本文整理匯總了C++中CMOS_READ函數的典型用法代碼示例。如果您正苦於以下問題:C++ CMOS_READ函數的具體用法?C++ CMOS_READ怎麽用?C++ CMOS_READ使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了CMOS_READ函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: dec_timer_state
static int dec_timer_state(void)
{
return (CMOS_READ(RTC_REG_C) & RTC_PF) != 0;
}
示例2: cmos_read_alarm
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct cmos_rtc *cmos = dev_get_drvdata(dev);
unsigned char rtc_control;
if (!is_valid_irq(cmos->irq))
return -EIO;
/* Basic alarms only support hour, minute, and seconds fields.
* Some also support day and month, for alarms up to a year in
* the future.
*/
t->time.tm_mday = -1;
t->time.tm_mon = -1;
spin_lock_irq(&rtc_lock);
t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
if (cmos->day_alrm) {
/* ignore upper bits on readback per ACPI spec */
t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
if (!t->time.tm_mday)
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
if (!t->time.tm_mon)
t->time.tm_mon = -1;
}
}
rtc_control = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
/* REVISIT this assumes PC style usage: always BCD */
if (((unsigned)t->time.tm_sec) < 0x60)
t->time.tm_sec = bcd2bin(t->time.tm_sec);
else
t->time.tm_sec = -1;
if (((unsigned)t->time.tm_min) < 0x60)
t->time.tm_min = bcd2bin(t->time.tm_min);
else
t->time.tm_min = -1;
if (((unsigned)t->time.tm_hour) < 0x24)
t->time.tm_hour = bcd2bin(t->time.tm_hour);
else
t->time.tm_hour = -1;
if (cmos->day_alrm) {
if (((unsigned)t->time.tm_mday) <= 0x31)
t->time.tm_mday = bcd2bin(t->time.tm_mday);
else
t->time.tm_mday = -1;
if (cmos->mon_alrm) {
if (((unsigned)t->time.tm_mon) <= 0x12)
t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
else
t->time.tm_mon = -1;
}
}
t->time.tm_year = -1;
t->enabled = !!(rtc_control & RTC_AIE);
t->pending = 0;
return 0;
}
示例3: get_isa_cmos_time
static unsigned long __init get_isa_cmos_time(void)
{
unsigned int year, mon, day, hour, min, sec;
int i;
// check to see if the RTC makes sense.....
if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
return mktime(1970, 1, 1, 0, 0, 0);
/* The Linux interpretation of the CMOS clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
do { /* Isn't this overkill ? UIP above should guarantee consistency */
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
}
if ((year += 1900) < 1970)
year += 100;
return mktime(year, mon, day, hour, min, sec);
}
示例4: sm_osl_proc_read_alarm
static int
sm_osl_proc_read_alarm (
char *page,
char **start,
off_t off,
int count,
int *eof,
void *context)
{
char *str = page;
int len;
u32 sec,min,hr;
u32 day,mo,yr;
if (off != 0) goto out;
spin_lock(&rtc_lock);
sec = CMOS_READ(RTC_SECONDS_ALARM);
min = CMOS_READ(RTC_MINUTES_ALARM);
hr = CMOS_READ(RTC_HOURS_ALARM);
#if 0
/* if I ever get an FACP with proper values, maybe I'll enable this code */
if (acpi_gbl_FADT->day_alrm)
day = CMOS_READ(acpi_gbl_FADT->day_alrm);
else
day = CMOS_READ(RTC_DAY_OF_MONTH);
if (acpi_gbl_FADT->mon_alrm)
mo = CMOS_READ(acpi_gbl_FADT->mon_alrm);
else
mo = CMOS_READ(RTC_MONTH);;
if (acpi_gbl_FADT->century)
yr = CMOS_READ(acpi_gbl_FADT->century) * 100 + CMOS_READ(RTC_YEAR);
else
yr = CMOS_READ(RTC_YEAR);
#else
day = CMOS_READ(RTC_DAY_OF_MONTH);
mo = CMOS_READ(RTC_MONTH);
yr = CMOS_READ(RTC_YEAR);
#endif
spin_unlock(&rtc_lock);
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hr);
BCD_TO_BIN(day);
BCD_TO_BIN(mo);
BCD_TO_BIN(yr);
str += sprintf(str,"%4.4u-",yr);
str += (mo > 12) ?
sprintf(str,"**-") :
sprintf(str,"%2.2u-",mo);
str += (day > 31) ?
