本文整理匯總了C++中CompMod函數的典型用法代碼示例。如果您正苦於以下問題:C++ CompMod函數的具體用法?C++ CompMod怎麽用?C++ CompMod使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了CompMod函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: Comp3Mod
void Comp3Mod(zz_pX& x1, zz_pX& x2, zz_pX& x3,
const zz_pX& g1, const zz_pX& g2, const zz_pX& g3,
const zz_pX& h, const zz_pXModulus& F)
{
long m = SqrRoot(g1.rep.length() + g2.rep.length() + g3.rep.length());
if (m == 0) {
clear(x1);
clear(x2);
clear(x3);
return;
}
zz_pXArgument A;
build(A, h, F, m);
zz_pX xx1, xx2, xx3;
CompMod(xx1, g1, A, F);
CompMod(xx2, g2, A, F);
CompMod(xx3, g3, A, F);
x1 = xx1;
x2 = xx2;
x3 = xx3;
}
示例2: MinPolyMod
void MinPolyMod(zz_pX& hh, const zz_pX& g, const zz_pXModulus& F, long m)
{
zz_pX h, h1;
long n = F.n;
if (m < 1 || m > n) Error("MinPoly: bad args");
/* probabilistically compute min-poly */
ProbMinPolyMod(h, g, F, m);
if (deg(h) == m) { hh = h; return; }
CompMod(h1, h, g, F);
if (IsZero(h1)) { hh = h; return; }
/* not completely successful...must iterate */
long i;
zz_pX h2, h3;
zz_pXMultiplier H1;
vec_zz_p R(INIT_SIZE, n);
for (;;) {
R.SetLength(n);
for (i = 0; i < n; i++) random(R[i]);
build(H1, h1, F);
UpdateMap(R, R, H1, F);
DoMinPolyMod(h2, g, F, m-deg(h), R);
mul(h, h, h2);
if (deg(h) == m) { hh = h; return; }
CompMod(h3, h2, g, F);
MulMod(h1, h3, H1, F);
if (IsZero(h1)) { hh = h; return; }
}
}
示例3: split
void split(ZZ_pEX& f1, ZZ_pEX& g1, ZZ_pEX& f2, ZZ_pEX& g2,
const ZZ_pEX& f, const ZZ_pEX& g,
const vec_ZZ_pE& roots, long lo, long mid)
{
long r = mid-lo+1;
ZZ_pEXModulus F;
build(F, f);
vec_ZZ_pE lroots(INIT_SIZE, r);
long i;
for (i = 0; i < r; i++)
lroots[i] = roots[lo+i];
ZZ_pEX h, a, d;
BuildFromRoots(h, lroots);
CompMod(a, h, g, F);
GCD(f1, a, f);
div(f2, f, f1);
rem(g1, g, f1);
rem(g2, g, f2);
}
示例4: Ft
template<> void
PAlgebraModTmpl<zz_pX,vec_zz_pX,zz_pXModulus>::mapToFt(zz_pX& r,
const zz_pX& G,unsigned t,const zz_pX* rF1) const
{
int i = zmStar.indexOfRep(t);
if (i < 0) { r=zz_pX::zero(); return; }
if (rF1==NULL) { // Compute the representation "from scratch"
zz_pE::init(factors[i]); // work with the extension field GF_2[X]/Ft(X)
zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G is polynomial over the extension field
r=rep(FindRoot(Ga)); // Find a root of G in this field
return;
}
// if rF1 is set, then use it instead, setting r = rF1(X^t) mod Ft(X)
zz_pXModulus Ft(factors[i]);
// long tInv = InvMod(t,m);
zz_pX X2t = PowerXMod(t,Ft); // X2t = X^t mod Ft
r = CompMod(*rF1,X2t,Ft); // r = F1(X2t) mod Ft
/* Debugging sanity-check: G(r)=0 in the extension field (Z/2Z)[X]/Ft(X)
zz_pE::init(factors[i]);
zz_pEX Ga=to_zz_pEX((zz_pX&)G);// G as a polynomial over the extension field
zz_pE ra =to_zz_pE(r); // r is an element in the extension field
eval(ra,Ga,ra); // ra = Ga(ra)
if (!IsZero(ra)) {// check that Ga(r)=0 in this extension field
cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl;
exit(0);
}*******************************************************************/
}
示例5: crt
void PAlgebraModDerived<type>::embedInAllSlots(RX& H, const RX& alpha,
const MappingData<type>& mappingData) const
{
if (isDryRun()) {
H = RX::zero();
return;
}
FHE_TIMER_START;
long nSlots = zMStar.getNSlots();
vector<RX> crt(nSlots); // alloate space for CRT components
// The i'th CRT component is (H mod F_t) = alpha(maps[i]) mod F_t,
// where with t=T[i].
