vv[i] * Cabs(sum);
if (dum >= big) {
big = dum;
imax = i;
}
}
if (j != imax) {
for (k = 0; k < n; k++) {
cdum = a[imax][k];
a[imax][k] = a[j][k];
a[j][k] = cdum;
}
d = -d;
vv[imax] = vv[j];
}
indx[j] = imax;
if (a[j][j].re == 0.0 && a[j][j].im == 0.0)
a[j][j] = Complex(1.0e-20, 1.0e-20);
if (j != n - 1){
cdum = Cdiv(Complex(1.0, 0.0), a[j][j]);
for (i = j + 1; i < n; i++)
a[i][j] = Cmul(a[i][j], cdum);
}
}
if (pd != NULL)
*pd = d;
return 0;
}
示例4: Complex
Complex Complex::operator * (const Complex &c)
{
double real=re_ * c.re() - im_ * c.im();
double image=re_ * c.im() + im_ * c.re();
return Complex(real, image);
}
示例5: Complex
// /
const Complex Complex::operator/(const Complex& rhs) {
// how to divide?
double real = (this->realpart * rhs.realpart) - (this->imgpart * rhs.imgpart);
double img = (this->realpart * rhs.imgpart) + (this->imgpart * rhs.realpart);
return Complex(real, img);
}
示例6: muxImaginaryZeros
void muxImaginaryZeros(T& fromVec,U& toVec)
{
toVec.resize(fromVec.size());
for (size_t i=0; i!=toVec.size(); i++)
toVec[i] = Complex(fromVec[i],0);
}
示例7: START_LOG
Real
MAST::ComplexAssemblyBase::residual_l2_norm(const libMesh::NumericVector<Real>& real,
const libMesh::NumericVector<Real>& imag) {
START_LOG("complex_solve()", "Residual-L2");
MAST::NonlinearSystem& nonlin_sys = _system->system();
// iterate over each element, initialize it and get the relevant
// analysis quantities
RealVectorX
sol,
vec_re;
RealMatrixX
mat_re;
ComplexVectorX
delta_sol,
vec;
ComplexMatrixX
mat;
std::vector<libMesh::dof_id_type> dof_indices;
const libMesh::DofMap& dof_map = nonlin_sys.get_dof_map();
std::unique_ptr<libMesh::NumericVector<Real> >
residual_re(nonlin_sys.solution->zero_clone().release()),
residual_im(nonlin_sys.solution->zero_clone().release()),
localized_base_solution,
localized_real_solution(build_localized_vector(nonlin_sys, real).release()),
localized_imag_solution(build_localized_vector(nonlin_sys, imag).release());
if (_base_sol)
localized_base_solution.reset(build_localized_vector(nonlin_sys,
*_base_sol).release());
// if a solution function is attached, initialize it
//if (_sol_function)
// _sol_function->init( X);
libMesh::MeshBase::const_element_iterator el =
nonlin_sys.get_mesh().active_local_elements_begin();
const libMesh::MeshBase::const_element_iterator end_el =
nonlin_sys.get_mesh().active_local_elements_end();
MAST::ComplexAssemblyElemOperations&
ops = dynamic_cast<MAST::ComplexAssemblyElemOperations&>(*_elem_ops);
for ( ; el != end_el; ++el) {
const libMesh::Elem* elem = *el;
dof_map.dof_indices (elem, dof_indices);
ops.init(*elem);
// get the solution
unsigned int ndofs = (unsigned int)dof_indices.size();
sol.setZero(ndofs);
delta_sol.setZero(ndofs);
vec.setZero(ndofs);
mat.setZero(ndofs, ndofs);
// set zero velocity for base solution
ops.set_elem_velocity(sol);
// set the value of the base solution, if provided
if (_base_sol)
for (unsigned int i=0; i<dof_indices.size(); i++)
sol(i) = (*localized_base_solution)(dof_indices[i]);
ops.set_elem_solution(sol);
// set the value of the small-disturbance solution
for (unsigned int i=0; i<dof_indices.size(); i++)
delta_sol(i) = Complex((*localized_real_solution)(dof_indices[i]),
(*localized_imag_solution)(dof_indices[i]));
ops.set_elem_complex_solution(delta_sol);
// if (_sol_function)
// ops.attach_active_solution_function(*_sol_function);
// perform the element level calculations
ops.elem_calculations(false,
vec, mat);
ops.clear_elem();
// ops.detach_active_solution_function();
// add to the real part of the residual
vec_re = vec.real();
DenseRealVector v;
MAST::copy(v, vec_re);
dof_map.constrain_element_vector(v, dof_indices);
//.........這裏部分代碼省略.........
