當前位置: 首頁>>代碼示例>>C++>>正文


C++ CLOG函數代碼示例

本文整理匯總了C++中CLOG函數的典型用法代碼示例。如果您正苦於以下問題:C++ CLOG函數的具體用法?C++ CLOG怎麽用?C++ CLOG使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了CLOG函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: CLOG

void CvBayesClassifier::onClearDataset() {
	CLOG(LTRACE) << "CvBayesClassifier::onClearDataset\n";
	training_dataset.clear();
	training_responses.clear();
	CLOG(LINFO) << "Training dataset cleared";
}
開發者ID:maciek-slon,項目名稱:DCL_CvBasic,代碼行數:6,代碼來源:CvBayesClassifier.cpp

示例2: LOG

void SIFTNOMWriter::WriteNormals() {

	LOG(LTRACE) << "SIFTNOMWriter::WriteNormals";
	// Try to save the model retrieved from the SOM data stream.
	ptree ptree_file;

	//if(in_cloud_xyzrgb_normals.empty()&&in_cloud_xyzsift.empty()&&in_mean_viewpoint_features_number.empty()){
	//	CLOG(LWARNING) << "There are no required datastreams enabling save of the SOM to file.";
	//	return;
	//}

	if (!in_som.empty()) {
		LOG(LDEBUG) << "!in_som.empty()";

		// Get SOM.
		SIFTObjectModel* som = in_som.read();

		// Save point cloud.
		std::string name_cloud_xyzrgb_normals = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzrgb_normals.pcd");
		pcl::io::savePCDFileASCII (name_cloud_xyzrgb_normals, *(som->cloud_xyzrgb_normals));
		CLOG(LTRACE) << "Write: saved " << som->cloud_xyzrgb_normals->points.size () << " cloud points to "<< name_cloud_xyzrgb_normals;

		// Save feature cloud.
		std::string name_cloud_xyzsift = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzsift.pcd");
		pcl::io::savePCDFileASCII (name_cloud_xyzsift, *(som->cloud_xyzsift));
		CLOG(LTRACE) << "Write: saved " << som->cloud_xyzsift->points.size () << " feature points to "<< name_cloud_xyzsift;

		// Save JSON model description.
		ptree_file.put("name", SOMname);
		ptree_file.put("type", "SIFTObjectModel");
		ptree_file.put("mean_viewpoint_features_number", som->mean_viewpoint_features_number);
		ptree_file.put("cloud_xyzsift", name_cloud_xyzsift);

	}

	// Try to save the model retrieved from the three separate data streams.
	if (!in_cloud_xyzsift.empty() && !in_mean_viewpoint_features_number.empty()) {
		LOG(LDEBUG) << "!in_cloud_xyzsift.empty() && !in_mean_viewpoint_features_number.empty()";

		// Get model from datastreams.

		pcl::PointCloud<PointXYZSIFT>::Ptr cloud_xyzsift = in_cloud_xyzsift.read();
		int mean_viewpoint_features_number = in_mean_viewpoint_features_number.read();


		// Save feature cloud.
		std::string name_cloud_xyzsift = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzsift.pcd");
		pcl::io::savePCDFileASCII (name_cloud_xyzsift, *(cloud_xyzsift));
		CLOG(LTRACE) << "Write: saved " << cloud_xyzsift->points.size () << " feature points to "<< name_cloud_xyzsift;

		// Save JSON model description.

		ptree_file.put("name", SOMname);
		ptree_file.put("type", "SIFTObjectModel");
		ptree_file.put("mean_viewpoint_features_number", mean_viewpoint_features_number);
		ptree_file.put("cloud_xyzsift", name_cloud_xyzsift);

	}

	if (!in_cloud_xyzrgb_normals.empty()) {
		LOG(LDEBUG) << "!in_cloud_xyzrgb_normals.empty()";

		// Get model from datastreams.
		pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr cloud_xyzrgb_normals = in_cloud_xyzrgb_normals.read();