sprintf(str,"** ") :
sprintf(str,"%2.2u ",day);
str += (hr > 23) ?
sprintf(str,"**:") :
sprintf(str,"%2.2u:",hr);
str += (min > 59) ?
sprintf(str,"**:") :
sprintf(str,"%2.2u:",min);
str += (sec > 59) ?
sprintf(str,"**\n") :
sprintf(str,"%2.2u\n",sec);
out:
len = str - page;
if (len < count) *eof = 1;
else if (len > count) len = count;
if (len < 0) len = 0;
*start = page;
return len;
}
示例5: rtc_ioctl
//.........這裏部分代碼省略.........
return 0;
}
#endif
case RTC_ALM_READ: /* Read the present alarm time */
{
/*
* This returns a struct rtc_time. Reading >= 0xc0
* means "don't care" or "match all". Only the tm_hour,
* tm_min, and tm_sec values are filled in.
*/
memset(&wtime, 0, sizeof(struct rtc_time));
get_rtc_alm_time(&wtime);
break;
}
case RTC_ALM_SET: /* Store a time into the alarm */
{
/*
* This expects a struct rtc_time. Writing 0xff means
* "don't care" or "match all". Only the tm_hour,
* tm_min and tm_sec are used.
*/
unsigned char hrs, min, sec;
struct rtc_time alm_tm;
if (copy_from_user(&alm_tm, (struct rtc_time*)arg,
sizeof(struct rtc_time)))
return -EFAULT;
hrs = alm_tm.tm_hour;
min = alm_tm.tm_min;
sec = alm_tm.tm_sec;
spin_lock_irq(&rtc_lock);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
RTC_ALWAYS_BCD)
{
if (sec < 60) BIN_TO_BCD(sec);
else sec = 0xff;
if (min < 60) BIN_TO_BCD(min);
else min = 0xff;
if (hrs < 24) BIN_TO_BCD(hrs);
else hrs = 0xff;
}
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
CMOS_WRITE(min, RTC_MINUTES_ALARM);
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
spin_unlock_irq(&rtc_lock);
return 0;
}
case RTC_RD_TIME: /* Read the time/date from RTC */
{
memset(&wtime, 0, sizeof(struct rtc_time));
get_rtc_time(&wtime);
break;
}
case RTC_SET_TIME: /* Set the RTC */
{
struct rtc_time rtc_tm;
unsigned char mon, day, hrs, min, sec, leap_yr;
unsigned char save_control, save_freq_select;
unsigned int yrs;
#ifdef CONFIG_DECSTATION
unsigned int real_yrs;
示例6: rtc_proc_output
static int rtc_proc_output (char *buf)
{
#define YN(bit) ((ctrl & bit) ? "yes" : "no")
#define NY(bit) ((ctrl & bit) ? "no" : "yes")
char *p;
struct rtc_time tm;
unsigned char batt, ctrl;
unsigned long freq;
spin_lock_irq(&rtc_lock);
batt = CMOS_READ(RTC_VALID) & RTC_VRT;
ctrl = CMOS_READ(RTC_CONTROL);
freq = rtc_freq;
spin_unlock_irq(&rtc_lock);
p = buf;
get_rtc_time(&tm);
/*
* There is no way to tell if the luser has the RTC set for local
* time or for Universal Standard Time (GMT). Probably local though.
*/
p += sprintf(p,
"rtc_time\t: %02d:%02d:%02d\n"
"rtc_date\t: %04d-%02d-%02d\n"
"rtc_epoch\t: %04lu\n",
tm.tm_hour, tm.tm_min, tm.tm_sec,
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
get_rtc_alm_time(&tm);
/*
* We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
* match any value for that particular field. Values that are
* greater than a valid time, but less than 0xc0 shouldn't appear.