示例8: Complex
void Biquad::setAllpassPole(const Complex& pole) {
Complex zero = Complex(1, 0) / pole;
setZeroPolePairs(zero, pole);
}
示例9: residual_and_jacobian_field_split
void
MAST::ComplexAssemblyBase::
residual_and_jacobian_field_split (const libMesh::NumericVector<Real>& X_R,
const libMesh::NumericVector<Real>& X_I,
libMesh::NumericVector<Real>& R_R,
libMesh::NumericVector<Real>& R_I,
libMesh::SparseMatrix<Real>& J_R,
libMesh::SparseMatrix<Real>& J_I) {
libmesh_assert(_system);
libmesh_assert(_discipline);
libmesh_assert(_elem_ops);
MAST::NonlinearSystem& nonlin_sys = _system->system();
R_R.zero();
R_I.zero();
J_R.zero();
J_I.zero();
// iterate over each element, initialize it and get the relevant
// analysis quantities
RealVectorX sol, vec_re;
RealMatrixX mat_re;
ComplexVectorX delta_sol, vec;
ComplexMatrixX mat;
std::vector<libMesh::dof_id_type> dof_indices;
const libMesh::DofMap& dof_map = _system->system().get_dof_map();
std::unique_ptr<libMesh::NumericVector<Real> >
localized_base_solution,
localized_real_solution,
localized_imag_solution;
// localize the base solution, if it was provided
if (_base_sol)
localized_base_solution.reset(build_localized_vector(nonlin_sys,
*_base_sol).release());
// localize sol to real vector
localized_real_solution.reset(build_localized_vector(nonlin_sys,
X_R).release());
// localize sol to imag vector
localized_imag_solution.reset(build_localized_vector(nonlin_sys,
X_I).release());
// if a solution function is attached, initialize it
//if (_sol_function)
// _sol_function->init( X);
libMesh::MeshBase::const_element_iterator el =
nonlin_sys.get_mesh().active_local_elements_begin();
const libMesh::MeshBase::const_element_iterator end_el =
nonlin_sys.get_mesh().active_local_elements_end();
MAST::ComplexAssemblyElemOperations&
ops = dynamic_cast<MAST::ComplexAssemblyElemOperations&>(*_elem_ops);
for ( ; el != end_el; ++el) {
const libMesh::Elem* elem = *el;
dof_map.dof_indices (elem, dof_indices);
ops.init(*elem);
// get the solution
unsigned int ndofs = (unsigned int)dof_indices.size();
sol.setZero(ndofs);
delta_sol.setZero(ndofs);
vec.setZero(ndofs);
mat.setZero(ndofs, ndofs);
// first set the velocity to be zero
ops.set_elem_velocity(sol);
// next, set the base solution, if provided
if (_base_sol)
for (unsigned int i=0; i<dof_indices.size(); i++)
sol(i) = (*localized_base_solution)(dof_indices[i]);
ops.set_elem_solution(sol);
// set the value of the small-disturbance solution
for (unsigned int i=0; i<dof_indices.size(); i++)
delta_sol(i) = Complex((*localized_real_solution)(dof_indices[i]),
(*localized_imag_solution)(dof_indices[i]));
ops.set_elem_complex_solution(delta_sol);
// if (_sol_function)
// physics_elem->attach_active_solution_function(*_sol_function);
//.........這裏部分代碼省略.........
