本文整理匯總了C++中CPPAD_ASSERT_KNOWN函數的典型用法代碼示例。如果您正苦於以下問題:C++ CPPAD_ASSERT_KNOWN函數的具體用法?C++ CPPAD_ASSERT_KNOWN怎麽用?C++ CPPAD_ASSERT_KNOWN使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了CPPAD_ASSERT_KNOWN函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: ode_evaluate
void ode_evaluate(
CppAD::vector<Float> &x ,
size_t m ,
CppAD::vector<Float> &fm )
{
typedef CppAD::vector<Float> Vector;
size_t n = x.size();
size_t ell;
CPPAD_ASSERT_KNOWN( m == 0 || m == 1,
"ode_evaluate: m is not zero or one"
);
CPPAD_ASSERT_KNOWN(
((m==0) & (fm.size()==n)) || ((m==1) & (fm.size()==n*n)),
"ode_evaluate: the size of fm is not correct"
);
if( m == 0 )
ell = n;
else ell = n + n * n;
// set up the case we are integrating
Float ti = 0.;
Float tf = 1.;
Float smin = 1e-5;
Float smax = 1.;
Float scur = 1.;
Float erel = 0.;
vector<Float> yi(ell), eabs(ell);
size_t i, j;
for(i = 0; i < ell; i++)
{ eabs[i] = 1e-10;
if( i < n )
yi[i] = 1.;
else yi[i] = 0.;
}
// return values
Vector yf(ell), ef(ell), maxabs(ell);
size_t nstep;
// construct ode method for taking one step
ode_evaluate_method<Float> method(m, x);
// solve differential equation
yf = OdeErrControl(method,
ti, tf, yi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);
if( m == 0 )
{ for(i = 0; i < n; i++)
fm[i] = yf[i];
}
else
{ for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
fm[i * n + j] = yf[n + i * n + j];
}
return;
}
示例2: put_check_for_nan
void put_check_for_nan(const CppAD::vector<Base>& vec, std::string& file_name)
{
size_t char_size = sizeof(Base) * vec.size();
const char* char_ptr = reinterpret_cast<const char*>( vec.data() );
# if CPPAD_HAS_MKSTEMP
char pattern[] = "/tmp/fileXXXXXX";
int fd = mkstemp(pattern);
file_name = pattern;
write(fd, char_ptr, char_size);
close(fd);
# else
# if CPPAD_HAS_TMPNAM_S
std::vector<char> name(L_tmpnam_s);
if( tmpnam_s( name.data(), L_tmpnam_s ) != 0 )
{ CPPAD_ASSERT_KNOWN(
false,
"Cannot create a temporary file name"
);
}
file_name = name.data();
# else
file_name = tmpnam( CPPAD_NULL );
# endif
std::fstream file_out(file_name.c_str(), std::ios::out|std::ios::binary );
file_out.write(char_ptr, char_size);
file_out.close();
# endif
return;
}
示例3: sparse_jac_fun
void sparse_jac_fun(
size_t m ,
size_t n ,
const FloatVector& x ,
const CppAD::vector<size_t>& row ,
const CppAD::vector<size_t>& col ,
size_t p ,
FloatVector& fp )
{
// check numeric type specifications
CheckNumericType<Float>();
// check value of p
CPPAD_ASSERT_KNOWN(
p == 0 || p == 1,
"sparse_jac_fun: p != 0 and p != 1"
);
size_t K = row.size();
CPPAD_ASSERT_KNOWN(
K >= m,
"sparse_jac_fun: row.size() < m"
);
size_t i, j, k;
if( p == 0 )
for(i = 0; i < m; i++)
fp[i] = Float(0);
Float t;
for(k = 0; k < K; k++)
{ i = row[k];
j = col[k];
t = exp( x[j] * x[j] / 2.0 );
switch(p)
{
case 0:
fp[i] += t;
break;
case 1:
fp[k] = t * x[j];
break;
}
}
}
示例4: sparse_hes_fun