*/
p += sprintf(p, "alarm\t\t: ");
if (tm.tm_hour <= 24)
p += sprintf(p, "%02d:", tm.tm_hour);
else
p += sprintf(p, "**:");
if (tm.tm_min <= 59)
p += sprintf(p, "%02d:", tm.tm_min);
else
p += sprintf(p, "**:");
if (tm.tm_sec <= 59)
p += sprintf(p, "%02d\n", tm.tm_sec);
else
p += sprintf(p, "**\n");
p += sprintf(p,
"DST_enable\t: %s\n"
"BCD\t\t: %s\n"
"24hr\t\t: %s\n"
"square_wave\t: %s\n"
"alarm_IRQ\t: %s\n"
"update_IRQ\t: %s\n"
"periodic_IRQ\t: %s\n"
"periodic_freq\t: %ld\n"
"batt_status\t: %s\n",
YN(RTC_DST_EN),
NY(RTC_DM_BINARY),
YN(RTC_24H),
YN(RTC_SQWE),
YN(RTC_AIE),
YN(RTC_UIE),
YN(RTC_PIE),
freq,
batt ? "okay" : "dead");
return p - buf;
#undef YN
#undef NY
}
示例7: acpi_system_alarm_seq_show
static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset)
{
u32 sec, min, hr;
u32 day, mo, yr;
ACPI_FUNCTION_TRACE("acpi_system_alarm_seq_show");
spin_lock(&rtc_lock);
sec = CMOS_READ(RTC_SECONDS_ALARM);
min = CMOS_READ(RTC_MINUTES_ALARM);
hr = CMOS_READ(RTC_HOURS_ALARM);
#if 0 /* If we ever get an FACP with proper values... */
if (acpi_gbl_FADT->day_alrm)
day = CMOS_READ(acpi_gbl_FADT->day_alrm);
else
day = CMOS_READ(RTC_DAY_OF_MONTH);
if (acpi_gbl_FADT->mon_alrm)
mo = CMOS_READ(acpi_gbl_FADT->mon_alrm);
else
mo = CMOS_READ(RTC_MONTH);
if (acpi_gbl_FADT->century)
yr = CMOS_READ(acpi_gbl_FADT->century) * 100 + CMOS_READ(RTC_YEAR);
else
yr = CMOS_READ(RTC_YEAR);
#else
day = CMOS_READ(RTC_DAY_OF_MONTH);
mo = CMOS_READ(RTC_MONTH);
yr = CMOS_READ(RTC_YEAR);
#endif
spin_unlock(&rtc_lock);
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hr);
BCD_TO_BIN(day);
BCD_TO_BIN(mo);
BCD_TO_BIN(yr);
#if 0
/* we're trusting the FADT (see above)*/
#else
/* If we're not trusting the FADT, we should at least make it
* right for _this_ century... ehm, what is _this_ century?
*
* TBD:
* ASAP: find piece of code in the kernel, e.g. star tracker driver,
* which we can trust to determine the century correctly. Atom
* watch driver would be nice, too...
*
* if that has not happened, change for first release in 2050:
* if (yr<50)
* yr += 2100;
* else
* yr += 2000; // current line of code
*
* if that has not happened either, please do on 2099/12/31:23:59:59
* s/2000/2100
*
*/
yr += 2000;
#endif
seq_printf(seq,"%4.4u-", yr);
(mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo);
(day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day);
(hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr);
(min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min);
(sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec);
return 0;
}
示例8: hd_init
static int __init hd_init(void)
{
int drive;
if (register_blkdev(MAJOR_NR,"hd"))
return -1;
hd_queue = blk_init_queue(do_hd_request, &hd_lock);
if (!hd_queue) {
unregister_blkdev(MAJOR_NR,"hd");
return -ENOMEM;
}
blk_queue_max_sectors(hd_queue, 255);
init_timer(&device_timer);
device_timer.function = hd_times_out;
blk_queue_hardsect_size(hd_queue, 512);
#ifdef __i386__
if (!NR_HD) {
extern struct drive_info drive_info;
unsigned char *BIOS = (unsigned char *) &drive_info;
unsigned long flags;
int cmos_disks;
for (drive=0 ; drive<2 ; drive++) {
hd_info[drive].cyl = *(unsigned short *) BIOS;
hd_info[drive].head = *(2+BIOS);
hd_info[drive].wpcom = *(unsigned short *) (5+BIOS);
hd_info[drive].ctl = *(8+BIOS);
hd_info[drive].lzone = *(unsigned short *) (12+BIOS);
hd_info[drive].sect = *(14+BIOS);
#ifdef does_not_work_for_everybody_with_scsi_but_helps_ibm_vp
if (hd_info[drive].cyl && NR_HD == drive)
NR_HD++;
#endif
BIOS += 16;
}
/*
We query CMOS about hard disks : it could be that
we have a SCSI/ESDI/etc controller that is BIOS
compatible with ST-506, and thus showing up in our
BIOS table, but not register compatible, and therefore
not present in CMOS.