		// Save point cloud.
		std::string name_cloud_xyzrgb_normals = std::string(dir) + std::string("/") + std::string(SOMname) + std::string("_xyzrgb_normals.pcd");
		pcl::io::savePCDFileASCII (name_cloud_xyzrgb_normals, *(cloud_xyzrgb_normals));
		CLOG(LTRACE) << "Write: saved " << cloud_xyzrgb_normals->points.size () << " cloud points to "<< name_cloud_xyzrgb_normals;


		// Save JSON model description.
		//ptree ptree_file;
		ptree_file.put("name", SOMname);
		ptree_file.put("type", "SIFTObjectModel");
		ptree_file.put("cloud_xyzrgb_normals", name_cloud_xyzrgb_normals);
	}

	write_json (std::string(dir) + std::string("/") + std::string(SOMname) + std::string(".json"), ptree_file);


}
開發者ID:DisCODe,項目名稱:SIFTObjectModel,代碼行數:83,代碼來源:SIFTNOMWriter.cpp

示例3: CLOG

void CalcStatistics::calculate() {
	CLOG(LDEBUG)<<"in calculate()";

	Types::HomogMatrix homogMatrix;
	cv::Mat_<double> rvec;
	cv::Mat_<double> tvec;
	cv::Mat_<double> axis;
	cv::Mat_<double> rotMatrix;
	float fi;

	rotMatrix= cv::Mat_<double>::zeros(3,3);
	tvec = cv::Mat_<double>::zeros(3,1);
	axis = cv::Mat_<double>::zeros(3,1);

	// first homogMatrix on InputStream
	if(counter == 0) {
		homogMatrix = in_homogMatrix.read();
		for (int i = 0; i < 3; ++i) {
			for (int j = 0; j < 3; ++j) {
		                rotMatrix(i,j)=homogMatrix(i, j);
			}
			tvec(i, 0) = homogMatrix(i, 3);
		}

		Rodrigues(rotMatrix, rvec);

		cumulatedHomogMatrix = homogMatrix;
		cumulatedTvec = tvec;
		cumulatedRvec = rvec;
		fi = sqrt((pow(rvec(0,0), 2) + pow(rvec(1,0), 2)+pow(rvec(2,0),2)));
		cumulatedFi = fi;
		for(int k=0;k<3;k++) {
			axis(k,0)=rvec(k,0)/fi;
		}

		cumulatedAxis = axis;
		counter=1;
		return;
	}

	homogMatrix=in_homogMatrix.read();

	for (int i = 0; i < 3; ++i) {
		for (int j = 0; j < 3; ++j) {
            rotMatrix(i,j)=homogMatrix(i, j);
		}
        tvec(i, 0) = homogMatrix(i, 3);
	}

	Rodrigues(rotMatrix, rvec);

	fi = sqrt((pow(rvec(0,0), 2) + pow(rvec(1,0), 2)+pow(rvec(2,0),2)));

	for(int k=0;k<3;k++) {
			axis(k,0)=rvec(k,0)/fi;
	}
	cumulatedFi += fi;
	cumulatedTvec += tvec;
	cumulatedRvec += rvec;
	cumulatedAxis += axis;

	counter++;
	avgFi = cumulatedFi/counter;
	avgAxis = cumulatedAxis/counter;
	avgRvec = avgAxis * avgFi;
	avgTvec = cumulatedTvec/counter;

	Types::HomogMatrix hm;
	cv::Mat_<double> rottMatrix;
	Rodrigues(avgRvec, rottMatrix);

	CLOG(LINFO)<<"Uśredniona macierz z "<<counter<<" macierzy \n";
	for (int i = 0; i < 3; ++i) {
		for (int j = 0; j < 3; ++j) {
            hm(i, j) = rottMatrix(i, j);
            CLOG(LINFO) << hm(i, j) << "  ";
		}
        hm(i, 3) = avgTvec(i, 0);
        CLOG(LINFO) << hm(i, 3) <<" \n";
	}
	out_homogMatrix.write(hm);

	CLOG(LINFO)<<"Uśredniony kąt: " << avgFi;

	float standardDeviationFi = sqrt(pow(avgFi - fi, 2));