void sparse_hes_fun(
size_t n ,
const FloatVector& x ,
const CppAD::vector<size_t>& row ,
const CppAD::vector<size_t>& col ,
size_t p ,
FloatVector& fp )
{
// check numeric type specifications
CheckNumericType<Float>();
// check value of p
CPPAD_ASSERT_KNOWN(
p < 3,
"sparse_hes_fun: p > 2"
);
size_t i, j, k;
size_t size = 1;
for(k = 0; k < p; k++)
size *= n;
for(k = 0; k < size; k++)
fp[k] = Float(0);
size_t K = row.size();
Float t;
Float dt_i;
Float dt_j;
for(k = 0; k < K; k++)
{ i = row[k];
j = col[k];
t = exp( x[i] * x[j] );
dt_i = t * x[j];
dt_j = t * x[i];
switch(p)
{
case 0:
fp[0] += t;
break;
case 1:
fp[i] += dt_i;
fp[j] += dt_j;
break;
case 2:
fp[i * n + i] += dt_i * x[j];
fp[i * n + j] += t + dt_j * x[j];
//
fp[j * n + i] += t + dt_i * x[i];
fp[j * n + j] += dt_j * x[i];
break;
}
}
}
示例5: Domain
Vector ADFun<Base>::ForOne(const Vector &x, size_t j)
{ size_t j1;
size_t n = Domain();
size_t m = Range();
// check Vector is Simple Vector class with Base type elements
CheckSimpleVector<Base, Vector>();
CPPAD_ASSERT_KNOWN(
x.size() == n,
"ForOne: Length of x not equal domain dimension for f"
);
CPPAD_ASSERT_KNOWN(
j < n,
"ForOne: the index j is not less than domain dimension for f"
);
// point at which we are evaluating the second partials
Forward(0, x);
// direction in which are are taking the derivative
Vector dx(n);
for(j1 = 0; j1 < n; j1++)
dx[j1] = Base(0);
dx[j] = Base(1);
// dimension the return value
Vector dy(m);
// compute the return value
dy = Forward(1, dx);
return dy;
}
示例6: parallel_ad
void parallel_ad(void)
{ CPPAD_ASSERT_KNOWN(
! thread_alloc::in_parallel() ,
"parallel_ad must be called before entering parallel execution mode."
);
CPPAD_ASSERT_KNOWN(
AD<Base>::tape_ptr() == CPPAD_NULL ,
"parallel_ad cannot be called while a tape recording is in progress"
);
// ensure statics in following functions are initialized
elapsed_seconds();
ErrorHandler::Current();
local::NumArg(local::BeginOp);
local::NumRes(local::BeginOp);
local::one_element_std_set<size_t>();
local::two_element_std_set<size_t>();
// the sparse_pack class has member functions with static data
local::sparse_pack sp;
sp.resize(1, 1); // so can call add_element
sp.add_element(0, 0); // has static data
sp.clear(0); // has static data
sp.is_element(0, 0); // has static data
local::sparse_pack::const_iterator itr(sp, 0); // has static data
++itr; // has static data
// statics that depend on the value of Base
AD<Base>::tape_id_ptr(0);
AD<Base>::tape_handle(0);
discrete<Base>::List();
CheckSimpleVector< Base, CppAD::vector<Base> >();
CheckSimpleVector< AD<Base>, CppAD::vector< AD<Base> > >();
}
示例7: CPPAD_ASSERT_KNOWN
void AD<Base>::tape_delete(size_t id_old)
{
size_t thread = id_old % CPPAD_MAX_NUM_THREADS;
CPPAD_ASSERT_KNOWN(
thread == thread_alloc::thread_num(),
"AD tape recording must stop in same thread as it started in."