if (IsX(mappingData.G) || deg(alpha) <= 0) {
// special case...no need for CompMod, which is
// is not optimized for this case
for (long i=0; i<nSlots; i++) // crt[i] = alpha(maps[i]) mod Ft
crt[i] = ConstTerm(alpha);
}
else {
// general case...
for (long i=0; i<nSlots; i++) // crt[i] = alpha(maps[i]) mod Ft
CompMod(crt[i], alpha, mappingData.maps[i], factors[i]);
}
CRT_reconstruct(H,crt); // interpolate to get H
FHE_TIMER_STOP;
}
示例6: assert
void PAlgebraModDerived<type>::embedInSlots(RX& H, const vector<RX>& alphas,
const MappingData<type>& mappingData) const
{
long nSlots = zMStar.getNSlots();
assert(lsize(alphas) == nSlots);
for (long i = 0; i < nSlots; i++) assert(deg(alphas[i]) < mappingData.degG);
vector<RX> crt(nSlots); // alloate space for CRT components
// The i'th CRT component is (H mod F_t) = alphas[i](maps[i]) mod F_t,
// where with t=T[i].
if (IsX(mappingData.G)) {
// special case...no need for CompMod, which is
// is not optimized for zero
for (long i=0; i<nSlots; i++) // crt[i] = alpha(maps[i]) mod Ft
crt[i] = ConstTerm(alphas[i]);
}
else {
// general case...
for (long i=0; i<nSlots; i++) // crt[i] = alpha(maps[i]) mod Ft
CompMod(crt[i], alphas[i], mappingData.maps[i], factors[i]);
}
CRT_reconstruct(H,crt); // interpolate to get p
}
示例7: main
NTL_CLIENT
int main()
{
ZZ_p::init(conv<ZZ>(17)); // define GF(17)
ZZ_pX P;
BuildIrred(P, 10); // generate an irreducible polynomial P
// of degree 10 over GF(17)
ZZ_pE::init(P); // define GF(17^10)
ZZ_pEX f, g, h; // declare polynomials over GF(17^10)
random(f, 20); // f is a random, monic polynomial of degree 20
SetCoeff(f, 20);
random(h, 20); // h is a random polynomial of degree less than 20
g = MinPolyMod(h, f); // compute the minimum polynomial of h modulo f
if (g == 0) Error("oops (1)"); // check that g != 0
if (CompMod(g, h, f) != 0) // check that g(h) = 0 mod f
Error("oops (2)");
}
示例8: SetX
void PAlgebraModDerived<type>::mapToFt(RX& w,
const RX& G,unsigned long t,const RX* rF1) const
{
if (isDryRun()) {
w = RX::zero();
return;
}
long i = zMStar.indexOfRep(t);
if (i < 0) { clear(w); return; }
if (rF1==NULL) { // Compute the representation "from scratch"
// special case
if (G == factors[i]) {
SetX(w);
return;
}
//special case
if (deg(G) == 1) {
w = -ConstTerm(G);
return;
}
// the general case: currently only works when r == 1
assert(r == 1);
REBak bak; bak.save();
RE::init(factors[i]); // work with the extension field GF_p[X]/Ft(X)
REX Ga;
conv(Ga, G); // G as a polynomial over the extension field
vec_RE roots;
FindRoots(roots, Ga); // Find roots of G in this field
RE* first = &roots[0];
RE* last = first + roots.length();
RE* smallest = min_element(first, last);
// make a canonical choice
w=rep(*smallest);
return;
}