	CLOG(LINFO)<<"Odchylenie standardowe kąta: "<<standardDeviationFi;

}
開發者ID:DisCODe,項目名稱:DCL_CvBasic,代碼行數:89,代碼來源:CalcStatistics.cpp

示例4: CLOG

void Projection::project_xyzsift() {
    CLOG(LTRACE) << "Projection::project_xyzsift";
    std::vector<Types::HomogMatrix> rototranslations = in_poses.read();
    pcl::PointCloud<PointXYZSIFT>::Ptr scene = in_cloud_xyzsift_scene.read();
    pcl::PointCloud<PointXYZSIFT>::Ptr model = in_cloud_xyzsift_model.read();

    /**
     * Generates clouds for each instances found
     */
    std::vector<pcl::PointCloud<PointXYZSIFT>::ConstPtr> instances;
    std::vector<pcl::PointCloud<PointXYZSIFT>::ConstPtr> parts_of_scene;
    for (size_t i = 0; i < rototranslations.size (); ++i)
    {
      //rotate model
      pcl::PointCloud<PointXYZSIFT>::Ptr rotated_model (new pcl::PointCloud<PointXYZSIFT> ());
      pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
      instances.push_back (rotated_model);

      //cut part of scene
      PointXYZSIFT minPt, maxPt;
      pcl::getMinMax3D(*rotated_model, minPt, maxPt);
      minPt.x -= bounding_box_epsilon;
      minPt.y -= bounding_box_epsilon;
      minPt.z -= bounding_box_epsilon;
      maxPt.x += bounding_box_epsilon;
      maxPt.y += bounding_box_epsilon;
      maxPt.z += bounding_box_epsilon;
      pcl::PointCloud<PointXYZSIFT>::Ptr part_of_scene (new pcl::PointCloud<PointXYZSIFT> ());
      *part_of_scene = *scene;
      pcl::PassThrough<PointXYZSIFT> pass;
      pass.setInputCloud (part_of_scene);
      pass.setFilterFieldName ("x");
      pass.setFilterLimits (minPt.x, maxPt.x);
      pass.setFilterLimitsNegative (false);
      pass.filter (*part_of_scene);
      pass.setFilterFieldName ("y");
      pass.setFilterLimits (minPt.y, maxPt.y);
      pass.setFilterLimitsNegative (false);
      pass.filter (*part_of_scene);
      pass.setFilterFieldName ("z");
      pass.setFilterLimits (minPt.z, maxPt.z);
      pass.setFilterLimitsNegative (false);
      pass.filter (*part_of_scene);
      parts_of_scene.push_back(part_of_scene);
      CLOG(LDEBUG) << "part of scene " << i << " points " << part_of_scene->size();
    }

    /**
     * ICP
     */
    if(use_icp){
        std::vector<pcl::PointCloud<PointXYZSIFT>::ConstPtr> registered_instances;
        CLOG(LINFO) << "ICP";
        for (size_t i = 0; i < rototranslations.size (); ++i)
        {
            pcl::IterativeClosestPoint<PointXYZSIFT, PointXYZSIFT> icp;
            icp.setMaximumIterations (icp_max_iter);
            icp.setMaxCorrespondenceDistance (icp_corr_distance);
            icp.setInputTarget (scene);
            icp.setInputSource (instances[i]);
            pcl::PointCloud<PointXYZSIFT>::Ptr registered (new pcl::PointCloud<PointXYZSIFT>);
            icp.align (*registered);
            registered_instances.push_back (registered);
            CLOG(LINFO) << "Instance " << i << " ";
            if (icp.hasConverged ())
            {
                CLOG(LINFO) << "Aligned!" << endl;
            }
            else
            {
                CLOG(LINFO) << "Not Aligned!" << endl;
            }
        }
        out_registered_instances_xyzsift.write(registered_instances);
    }
    else
        out_registered_instances_xyzsift.write(instances);