示例10: residual_and_jacobian_blocked
void
MAST::ComplexAssemblyBase::
residual_and_jacobian_blocked (const libMesh::NumericVector<Real>& X,
libMesh::NumericVector<Real>& R,
libMesh::SparseMatrix<Real>& J,
MAST::Parameter* p) {
libmesh_assert(_system);
libmesh_assert(_discipline);
libmesh_assert(_elem_ops);
START_LOG("residual_and_jacobian()", "ComplexSolve");
MAST::NonlinearSystem& nonlin_sys = _system->system();
R.zero();
J.zero();
// iterate over each element, initialize it and get the relevant
// analysis quantities
RealVectorX
sol;
ComplexVectorX
delta_sol,
vec;
ComplexMatrixX
mat,
dummy;
// get the petsc vector and matrix objects
Mat
jac_bmat = dynamic_cast<libMesh::PetscMatrix<Real>&>(J).mat();
PetscInt ierr;
std::vector<libMesh::dof_id_type> dof_indices;
const libMesh::DofMap& dof_map = nonlin_sys.get_dof_map();
const std::vector<libMesh::dof_id_type>&
send_list = nonlin_sys.get_dof_map().get_send_list();
std::unique_ptr<libMesh::NumericVector<Real> >
localized_base_solution,
localized_complex_sol(libMesh::NumericVector<Real>::build(nonlin_sys.comm()).release());
// prepare a send list for localization of the complex solution
std::vector<libMesh::dof_id_type>
complex_send_list(2*send_list.size());
for (unsigned int i=0; i<send_list.size(); i++) {
complex_send_list[2*i ] = 2*send_list[i];
complex_send_list[2*i+1] = 2*send_list[i]+1;
}
localized_complex_sol->init(2*nonlin_sys.n_dofs(),
2*nonlin_sys.n_local_dofs(),
complex_send_list,
false,
libMesh::GHOSTED);
X.localize(*localized_complex_sol, complex_send_list);
// localize the base solution, if it was provided
if (_base_sol)
localized_base_solution.reset(build_localized_vector(nonlin_sys,
*_base_sol).release());
// if a solution function is attached, initialize it
//if (_sol_function)
// _sol_function->init( X);
libMesh::MeshBase::const_element_iterator el =
nonlin_sys.get_mesh().active_local_elements_begin();
const libMesh::MeshBase::const_element_iterator end_el =
nonlin_sys.get_mesh().active_local_elements_end();
MAST::ComplexAssemblyElemOperations&
ops = dynamic_cast<MAST::ComplexAssemblyElemOperations&>(*_elem_ops);
for ( ; el != end_el; ++el) {
const libMesh::Elem* elem = *el;
dof_map.dof_indices (elem, dof_indices);
ops.init(*elem);
// get the solution
unsigned int ndofs = (unsigned int)dof_indices.size();
sol.setZero(ndofs);
delta_sol.setZero(ndofs);
vec.setZero(ndofs);
mat.setZero(ndofs, ndofs);
// first set the velocity to be zero
ops.set_elem_velocity(sol);
//.........這裏部分代碼省略.........
示例11: main
int main(int argc, char **argv) {
try {
TCLAP::CmdLine cmd("CEVAL Algorithm", ' ', "0.1");
cmd.add(poly);
cmd.add(x_min);
cmd.add(x_max);
cmd.add(y_min);
cmd.add(y_max);
cmd.add(use_rb);
cmd.add(display);
cmd.add(no_use_inclusion);
cmd.add(min_box_size);
cmd.add(max_box_size);
cmd.add(random_poly);
cmd.add(rand_degree);
cmd.add(rand_seed);
// Parse the args.
cmd.parse(argc, argv);
// Get the value parsed by each arg.
