本文整理匯總了C++中Classify函數的典型用法代碼示例。如果您正苦於以下問題:C++ Classify函數的具體用法?C++ Classify怎麽用?C++ Classify使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Classify函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: CalcRectVolume
RTREE_TEMPLATE
void RTREE_QUAL::PickSeeds(PartitionVars* a_parVars) {
int seed0, seed1;
ELEMTYPEREAL worst, waste;
ELEMTYPEREAL area[MAXNODES + 1];
for (int index = 0; index < a_parVars->m_total; ++index) {
area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
}
worst = -a_parVars->m_coverSplitArea - 1;
for (int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA) {
for (int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB) {
Rect oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
if (waste > worst) {
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify(seed0, 0, a_parVars);
Classify(seed1, 1, a_parVars);
}
示例2: ASSERT
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill) {
ASSERT(a_parVars);
ELEMTYPEREAL biggestDiff;
int group, chosen, betterGroup;
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
PickSeeds(a_parVars);
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) {
biggestDiff = (ELEMTYPEREAL) - 1;
for (int index = 0; index < a_parVars->m_total; ++index) {
if (PartitionVars::NOT_TAKEN == a_parVars->m_partition[index]) {
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if (diff >= 0) {
group = 0;
} else {
group = 1;
diff = -diff;
}
if (diff > biggestDiff) {
biggestDiff = diff;
chosen = index;
betterGroup = group;
} else if ((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup])) {
chosen = index;
betterGroup = group;
}
}
}
Classify(chosen, betterGroup, a_parVars);
}
// If one group too full, put remaining rects in the other
if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) {
if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill) {
group = 1;
} else {
group = 0;
}
for (int index = 0; index < a_parVars->m_total; ++index) {
if (PartitionVars::NOT_TAKEN == a_parVars->m_partition[index]) {
Classify(index, group, a_parVars);
}
}
}
ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
(a_parVars->m_count[1] >= a_parVars->m_minFill));
}
示例3: switch
//----------------------------------------------------------------------------
void BspTree2::GetPartition (const BspPolygon2& polygon, const Vector2d& v0,
const Vector2d& v1, BspPolygon2& pos, BspPolygon2& neg,
BspPolygon2& coSame, BspPolygon2& coDiff) const
{
// Construct splitting line from first coincident edge.
Vector2d end0 = polygon.mVArray[mCoincident[0].I0];
Vector2d end1 = polygon.mVArray[mCoincident[0].I1];
Vector2d intr;
switch (Classify(end0, end1, v0, v1, intr))
{
case TRANSVERSE_POSITIVE:
GetPosPartition(polygon, intr, v1, pos, neg, coSame, coDiff);
GetNegPartition(polygon, v0, intr, pos, neg, coSame, coDiff);
break;
case TRANSVERSE_NEGATIVE:
GetPosPartition(polygon, v0, intr, pos, neg, coSame, coDiff);
GetNegPartition(polygon, intr, v1, pos, neg, coSame, coDiff);
break;
case ALL_POSITIVE:
GetPosPartition(polygon, v0, v1, pos, neg, coSame, coDiff);
break;
case ALL_NEGATIVE:
GetNegPartition(polygon, v0, v1, pos, neg, coSame, coDiff);
break;
default: // COINCIDENT
GetCoPartition(polygon, v0, v1, pos, neg, coSame, coDiff);
break;
}
}
示例4: character
Permonkey::Permonkey(float x, float y, Point lTile, TileMap tileMap, unordered_map<string, vector<string>> objList) : character("img/permacaco_anim_ss.png", 4, -1, 4), tileMap(tileMap),
step("music/passo_et_verde.wav") {
box = Rect(x-character.GetWidth()/2,y-character.GetHeight(), character.GetWidth(), character.GetHeight());
rotation = 0;
roomID = 0;
crt = 0;
objective.x = 994;
objective.y = 470;
tile = lTile;
actionCharacter = RESTING;
choice = NO_CHOICE;
timer.Restart();
rest.Restart();
hunger = rand()%21;
money = rand()%900+101;
found = true;
satisfaction = 50;
preference = "Pirate";
roomChoice = "";
actualGoal = 0;
Classify(objList);
gone = false;
objectSelect = -1;
}
示例5: Classify
bool IntrLine2Segment2<Real>::Find ()
{
Vector2<Real> kDiff;
Real afParameter[2];
m_iIntersectionType = Classify(afParameter,&kDiff,0);
if (m_iIntersectionType == IT_POINT)
{
// Test whether the line-line intersection is on the segment.
if (Math<Real>::FAbs(afParameter[1]) <= m_pkSegment->Extent)
{
m_iQuantity = 1;
m_kPoint = m_pkLine->Origin + afParameter[0]*m_pkLine->Direction;
}
else
{
m_iQuantity = 0;
m_iIntersectionType = IT_EMPTY;
}
}
else if (m_iIntersectionType == IT_SEGMENT)
{
m_iQuantity = INT_MAX;
}
else
{
m_iQuantity = 0;
}
return m_iIntersectionType != IT_EMPTY;
}
示例6: Classify
bool IntrLine2Ray2<Real>::Find ()
{
Vector2<Real> diff;
Real parameter[2];
mIntersectionType = Classify(parameter, &diff, 0);
if (mIntersectionType == IT_POINT)
{
// Test whether the line-line intersection is on the ray.