    //link parts to one cloud
    pcl::PointCloud<PointXYZSIFT>::Ptr scene1(new pcl::PointCloud<PointXYZSIFT>);
    for(int i = 0; i < parts_of_scene.size(); i++){
        *scene1 += *(parts_of_scene[i]);
    }

    out_parts_of_scene_xyzsift.write(scene1);
}
開發者ID:DisCODe,項目名稱:SIFTObjectModel,代碼行數:86,代碼來源:Projection.cpp

示例5: CLOG

void SIFTNOMWriter::onSOMNameChanged(const std::string & old_SOMname, const std::string & new_SOMname) {
	SOMname = new_SOMname;
	CLOG(LTRACE) << "onSOMNameChanged: " << std::string(SOMname) << std::endl;
}
開發者ID:DisCODe,項目名稱:SIFTObjectModel,代碼行數:4,代碼來源:SIFTNOMWriter.cpp

示例6: CLOG

CvWindow_Sink::~CvWindow_Sink() {
	CLOG(LTRACE) << "Good bye CvWindow_Sink";
}
開發者ID:DisCODe,項目名稱:DCL_CvBasic,代碼行數:3,代碼來源:CvWindow_Sink.cpp

示例7: rvec

void DrawCoordinateSystem::projectPoints(){
	cv::Mat_<double> rvec(3,1);
	cv::Mat_<double> tvec(3,1);
	Types::HomogMatrix homogMatrix;
	cv::Mat_<double> rotMatrix;
	rotMatrix.create(3,3);

	// Try to read rotation and translation from rvec and tvec or homogenous matrix.
	if(!in_rvec.empty()&&!in_tvec.empty()){
		rvec = in_rvec.read();
		tvec = in_tvec.read();
	}
	else if(!in_homogMatrix.empty()){
		homogMatrix = in_homogMatrix.read();

		for (int i = 0; i < 3; ++i) {
			for (int j = 0; j < 3; ++j) {
                rotMatrix(i,j)=homogMatrix(i, j);
			}
            tvec(i, 0) = homogMatrix(i, 3);
		}
		Rodrigues(rotMatrix, rvec);
	}
	else
		return;

	// Get camera info properties.
	Types::CameraInfo camera_matrix = in_camera_matrix.read();

	vector<cv::Point3f> object_points;
	vector<cv::Point2f> image_points;

	// Create four points constituting ends of three lines.
	object_points.push_back(cv::Point3f(0,0,0));
	object_points.push_back(cv::Point3f(0.1,0,0));
	object_points.push_back(cv::Point3f(0,0.1,0));
	object_points.push_back(cv::Point3f(0,0,0.1));

	// Project points taking into account the camera properties.
	if (rectified) {
		cv::Mat K, _r, _t;
		cv::decomposeProjectionMatrix(camera_matrix.projectionMatrix(), K, _r, _t);
		cv::projectPoints(object_points, rvec, tvec, K, cv::Mat(), image_points);
	} else {
		cv::projectPoints(object_points, rvec, tvec, camera_matrix.cameraMatrix(), camera_matrix.distCoeffs(), image_points);
	}

	// Draw lines between projected points.
	Types::Line ax(image_points[0], image_points[1]);
	ax.setCol(cv::Scalar(255, 0, 0));
	Types::Line ay(image_points[0], image_points[2]);
	ay.setCol(cv::Scalar(0, 255, 0));
	Types::Line az(image_points[0], image_points[3]);
	az.setCol(cv::Scalar(0, 0, 255));

	// Add lines to container.
	Types::DrawableContainer ctr;
	ctr.add(ax.clone());
	ctr.add(ay.clone());
	ctr.add(az.clone());

	CLOG(LINFO)<<"Image Points: "<<image_points;

	// Write output to dataports.
	out_csystem.write(ctr);
	out_impoints.write(image_points);
}
開發者ID:DisCODe,項目名稱:DCL_CvBasic,代碼行數:67,代碼來源:DrawCoordinateSystem.cpp