//string name = nameArg.getValue();
} catch (TCLAP::ArgException &e) {
cerr << "Error : " << e.error() << endl;
cerr << "Processing arg : " << e.argId() << endl;
return -1;
}
Polynomial<PolyType> a;
if (random_poly.getValue()) {
benchmark::GenerateRandom(&a, rand_degree.getValue(), 10 ,rand_seed.getValue());
} else {
benchmark::GetPoly(poly.getValue().c_str(), &a);
}
double max_box_size_d(max_box_size.getValue());
double min_box_size_d(min_box_size.getValue());
Complex min, max;
if (use_rb.getValue()) {
double min_r, max_r;
benchmark::GetRootBounds(a, &min_r, &max_r);
min = Complex(min_r, min_r);
max = Complex(max_r, max_r);
if (display.getValue()) {
cout << "Min : " << min << ",Max : " << max << endl;
}
} else {
double x_min_d(x_min.getValue()), x_max_d(x_max.getValue());
double y_min_d(y_min.getValue()), y_max_d(y_max.getValue());
min = Complex(x_min_d, y_min_d);
max = Complex(x_max_d, y_max_d);
}
Box *b = new Box(min, max);
Box *b_copy = new Box(min, max);
// start timing code.
struct timeval start;
struct timeval end;
gettimeofday(&start, NULL);
// end timing code.
Predicates p(a);
Algorithm algo(p, b, min_box_size_d, !no_use_inclusion.getValue(), display.getValue());
algo.Run();
if (no_use_inclusion.getValue()) {
algo.AttemptIsolation();
}
// start timing code.
gettimeofday(&end, NULL);
cout << ",time=" <<
(end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec);
if (display.getValue()) {
cout << "Operated on Bounding box : " << min << "," << max << endl;
cout << "With polynomial : " << endl;
//a.dump();
cout << endl;
cout << "--------------------------" << endl;
cout << "Number of roots:" << algo.output()->size() << endl;
list<const Disk *>::const_iterator it = algo.output()->begin();
while (it != algo.output()->end()) {
cout << "m= " << (*it)->centre << ", r= " << (*it)->radius << endl;
++it;
}
display_funcs::SetDisplayParams(b_copy, algo.reject(), algo.output_boxes(),
algo.ambiguous());
startGlutLoop(argc, argv);
} else {
cout << ",output=" << algo.output()->size() << endl;
}
//.........這裏部分代碼省略.........
示例12: libmesh_error
//.........這裏部分代碼省略.........
olds = news;
in_file >> news;
/*
* No good style, i know...
*/
goto go_and_find_the_next_dataset;
}
}
/*
* Check the location of the dataset.
*/
if (dataset_location != 1)
{
libMesh::err << "ERROR: Currently only Data at nodes is supported."
<< std::endl;
libmesh_error();
}
/*
* Now get the foreign node id number and the respective nodal data.
*/
int f_n_id;
std::vector<Number> values;
while(true)
{
in_file >> f_n_id;
/*
* if node_nr = -1 then we have reached the end of the dataset.
*/
if (f_n_id==-1)
break;
/*
* Resize the values vector (usually data in three
* principle directions, i.e. NVALDC = 3).
*/
values.resize(NVALDC);
/*
* Read the meshdata for the respective node.
*/
for (unsigned int data_cnt=0; data_cnt<NVALDC; data_cnt++)
{
/*
* Check what data type we are reading.
* 2,4: Real
* 5,6: Complex
* other data types are not supported yet.
* As again, these floats may also be written
* using a 'D' instead of an 'e'.
*/
if (data_type == 2 || data_type == 4)
{
std::string buf;
in_file >> buf;
MeshDataUnvHeader::need_D_to_e(buf);
#ifdef LIBMESH_USE_COMPLEX_NUMBERS
values[data_cnt] = Complex(std::atof(buf.c_str()), 0.);
#else
values[data_cnt] = std::atof(buf.c_str());
#endif
}
else if(data_type == 5 || data_type == 6)
{
#ifdef LIBMESH_USE_COMPLEX_NUMBERS
Real re_val, im_val;
std::string buf;
in_file >> buf;
if (MeshDataUnvHeader::need_D_to_e(buf))
{
re_val = std::atof(buf.c_str());
in_file >> buf;
MeshDataUnvHeader::need_D_to_e(buf);
im_val = std::atof(buf.c_str());
}
else
{
re_val = std::atof(buf.c_str());
in_file >> im_val;
}
values[data_cnt] = Complex(re_val,im_val);
#else
libMesh::err << "ERROR: Complex data only supported" << std::endl
<< "when libMesh is configured with --enable-complex!"