Furthermore, we will assume that our ST-506 drives
<if any> are the primary drives in the system, and
the ones reflected as drive 1 or 2.
The first drive is stored in the high nibble of CMOS
byte 0x12, the second in the low nibble. This will be
either a 4 bit drive type or 0xf indicating use byte 0x19
for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS.
Needless to say, a non-zero value means we have
an AT controller hard disk for that drive.
Currently the rtc_lock is a bit academic since this
driver is non-modular, but someday... ? Paul G.
*/
spin_lock_irqsave(&rtc_lock, flags);
cmos_disks = CMOS_READ(0x12);
spin_unlock_irqrestore(&rtc_lock, flags);
if (cmos_disks & 0xf0) {
if (cmos_disks & 0x0f)
NR_HD = 2;
else
NR_HD = 1;
}
}
#endif /* __i386__ */
#ifdef __arm__
if (!NR_HD) {
/* We don't know anything about the drive. This means
* that you *MUST* specify the drive parameters to the
* kernel yourself.
*/
printk("hd: no drives specified - use hd=cyl,head,sectors"
" on kernel command line\n");
}
#endif
if (!NR_HD)
goto out;
for (drive=0 ; drive < NR_HD ; drive++) {
struct gendisk *disk = alloc_disk(64);
struct hd_i_struct *p = &hd_info[drive];
if (!disk)
goto Enomem;
disk->major = MAJOR_NR;
disk->first_minor = drive << 6;
disk->fops = &hd_fops;
sprintf(disk->disk_name, "hd%c", 'a'+drive);
disk->private_data = p;
set_capacity(disk, p->head * p->sect * p->cyl);
disk->queue = hd_queue;
p->unit = drive;
//.........這裏部分代碼省略.........
示例9: date
void date()
{
int year=2012;
printf("\n %d - %s - %d\n",CMOS_READ(7),month[CMOS_READ(8)-1],year);
}
示例10: ds1287_timer_state
int ds1287_timer_state(void)
{
return (CMOS_READ(RTC_REG_C) & RTC_PF) != 0;
}
示例11: dayOfWeek
void dayOfWeek()
{
printf("\n %s \n", day[CMOS_READ(6)-1]);
}
示例12: dec_rtc_get_time
static unsigned long dec_rtc_get_time(void)
{
unsigned int year, mon, day, hour, min, sec, real_year;
int i;
/* The Linux interpretation of the DS1287 clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0; i < 1000000; i++) /* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0; i < 1000000; i++) /* must try at least 2.228 ms */
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
/* Isn't this overkill? UIP above should guarantee consistency */
do {
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
sec = BCD2BIN(sec);
min = BCD2BIN(min);
hour = BCD2BIN(hour);
day = BCD2BIN(day);
mon = BCD2BIN(mon);
year = BCD2BIN(year);
}
/*
* The PROM will reset the year to either '72 or '73.
* Therefore we store the real year separately, in one
* of unused BBU RAM locations.
*/
real_year = CMOS_READ(RTC_DEC_YEAR);
year += real_year - 72 + 2000;
return mktime(year, mon, day, hour, min, sec);
}
示例13: dec_timer_ack
static void dec_timer_ack(void)
{
CMOS_READ(RTC_REG_C); /* Ack the RTC interrupt. */
}
示例14: acpi_system_write_alarm
static int
acpi_system_write_alarm (
struct file *file,
const char *buffer,
unsigned long count,
void *data)
{
int result = 0;
char alarm_string[30] = {'\0'};
char *p = alarm_string;
u32 sec, min, hr, day, mo, yr;
int adjust = 0;
unsigned char rtc_control = 0;
ACPI_FUNCTION_TRACE("acpi_system_write_alarm");
if (count > sizeof(alarm_string) - 1)
return_VALUE(-EINVAL);
if (copy_from_user(alarm_string, buffer, count))
return_VALUE(-EFAULT);
alarm_string[count] = '\0';
/* check for time adjustment */
if (alarm_string[0] == '+') {
p++;
adjust = 1;
}
if ((result = get_date_field(&p, &yr)))
goto end;
if ((result = get_date_field(&p, &mo)))
goto end;
if ((result = get_date_field(&p, &day)))
goto end;
if ((result = get_date_field(&p, &hr)))
goto end;
if ((result = get_date_field(&p, &min)))
goto end;
if ((result = get_date_field(&p, &sec)))
goto end;
if (sec > 59) {
min += 1;
sec -= 60;
}
if (min > 59) {
hr += 1;
min -= 60;
}
if (hr > 23) {
day += 1;
hr -= 24;
}
if (day > 31) {
mo += 1;
day -= 31;
}
if (mo > 12) {
yr += 1;
mo -= 12;
}
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(yr);
BIN_TO_BCD(mo);
BIN_TO_BCD(day);
BIN_TO_BCD(hr);
BIN_TO_BCD(min);
BIN_TO_BCD(sec);
}
if (adjust) {
yr += CMOS_READ(RTC_YEAR);
mo += CMOS_READ(RTC_MONTH);
day += CMOS_READ(RTC_DAY_OF_MONTH);
hr += CMOS_READ(RTC_HOURS);
min += CMOS_READ(RTC_MINUTES);
sec += CMOS_READ(RTC_SECONDS);
}
spin_unlock_irq(&rtc_lock);
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(yr);
BCD_TO_BIN(mo);
BCD_TO_BIN(day);
BCD_TO_BIN(hr);
BCD_TO_BIN(min);
BCD_TO_BIN(sec);
}
if (sec > 59) {
min++;
sec -= 60;
}
//.........這裏部分代碼省略.........