// if rF1 is set, then use it instead, setting w = rF1(X^t) mod Ft(X)
RXModulus Ft(factors[i]);
// long tInv = InvMod(t,m);
RX X2t = PowerXMod(t,Ft); // X2t = X^t mod Ft
w = CompMod(*rF1,X2t,Ft); // w = F1(X2t) mod Ft
/* Debugging sanity-check: G(w)=0 in the extension field (Z/2Z)[X]/Ft(X)
RE::init(factors[i]);
REX Ga;
conv(Ga, G); // G as a polynomial over the extension field
RE ra;
conv(ra, w); // w is an element in the extension field
eval(ra,Ga,ra); // ra = Ga(ra)
if (!IsZero(ra)) {// check that Ga(w)=0 in this extension field
cout << "rF1(X^t) mod Ft(X) != root of G mod Ft, t=" << t << endl;
exit(0);
}*******************************************************************/
}
示例9: CompMod
int Directory::Compare( const void* ptr1, const void* ptr2 )
/**********************************************************/
{
const cv_dir_entry* cvDirEntry1 = ( cv_dir_entry * ) ptr1;
const cv_dir_entry* cvDirEntry2 = ( cv_dir_entry * ) ptr2;
int retVal;
if ( IsModuleBasis(cvDirEntry1->subsection,cvDirEntry2->subsection) ) {
retVal = CompMod(cvDirEntry1->iMod,cvDirEntry2->iMod);
return retVal ? retVal : CompSub(cvDirEntry1->subsection,cvDirEntry2->subsection);
}
retVal = CompSub(cvDirEntry1->subsection,cvDirEntry2->subsection);
if ( retVal ) {
return retVal;
}
retVal = CompMod(cvDirEntry1->iMod,cvDirEntry2->iMod);
return retVal ? retVal : 0;
}
示例10: ComposeFrobeniusMap
void ComposeFrobeniusMap(GF2EX& y, const GF2EXModulus& F)
{
long d = GF2E::degree();
long n = deg(F);
long i;
i = 1;
while (i <= d) i = i << 1;
i = i >> 1;
GF2EX z(INIT_SIZE, n), z1(INIT_SIZE, n);
i = i >> 1;
long m = 1;
if (n == 2) {
SetX(z);
SqrMod(z, z, F);
}
else {
while (i) {
long m1 = 2*m;
if (i & d) m1++;
if (m1 >= NTL_BITS_PER_LONG-1 || (1L << m1) >= n) break;
m = m1;
i = i >> 1;
}
clear(z);
SetCoeff(z, 1L << m);
}
while (i) {
z1 = z;
long j, k, dz;
dz = deg(z);
for (j = 0; j <= dz; j++)
for (k = 0; k < m; k++)
sqr(z1.rep[j], z1.rep[j]);
CompMod(z, z1, z, F);
m = 2*m;
if (d & i) {
SqrMod(z, z, F);
m++;
}
i = i >> 1;
}
y = z;
}
示例11: GenerateBabySteps
static
void GenerateBabySteps(GF2EX& h1, const GF2EX& f, const GF2EX& h, long k,
long verbose)
{
double t;
if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }
GF2EXModulus F;
build(F, f);
GF2EXArgument H;
#if 0
double n2 = sqrt(double(F.n));
double n4 = sqrt(n2);
double n34 = n2*n4;
long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
long sz = 2*SqrRoot(F.n);
#endif
build(H, h, F, sz);
h1 = h;
long i;
long HexOutput = GF2X::HexOutput;
GF2X::HexOutput = 1;
if (!use_files) {
BabyStepFile.kill();
BabyStepFile.SetLength(k-1);
}
for (i = 1; i <= k-1; i++) {
if (use_files) {
ofstream s;
OpenWrite(s, FileName(GF2EX_stem, "baby", i));
s << h1 << "\n";
s.close();
}
else
BabyStepFile(i) = h1;