示例8: attr

TCodParser::TCodAttr TCodParser::AttrName()
    {
    TCodAttr attr( ECodUnknownAttr );

    const TText* start = iCurP;
    while
        (
            iCurP < iEndP &&
            !IsControl() &&
            !IsSeparator() &&
            *iCurP != KCodCarriageRet &&
            *iCurP != KCodLineFeed
        )
        {
        iCurP++;
        }

    TPtrC token( start, iCurP - start );
    if ( !token.Length() )
        {
        Error( KErrCodInvalidDescriptor );
        }
    else if ( !token.Compare( KCodName ) )
        {
        attr = ECodName;
        }
    else if ( !token.Compare( KCodVendor ) )
        {
        attr = ECodVendor;
        }
    else if ( !token.Compare( KCodDescription ) )
        {
        attr = ECodDescription;
        }
    else if ( !token.Compare( KCodUrl ) )
        {
        attr = ECodUrl;
        }
    else if ( !token.Compare( KCodSize ) )
        {
        attr = ECodSize;
        }
    else if ( !token.Compare( KCodType ) )
        {
        attr = ECodType;
        }
    else if ( !token.Compare( KCodInstallNotify ) )
        {
        attr = ECodInstallNotify;
        }
    else if ( !token.Compare( KCodNextUrl ) )
        {
        attr = ECodNextUrl;
        }
    else if ( !token.Compare( KCodNextUrlAtError ) )
        {
        attr = ECodNextUrlAtError;
        }
    else if ( !token.Compare( KCodInfoUrl ) )
        {
        attr = ECodInfoUrl;
        }
    else if ( !token.Compare( KCodPrice ) )
        {
        attr = ECodPrice;
        }
    else if ( !token.Compare( KCodIcon ) )
        {
        attr = ECodIcon;
        }

    CLOG(( EParse, 4, _L("TCodParser::AttrName token<%S> attr(%d)"), \
        &token, attr ));
    return attr;
    }
開發者ID:cdaffara,項目名稱:symbiandump-mw4,代碼行數:75,代碼來源:CodParser.cpp

示例9: CLOG

// ---------------------------------------------------------
// TCodParser::ParseL()
// ---------------------------------------------------------
//
void TCodParser::ParseL( const TDesC& aBuf, CCodData& aData )
    {
    CLOG(( EParse, 2, _L("-> TCodParser::ParseL") ));
    CDUMP(( EParse, 2, _S("Buf:"), _S("    "), \
        (const TUint8*)aBuf.Ptr(), aBuf.Size() ));
    iError = KErrNone;
    iData = &aData;
    iBuf = &aBuf;
    iCurP = iBuf->Ptr();
    iEndP = iCurP + iBuf->Length();
    CMediaObjectData *mediaObject = CMediaObjectData::NewL();
    // Processing lines (attribute and value) until there is more lines to read.
    while ( AttrLineL(mediaObject) )
        {
        // Some compilers require empty controlled statement block instead of
        // just a semicolon.
        }
    iData->AppendMediaObjectL( mediaObject );   
#ifdef __TEST_COD_LOG
    TPtrC ptr16;
    TPtrC8 ptr8;
    CLOG(( EParse, 3, _L("TCodParser::ParseL data:") ));
    ptr16.Set( aData.Name() );
    CLOG(( EParse, 3, _L("  Name<%S>"), &ptr16 ));
    ptr16.Set( aData.Vendor() );
    CLOG(( EParse, 3, _L("  Vendor<%S>"), &ptr16 ));
    ptr16.Set( aData.Description() );
    CLOG(( EParse, 3, _L("  Desc<%S>"), &ptr16 ));
    CLOG(( EParse, 3, _L("  Size(%d)"), aData.Size() ));
    ptr8.Set( aData.InstallNotify() );
    CLOG(( EParse, 3, _L8("  InstNotif<%S>"), &ptr8 ));
    ptr8.Set( aData.NextUrl() );
    CLOG(( EParse, 3, _L8("  NextUrl<%S>"), &ptr8 ));
    ptr8.Set( aData.NextUrlAtError() );
    CLOG(( EParse, 3, _L8("  NextUrlAtErr<%S>"), &ptr8 ));
    ptr8.Set( aData.InfoUrl() );
    CLOG(( EParse, 3, _L8("  InfoUrl<%S>"), &ptr8 ));
    ptr16.Set( aData.Price() );
    CLOG(( EParse, 3, _L("  Price<%S>"), &ptr16 ));
    ptr8.Set( aData.Icon() );
    CLOG(( EParse, 3, _L8("  Icon<%S>"), &ptr8 ));
#endif /* def __TEST_COD_LOG */