if (parameter[1] >= (Real)0)
{
mQuantity = 1;
mPoint = mLine->Origin + parameter[0]*mLine->Direction;
}
else
{
mQuantity = 0;
mIntersectionType = IT_EMPTY;
}
}
else if (mIntersectionType == IT_RAY)
{
mQuantity = INT_MAX;
}
else
{
mQuantity = 0;
}
return mIntersectionType != IT_EMPTY;
}
示例7: Classify
// Classify polygon with respect to this plane
int RebPlane::Classify(const RebPolygon &Poly) {
int NumFront=0, NumBack=0, NumPlanar=0;
int nClass;
// cast away const
RebPolygon *pPoly = ((RebPolygon*)&Poly);
int NumPoints = pPoly->GetNumPoints();
// loop through all points
for (int i=0; i < NumPoints; i++) {
nClass = Classify( pPoly->m_pPoints[i] );
if (nClass == RebFRONT) NumFront++;
else if (nClass == RebBACK) NumBack++;
else {
NumFront++;
NumBack++;
NumPlanar++;
}
} // for
// all points are planar
if (NumPlanar == NumPoints)
return RebPLANAR;
// all points are in front of plane
else if (NumFront == NumPoints)
return RebFRONT;
// all points are on backside of plane
else if (NumBack == NumPoints)
return RebBACK;
// poly is intersecting the plane
else
return RebCLIPPED;
} // Classify
示例8: Classify
bool IntrSegment2Segment2<Real>::Find ()
{
Vector2<Real> diff;
Real parameter[2];
mIntersectionType = Classify(parameter, &diff, 0);
if (mIntersectionType == IT_POINT)
{
// Test whether the line-line intersection is on the segments.
if (Math<Real>::FAbs(parameter[0]) <= mSegment0->Extent
&& Math<Real>::FAbs(parameter[1]) <= mSegment1->Extent)
{
mQuantity = 1;
mPoint = mSegment0->Center + parameter[0]*mSegment0->Direction;
}
else
{
mQuantity = 0;
mIntersectionType = IT_EMPTY;
}
}
else if (mIntersectionType == IT_SEGMENT)
{
mQuantity = INT_MAX;
}
else
{
mQuantity = 0;
}
return mIntersectionType != IT_EMPTY;
}
示例9: QuickClassification
ICopyFilterOption::EResult
CRemovePathsBySubString::ShallRemove (const CFullGraphNode* node) const
{
// short-cut
if (filterPaths.empty())
return ICopyFilterOption::KEEP_NODE;
// path to classify
const CDictionaryBasedTempPath& path = node->GetPath();
// most paths can be filtered quickly using the classification cache
PathClassification classification = QuickClassification (path.GetBasePath());
// take a closer look if necessary
if ((classification != REMOVE) && !path.IsFullyCachedPath())
classification = Classify (path.GetPath());
// return the result
return classification == REMOVE
? removeSubTrees ? ICopyFilterOption::REMOVE_SUBTREE
: ICopyFilterOption::REMOVE_NODE
: ICopyFilterOption::KEEP_NODE;
}
示例10: Classify
bool IntrRay2Segment2<Real>::Find ()
{
Vector2<Real> diff;
Real parameter[2];
mIntersectionType = Classify(parameter, &diff, 0);
if (mIntersectionType == IT_POINT)
{
// Test whether the line-line intersection is on the ray and on the
// segment.
if (parameter[0] >= (Real)0
&& Math<Real>::FAbs(parameter[1]) <= mSegment->Extent)
{
mQuantity = 1;
mPoint = mRay->Origin + parameter[0]*mRay->Direction;
}
else
{
mQuantity = 0;
mIntersectionType = IT_EMPTY;
}
}
else if (mIntersectionType == IT_SEGMENT)
{
mQuantity = INT_MAX;
}
else
{
mQuantity = 0;
}
return mIntersectionType != IT_EMPTY;
}
示例11: Classify
bool IntrLine2Segment2<Real>::Test ()
{
Vector2<Real> diff;
Real parameter[2];
mIntersectionType = Classify(parameter, &diff, 0);
if (mIntersectionType == IT_POINT)
{
// Test whether the line-line intersection is on the segment.
if (Math<Real>::FAbs(parameter[1]) <= mSegment->Extent)
{
mQuantity = 1;
}
else
{
mQuantity = 0;
mIntersectionType = IT_EMPTY;
}
}
else if (mIntersectionType == IT_SEGMENT)
{
mQuantity = INT_MAX;
}
else
{
mQuantity = 0;
}
return mIntersectionType != IT_EMPTY;
}
示例12: Classify
int Classify(Image* img) {
int sum = 0;
for (int i = 0 ; i < featureSize ; i++) {
sum += Classify(img, i);
}
return sum >= 0 ? 1 : -1;
}
示例13: HasAlienGibs
//LRC - work out gibs from blood colour, instead.