CompMod(h1, h1, H, F);
if (verbose) cerr << "+";
}
if (verbose)
cerr << (GetTime()-t) << "\n";
GF2X::HexOutput = HexOutput;
}
示例12: PowerCompose
void PowerCompose(ZZ_pEX& y, const ZZ_pEX& h, long q, const ZZ_pEXModulus& F)
{
if (q < 0) LogicError("PowerCompose: bad args");
ZZ_pEX z(INIT_SIZE, F.n);
long sw;
z = h;
SetX(y);
while (q) {
sw = 0;
if (q > 1) sw = 2;
if (q & 1) {
if (IsX(y))
y = z;
else
sw = sw | 1;
}
switch (sw) {
case 0:
break;
case 1:
CompMod(y, y, z, F);
break;
case 2:
CompMod(z, z, z, F);
break;
case 3:
Comp2Mod(y, z, y, z, z, F);
break;
}
q = q >> 1;
}
}
示例13: main
NTL_CLIENT
int main()
{
zz_p::init(17);
zz_pX P;
BuildIrred(P, 10);
zz_pE::init(P);
zz_pEX f, g, h;
random(f, 20);
SetCoeff(f, 20);
random(h, 20);
g = MinPolyMod(h, f);
if (deg(g) < 0) Error("bad zz_pEXTest (1)");
if (CompMod(g, h, f) != 0)
Error("bad zz_pEXTest (2)");
vec_pair_zz_pEX_long v;
long i;
for (i = 0; i < 5; i++) {
long n = RandomBnd(20)+1;
cerr << n << " ";
random(f, n);
SetCoeff(f, n);
v = CanZass(f);
g = mul(v);
if (f != g) cerr << "oops1\n";
long i;
for (i = 0; i < v.length(); i++)
if (!DetIrredTest(v[i].a))
Error("bad zz_pEXTest (3)");
}
cerr << "\n";
cerr << "zz_pEXTest OK\n";
}
示例14: GenerateBabySteps
static
void GenerateBabySteps(ZZ_pEX& h1, const ZZ_pEX& f, const ZZ_pEX& h, long k,
FileList& flist, long verbose)
{
double t;
if (verbose) { cerr << "generating baby steps..."; t = GetTime(); }
ZZ_pEXModulus F;
build(F, f);
ZZ_pEXArgument H;
#if 0
double n2 = sqrt(double(F.n));
double n4 = sqrt(n2);
double n34 = n2*n4;
long sz = long(ceil(n34/sqrt(sqrt(2.0))));
#else
long sz = 2*SqrRoot(F.n);
#endif
build(H, h, F, sz);
h1 = h;
long i;
if (!use_files) {
(*BabyStepFile).SetLength(k-1);
}
for (i = 1; i <= k-1; i++) {
if (use_files) {
ofstream s;
OpenWrite(s, FileName("baby", i), flist);
s << h1 << "\n";
CloseWrite(s);
}
else
(*BabyStepFile)(i) = h1;
CompMod(h1, h1, H, F);
if (verbose) cerr << "+";
}
if (verbose)
cerr << (GetTime()-t) << "\n";
}
示例15: GenerateGiantSteps
static
void GenerateGiantSteps(const ZZ_pX& f, const ZZ_pX& h, long l, long verbose)
{
double t;
if (verbose) { cerr << "generating giant steps..."; t = GetTime(); }
ZZ_pXModulus F;
build(F, f);
ZZ_pXArgument H;
build(H, h, F, 2*SqrRoot(F.n));
ZZ_pX h1;
h1 = h;
long i;
if (!use_files) {
GiantStepFile.kill();
GiantStepFile.SetLength(l);
}
for (i = 1; i <= l-1; i++) {
if (use_files) {
ofstream s;
OpenWrite(s, FileName(ZZ_pX_stem, "giant", i));
s << h1 << "\n";
s.close();
}
else
GiantStepFile(i) = h1;
CompMod(h1, h1, H, F);
if (verbose) cerr << "+";
}
if (use_files) {
ofstream s;
OpenWrite(s, FileName(ZZ_pX_stem, "giant", i));
s << h1 << "\n";
s.close();
}
else
GiantStepFile(i) = h1;
if (verbose)
cerr << (GetTime()-t) << "\n";
}