    // NULL data for clarity. These are never used later, but don't keep
    // pointers to objects which are out of reach.
    iBuf = NULL;
    iData = NULL;
    iCurP = NULL;
    iEndP = NULL;
    User::LeaveIfError( iError );
    CLOG(( EParse, 2, _L("<- TCodParser::ParseL") ));
    }
開發者ID:cdaffara,項目名稱:symbiandump-mw4,代碼行數:56,代碼來源:CodParser.cpp

示例10: CLOG

void StereoSequence::onTriggeredLoadNextImage(){
    CLOG(LDEBUG) << "Sequence::onTriggeredLoadNextImage - next image from the sequence will be loaded";
    in_load_next_image_trigger.read();
    frame++;
}
開發者ID:Sapphire1,項目名稱:CvStereo,代碼行數:5,代碼來源:StereoSequence.cpp

示例11: CLOG

bool
ApplyLedgerChainWork::applyHistoryOfSingleLedger()
{
    LedgerHeaderHistoryEntry hHeader;
    LedgerHeader& header = hHeader.header;

    if (!mHdrIn || !mHdrIn.readOne(hHeader))
    {
        return false;
    }

    auto& lm = mApp.getLedgerManager();

    auto const& lclHeader = lm.getLastClosedLedgerHeader();

    // If we are >1 before LCL, skip
    if (header.ledgerSeq + 1 < lclHeader.header.ledgerSeq)
    {
        CLOG(DEBUG, "History")
            << "Catchup skipping old ledger " << header.ledgerSeq;
        return true;
    }

    // If we are one before LCL, check that we knit up with it
    if (header.ledgerSeq + 1 == lclHeader.header.ledgerSeq)
    {
        if (hHeader.hash != lclHeader.header.previousLedgerHash)
        {
            throw std::runtime_error(
                fmt::format("replay of {:s} failed to connect on hash of LCL "
                            "predecessor {:s}",
                            LedgerManager::ledgerAbbrev(hHeader),
                            LedgerManager::ledgerAbbrev(
                                lclHeader.header.ledgerSeq - 1,
                                lclHeader.header.previousLedgerHash)));
        }
        CLOG(DEBUG, "History") << "Catchup at 1-before LCL ("
                               << header.ledgerSeq << "), hash correct";
        return true;
    }

    // If we are at LCL, check that we knit up with it
    if (header.ledgerSeq == lclHeader.header.ledgerSeq)
    {
        if (hHeader.hash != lm.getLastClosedLedgerHeader().hash)
        {
            mApplyLedgerFailure.Mark();
            throw std::runtime_error(
                fmt::format("replay of {:s} at LCL {:s} disagreed on hash",
                            LedgerManager::ledgerAbbrev(hHeader),
                            LedgerManager::ledgerAbbrev(lclHeader)));
        }
        CLOG(DEBUG, "History")
            << "Catchup at LCL=" << header.ledgerSeq << ", hash correct";
        return true;
    }

    // If we are past current, we can't catch up: fail.
    if (header.ledgerSeq != lclHeader.header.ledgerSeq + 1)
    {
        mApplyLedgerFailure.Mark();
        throw std::runtime_error(
            fmt::format("replay overshot current ledger: {:d} > {:d}",
                        header.ledgerSeq, lclHeader.header.ledgerSeq + 1));
    }