示例15: cmos_do_probe
static int INITSECTION
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
{
struct cmos_rtc_board_info *info = dev->platform_data;
int retval = 0;
unsigned char rtc_control;
/* there can be only one ... */
if (cmos_rtc.dev)
return -EBUSY;
if (!ports)
return -ENODEV;
cmos_rtc.irq = rtc_irq;
cmos_rtc.iomem = ports;
/* For ACPI systems extension info comes from the FADT. On others,
* board specific setup provides it as appropriate. Systems where
* the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
* some almost-clones) can provide hooks to make that behave.
*/
if (info) {
cmos_rtc.day_alrm = info->rtc_day_alarm;
cmos_rtc.mon_alrm = info->rtc_mon_alarm;
cmos_rtc.century = info->rtc_century;
if (info->wake_on && info->wake_off) {
cmos_rtc.wake_on = info->wake_on;
cmos_rtc.wake_off = info->wake_off;
}
}
cmos_rtc.rtc = rtc_device_register(driver_name, dev,
&cmos_rtc_ops, THIS_MODULE);
if (IS_ERR(cmos_rtc.rtc))
return PTR_ERR(cmos_rtc.rtc);
cmos_rtc.dev = dev;
dev_set_drvdata(dev, &cmos_rtc);
/* platform and pnp busses handle resources incompatibly.
*
* REVISIT for non-x86 systems we may need to handle io memory
* resources: ioremap them, and request_mem_region().
*/
if (is_pnp()) {
retval = request_resource(&ioport_resource, ports);
if (retval < 0) {
dev_dbg(dev, "i/o registers already in use\n");
goto cleanup0;
}
}
rename_region(ports, cmos_rtc.rtc->dev.bus_id);
#ifdef CONFIG_ARCH_GEN3
/* MOSAIC WORKAROUND
* some of our boxes shipped with unexpected CMOS RTC mode bits
* if this is detected, reset the RTC to a known point
*/
spin_lock_irq(&rtc_lock);
rtc_control = CMOS_READ(RTC_CONTROL);
if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
struct rtc_time t;
printk(KERN_INFO "Fixing bogus CMOS RTC mode\n");
rtc_control |= RTC_24H;
rtc_control &= ~RTC_DM_BINARY;
CMOS_WRITE(rtc_control, RTC_CONTROL);
memset(&t, 0, sizeof(t));
t.tm_mday = 1;
t.tm_year = 109;
spin_unlock_irq(&rtc_lock);
set_rtc_time(&t);
} else {
spin_unlock_irq(&rtc_lock);
}
#endif
spin_lock_irq(&rtc_lock);
/* force periodic irq to CMOS reset default of 1024Hz;
*
* REVISIT it's been reported that at least one x86_64 ALI mobo
* doesn't use 32KHz here ... for portability we might need to
* do something about other clock frequencies.
*/
CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
cmos_rtc.rtc->irq_freq = 1024;
/* disable irqs.
*
* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
* allegedly some older rtcs need that to handle irqs properly
*/
rtc_control = CMOS_READ(RTC_CONTROL);
rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
CMOS_WRITE(rtc_control, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
//.........這裏部分代碼省略.........