);
size_t *id = id_handle(thread);
ADTape<Base> **tape = tape_handle(thread);
CPPAD_ASSERT_UNKNOWN( *id == id_old );
CPPAD_ASSERT_UNKNOWN( *tape != CPPAD_NULL );
// increase the id for this thread in a way such that
// thread = id % CPPAD_MAX_NUM_THREADS
CPPAD_ASSERT_KNOWN(
size_t(*id) + CPPAD_MAX_NUM_THREADS <=
std::numeric_limits<CPPAD_TAPE_ID_TYPE>::max(),
"To many different tapes given the type used for CPPAD_TAPE_ID_TYPE"
);
*id += CPPAD_MAX_NUM_THREADS;
// delete the old tape for this thread
delete ( *tape );
*tape = CPPAD_NULL;
return;
}
示例8: Domain
Vector ADFun<Base>::RevOne(const Vector &x, size_t i)
{ size_t i1;
size_t n = Domain();
size_t m = Range();
// check Vector is Simple Vector class with Base type elements
CheckSimpleVector<Base, Vector>();
CPPAD_ASSERT_KNOWN(
x.size() == n,
"RevOne: Length of x not equal domain dimension for f"
);
CPPAD_ASSERT_KNOWN(
i < m,
"RevOne: the index i is not less than range dimension for f"
);
// point at which we are evaluating the derivative
Forward(0, x);
// component which are are taking the derivative of
Vector w(m);
for(i1 = 0; i1 < m; i1++)
w[i1] = 0.;
w[i] = Base(1);
// dimension the return value
Vector dw(n);
// compute the return value
dw = Reverse(1, w);
return dw;
}
示例9: color_general_colpack
void color_general_colpack(
const VectorSet& pattern ,
const VectorSize& row ,
const VectorSize& col ,
CppAD::vector<size_t>& color )
{ size_t i, j, k;
size_t m = pattern.n_set();
size_t n = pattern.end();
// Determine number of non-zero entries in each row
CppAD::vector<size_t> n_nonzero(m);
size_t n_nonzero_total = 0;
for(i = 0; i < m; i++)
{ n_nonzero[i] = 0;
typename VectorSet::const_iterator pattern_itr(pattern, i);
j = *pattern_itr;
while( j != pattern.end() )
{ n_nonzero[i]++;
j = *(++pattern_itr);
}
n_nonzero_total += n_nonzero[i];
}
// Allocate memory and fill in Adolc sparsity pattern
CppAD::vector<unsigned int*> adolc_pattern(m);
CppAD::vector<unsigned int> adolc_memory(m + n_nonzero_total);
size_t i_memory = 0;
for(i = 0; i < m; i++)
{ adolc_pattern[i] = adolc_memory.data() + i_memory;
CPPAD_ASSERT_KNOWN(
std::numeric_limits<unsigned int>::max() >= n_nonzero[i],
"Matrix is too large for colpack"
);
adolc_pattern[i][0] = static_cast<unsigned int>( n_nonzero[i] );
typename VectorSet::const_iterator pattern_itr(pattern, i);
j = *pattern_itr;
k = 1;
while(j != pattern.end() )
{
CPPAD_ASSERT_KNOWN(
std::numeric_limits<unsigned int>::max() >= j,
"Matrix is too large for colpack"
);
adolc_pattern[i][k++] = static_cast<unsigned int>( j );
j = *(++pattern_itr);
}
CPPAD_ASSERT_UNKNOWN( k == 1 + n_nonzero[i] );
i_memory += k;
}
CPPAD_ASSERT_UNKNOWN( i_memory == m + n_nonzero_total );
// Must use an external routine for this part of the calculation because
// ColPack/ColPackHeaders.h has as 'using namespace std' at global level.
cppad_colpack_general(color, m, n, adolc_pattern);
return;
}
示例10: Domain
Vector ADFun<Base>::Hessian(const Vector &x, const Vector &w)
{ size_t j;
size_t k;
size_t n = Domain();
// check Vector is Simple Vector class with Base type elements
CheckSimpleVector<Base, Vector>();
CPPAD_ASSERT_KNOWN(
size_t(x.size()) == n,
"Hessian: length of x not equal domain dimension for f"
);
CPPAD_ASSERT_KNOWN(
size_t(w.size()) == Range(),
"Hessian: length of w not equal range dimension for f"
);
// point at which we are evaluating the Hessian
Forward(0, x);
// define the return value
Vector hes(n * n);
// direction vector for calls to forward
Vector u(n);
for(j = 0; j < n; j++)
u[j] = Base(0);
// location for return values from Reverse
Vector ddw(n * 2);
// loop over forward directions
for(j = 0; j < n; j++)
{ // evaluate partials of entire function w.r.t. j-th coordinate
u[j] = Base(1);
Forward(1, u);
u[j] = Base(0);
// evaluate derivative of partial corresponding to F_i
ddw = Reverse(2, w);
// return desired components
for(k = 0; k < n; k++)
hes[k * n + j] = ddw[k * 2 + 1];
}
return hes;
}
示例11: Domain
void ADFun<Base>::RevSparseHesCase(
bool set_type ,
bool transpose ,
size_t q ,
const VectorSet& s ,
VectorSet& h )
{ size_t n = Domain();
h.resize(q * n );
CPPAD_ASSERT_KNOWN(
for_jac_sparse_pack_.n_set() > 0,
"RevSparseHes: previous stored call to ForSparseJac did not "
"use bool for the elements of r."