<< std::endl;
libmesh_error();
#endif
}
示例13: t
void Arnoldi<SCAL>::Calc (int numval, Array<Complex> & lam, int numev,
Array<shared_ptr<BaseVector>> & hevecs,
const BaseMatrix * pre) const
{
static Timer t("arnoldi");
static Timer t2("arnoldi - orthogonalize");
static Timer t3("arnoldi - compute large vectors");
RegionTimer reg(t);
auto hv = a.CreateVector();
auto hv2 = a.CreateVector();
auto hva = a.CreateVector();
auto hvm = a.CreateVector();
int n = hv.FV<SCAL>().Size();
int m = min2 (numval, n);
Matrix<SCAL> matH(m);
Array<shared_ptr<BaseVector>> abv(m);
for (int i = 0; i < m; i++)
abv[i] = a.CreateVector();
auto mat_shift = a.CreateMatrix();
mat_shift->AsVector() = a.AsVector() - shift*b.AsVector();
shared_ptr<BaseMatrix> inv;
if (!pre)
inv = mat_shift->InverseMatrix (freedofs);
else
{
auto itso = make_shared<GMRESSolver<double>> (*mat_shift, *pre);
itso->SetPrintRates(1);
itso->SetMaxSteps(2000);
inv = itso;
}
hv.SetRandom();
hv.SetParallelStatus (CUMULATED);
FlatVector<SCAL> fv = hv.FV<SCAL>();
if (freedofs)
for (int i = 0; i < hv.Size(); i++)
if (! (*freedofs)[i] ) fv(i) = 0;
t2.Start();
// matV = SCAL(0.0); why ?
matH = SCAL(0.0);
*hv2 = *hv;
SCAL len = sqrt (S_InnerProduct<SCAL> (*hv, *hv2)); // parallel
*hv /= len;
for (int i = 0; i < m; i++)
{
cout << IM(1) << "\ri = " << i << "/" << m << flush;
/*
for (int j = 0; j < n; j++)
matV(i,j) = hv.FV<SCAL>()(j);
*/
*abv[i] = *hv;
*hva = b * *hv;
*hvm = *inv * *hva;
for (int j = 0; j <= i; j++)
{
/*
SCAL sum = 0.0;
for (int k = 0; k < n; k++)
sum += hvm.FV<SCAL>()(k) * matV(j,k);
matH(j,i) = sum;
for (int k = 0; k < n; k++)
hvm.FV<SCAL>()(k) -= sum * matV(j,k);
*/
/*
SCAL sum = 0.0;
FlatVector<SCAL> abvj = abv[j] -> FV<SCAL>();
FlatVector<SCAL> fv_hvm = hvm.FV<SCAL>();
for (int k = 0; k < n; k++)
sum += fv_hvm(k) * abvj(k);
matH(j,i) = sum;
for (int k = 0; k < n; k++)
fv_hvm(k) -= sum * abvj(k);
*/
matH(j,i) = S_InnerProduct<SCAL> (*hvm, *abv[j]);
*hvm -= matH(j,i) * *abv[j];
}
*hv = *hvm;
*hv2 = *hv;
SCAL len = sqrt (S_InnerProduct<SCAL> (*hv, *hv2));
if (i<m-1) matH(i+1,i) = len;
*hv /= len;
}
t2.Stop();
t2.AddFlops (double(n)*m*m);
cout << "n = " << n << ", m = " << m << " n*m*m = " << n*m*m << endl;
//.........這裏部分代碼省略.........
示例14: Complex
Complex operator+(double d, const Complex & c1)
{
return Complex(c1.getReal() + d, c1.getImagionary());
}