BOOL CBaseMonster :: HasAlienGibs( void )
{
int myClass = Classify();
// these types of monster don't use gibs
if ( myClass == CLASS_NONE || myClass == CLASS_MACHINE ||
myClass == CLASS_PLAYER_BIOWEAPON && myClass == CLASS_ALIEN_BIOWEAPON)
{
return FALSE;
}
else
{
return (this->m_bloodColor == BLOOD_COLOR_GREEN);
}
// int myClass = Classify();
//
// if ( myClass == CLASS_ALIEN_MILITARY ||
// myClass == CLASS_ALIEN_MONSTER ||
// myClass == CLASS_ALIEN_PASSIVE ||
// myClass == CLASS_INSECT ||
// myClass == CLASS_ALIEN_PREDATOR ||
// myClass == CLASS_ALIEN_PREY )
//
// return TRUE;
//
// return FALSE;
}
示例14: Train
void Train(perceptron_t *p, int *inputs, int classification)
{
int error = classification - Classify(p, inputs);
for (int i = 0; i < 2; i++)
{
p->weights[i] += p->learningRate * (float) error * *(inputs + i);
}
}
示例15: LearnCV
int LearnCV(TMatrix input, TVariables output, unsigned int minFeatures, unsigned int upToPower, unsigned int folds, TPoint *ray, unsigned int *power){
bool oldOUT_ALPHA = OUT_ALPHA;
OUT_ALPHA = false;
unsigned int optDegree = 0;
unsigned int optError = INT_MAX;
unsigned int shortFolds = folds - 1;
/* Get the optimal degree (outer cross-validation loop) */
vector<TMatrix> spaceExtensions(upToPower);
for (unsigned int i = 0; i < upToPower; i++){
ExtendWithProducts(input, i + 1, &spaceExtensions[i]); // get the (i + 1)-th space extention
Initialization(spaceExtensions[i], output, minFeatures); // initialize
/* Prepare slider and start to cut data */
unsigned sliderSize = (unsigned)ceil((double)n / folds); unsigned chSizeVal = n%folds - 1;
TMatrix xSlider(sliderSize); TVariables ySlider(sliderSize);
for (unsigned int j = 0; j < sliderSize; j++){
xSlider[j] = TPoint(d);
for (unsigned int k = 0; k < d; k++){xSlider[j][k] = x[k][j*shortFolds]; x[k].erase(x[k].begin() + j*shortFolds);}
ySlider[j] = y[j*shortFolds]; y.erase(y.begin() + j*shortFolds);
difference -= ySlider[j]; if (ySlider[j] > 0){numMore--;}else{numLess--;}
}
n -= sliderSize;
/* Cross-validation for the (i + 1)-th space extension (inner cross-validation loop) */
unsigned int error = 0; TPoint p(0);
double tmpXSliderVal; int tmpYSliderVal;
for (unsigned int j = 0; j < folds; j++){
/* Estimate the current cut */
Alpha(&p);
TVariables res(0);
Classify(xSlider, p, &res);
for (unsigned int k = 0; k < sliderSize; k++){error += abs(res[k] - ySlider[k])/2;}
/* Increment the pointer */
if (j == shortFolds){break;}
/* Replace the slider */
if (j == chSizeVal){
for (unsigned int l = 0; l < d; l++){x[l].push_back(xSlider[sliderSize - 1][l]);} y.push_back(ySlider[sliderSize - 1]);
n++; difference += ySlider[sliderSize - 1]; if (ySlider[sliderSize - 1] > 0){numMore++;}else{numLess++;}
sliderSize--; xSlider.erase(xSlider.begin() + sliderSize); ySlider.erase(ySlider.begin() + sliderSize);
// for (unsigned int j = 0; j < d; j++){x[j].shrink_to_fit();} y.shrink_to_fit(); - IT IS TOO DANGEROUS
}
for (unsigned int k = 0; k < sliderSize; k++){
for (unsigned int l = 0; l < d; l++){tmpXSliderVal = x[l][k*shortFolds + j]; x[l][k*shortFolds + j] = xSlider[k][l]; xSlider[k][l] = tmpXSliderVal;}
difference += ySlider[k]; if (ySlider[k] > 0){numMore++;}else{numLess++;}
tmpYSliderVal = y[k*shortFolds + j]; y[k*shortFolds + j] = ySlider[k]; ySlider[k] = tmpYSliderVal;
difference -= ySlider[k]; if (ySlider[k] > 0){numMore--;}else{numLess--;}
}
}
/* Check if we've got a better result */
if (error < optError){optError = error; optDegree = i + 1; if (optError == 0){break;}}
}
OUT_ALPHA = oldOUT_ALPHA;
/* Eventually get the classification ray */
Initialization(spaceExtensions[optDegree - 1], output, minFeatures); // initialize
power[0] = optDegree;
return Alpha(ray);
}