);
CPPAD_ASSERT_UNKNOWN( for_jac_sparse_set_.n_set() == 0 );
CPPAD_ASSERT_UNKNOWN( for_jac_sparse_pack_.n_set() == total_num_var_ );
// use sparse_pack for the calculation
CppAD::RevSparseHesBool(
transpose ,
q ,
s ,
h ,
total_num_var_ ,
dep_taddr_ ,
ind_taddr_ ,
play_ ,
for_jac_sparse_pack_
);
}
示例12: fun_record
void fun_record(
cppad_ipopt_fg_info* fg_info ,
size_t k ,
const SizeVector& p ,
const SizeVector& q ,
size_t n ,
const NumVector& x ,
const SizeVector& J ,
CppAD::vector< CppAD::ADFun<Ipopt::Number> >& r_fun )
{ size_t j;
// extract u from x
ADVector u(q[k]);
for(j = 0; j < q[k]; j++)
{ // when NDEBUG is not defined, this error should be caught
// during the cppad_ipopt_nlp constructor.
CPPAD_ASSERT_UNKNOWN( J[j] < n );
u[j] = x[ J[j] ];
}
// start the recording
CppAD::Independent(u);
// record the evaulation of r_k (u)
ADVector r_k = fg_info->eval_r(k, u);
CPPAD_ASSERT_KNOWN( r_k.size() == p[k] ,
"cppad_ipopt_nlp: eval_r return value size not equal to p[k]."
);
// stop the recording and store operation sequence in
r_fun[k].Dependent(u, r_k);
}
示例13: quiet_NaN
/// not a number
static Float quiet_NaN(void)
{ CPPAD_ASSERT_KNOWN(
false,
"numeric_limits<Float>::quiet_NaN() is not specialized for this Float"
);
return Float(0);
}
示例14: forward
/*!
Link from forward mode sweep to users routine.
\param index
index for this function in the list of all user_atomic objects
\param id
extra information vector that is just passed through by CppAD,
and possibly used by user's routines.
\param k
order for this forward mode calculation.
\param n
domain space size for this calcualtion.
\param m
range space size for this calculation.
\param tx
Taylor coefficients corresponding to \c x for this calculation.
\param ty
Taylor coefficient corresponding to \c y for this calculation
See the forward mode in user's documentation for user_atomic
*/
static void forward(
size_t index ,
size_t id ,
size_t k ,
size_t n ,
size_t m ,
const vector<Base>& tx ,
vector<Base>& ty )
{
# ifdef _OPENMP
vector<bool> empty(0);
# else
static vector<bool> empty(0);
# endif
CPPAD_ASSERT_UNKNOWN( tx.size() >= n * k );
CPPAD_ASSERT_UNKNOWN( ty.size() >= m * k );
CPPAD_ASSERT_UNKNOWN(index < List().size() );
user_atomic* op = List()[index];
bool ok = op->f_(id, k, n, m, empty, empty, tx, ty);
if( ! ok )
{ std::stringstream ss;
ss << k;
std::string msg = "user_atomic: ";
msg = msg + op->name_ + ": ok returned false from " + ss.str()
+ " order forward mode calculation";
CPPAD_ASSERT_KNOWN(false, msg.c_str());
}
}
示例15: forward_sqrt_op_dir
inline void forward_sqrt_op_dir(
size_t q ,
size_t r ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(SqrtOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(SqrtOp) == 1 );
CPPAD_ASSERT_UNKNOWN( 0 < q );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
// Taylor coefficients corresponding to argument and result
size_t num_taylor_per_var = (cap_order-1) * r + 1;
Base* z = taylor + i_z * num_taylor_per_var;
Base* x = taylor + i_x * num_taylor_per_var;
CPPAD_ASSERT_KNOWN(
x[0] != Base(0),
"Forward: attempt to take derivatve of square root of zero"
)
size_t m = (q-1) * r + 1;
for(size_t ell = 0; ell < r; ell++)
{ z[m+ell] = Base(0);
for(size_t k = 1; k < q; k++)
z[m+ell] -= Base(k) * z[(k-1)*r+1+ell] * z[(q-k-1)*r+1+ell];
z[m+ell] /= Base(q);
z[m+ell] += x[m+ell] / Base(2);
z[m+ell] /= z[0];
}
}