    // If we do not agree about LCL hash, we can't catch up: fail.
    if (header.previousLedgerHash != lm.getLastClosedLedgerHeader().hash)
    {
        mApplyLedgerFailure.Mark();
        throw std::runtime_error(fmt::format(
            "replay at current ledger {:s} disagreed on LCL hash {:s}",
            LedgerManager::ledgerAbbrev(header.ledgerSeq - 1,
                                        header.previousLedgerHash),
            LedgerManager::ledgerAbbrev(lclHeader)));
    }

    auto txset = getCurrentTxSet();
    CLOG(DEBUG, "History") << "Ledger " << header.ledgerSeq << " has "
                           << txset->size() << " transactions";

    // We've verified the ledgerHeader (in the "trusted part of history"
    // sense) in CATCHUP_VERIFY phase; we now need to check that the
    // txhash we're about to apply is the one denoted by that ledger
    // header.
    if (header.scpValue.txSetHash != txset->getContentsHash())
    {
        mApplyLedgerFailure.Mark();
        throw std::runtime_error(fmt::format(
            "replay txset hash differs from txset hash in replay ledger: hash "
            "for txset for {:d} is {:s}, expected {:s}",
            header.ledgerSeq, hexAbbrev(txset->getContentsHash()),
            hexAbbrev(header.scpValue.txSetHash)));
    }

    LedgerCloseData closeData(header.ledgerSeq, txset, header.scpValue);
    lm.closeLedger(closeData);

    CLOG(DEBUG, "History") << "LedgerManager LCL:\n"
                           << xdr::xdr_to_string(
//.........這裏部分代碼省略.........
開發者ID:graydon,項目名稱:stellar-core,代碼行數:101,代碼來源:ApplyLedgerChainWork.cpp

示例12: CLOG

void CvFlann::onNewImage()
{
	CLOG(LTRACE) << "CvFlann::onNewImage\n";
	try {
		// Read input features.
		Types::Features features_1 = in_features0.read();
		Types::Features features_2 = in_features1.read();
		// Read input descriptors.
		cv::Mat img_1 = in_img0.read();
		cv::Mat img_2 = in_img1.read();
		// Read input images.
		cv::Mat descriptors_1 = in_descriptors0.read();
		cv::Mat descriptors_2 = in_descriptors1.read();

		// Matching descriptor vectors using FLANN matcher.
		FlannBasedMatcher matcher;
		std::vector< DMatch > matches;
		matcher.match( descriptors_1, descriptors_2, matches );

		if (distance_recalc) {
			double max_dist = 0;
			double min_dist = 100;
			//-- Quick calculation of max and min distances between keypoints.
			for( int i = 0; i < descriptors_1.rows; i++ )
			{
				double dist = matches[i].distance;
				if( dist < min_dist ) min_dist = dist;
				if( dist > max_dist ) max_dist = dist;
			}
			dist = 2*min_dist;
			CLOG(LINFO) << " Max dist : " << (double)max_dist;
			CLOG(LINFO) << " Min dist : " << (double)min_dist;
			CLOG(LINFO) << " Dist : " << (double)dist << std::endl;
		}

		//Draw only "good" matches (i.e. whose distance is less than 2*min_dist ).
		//PS.- radiusMatch can also be used here.
		std::vector< DMatch > good_matches;
		for( int i = 0; i < descriptors_1.rows; i++ )
		{
			if( matches[i].distance < dist )
				good_matches.push_back( matches[i]);
		}

		//-- Draw only "good" matches
		Mat img_matches;
		drawMatches( img_1, features_1.features, img_2, features_2.features,
				   good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
				   vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

		// Print stats.
		if (print_stats) {
			for( int i = 0; i < good_matches.size(); i++ )
			{
				CLOG(LINFO) << " Good Match [" << i <<"] Keypoint 1: " << good_matches[i].queryIdx << "  -- Keypoint 2: " << good_matches[i].trainIdx;
			}
			CLOG(LINFO) << std::endl;
		}


		// Write the result to the output.
		out_img.write(img_matches);
	} catch (...) {
		CLOG(LERROR) << "CvFlann::onNewImage failed\n";
	}
}
開發者ID:DisCODe,項目名稱:DCL_CvBasic,代碼行數:66,代碼來源:CvFlann.cpp

示例13: CLOG

void Sequence::onLoadImage() {
	CLOG(LDEBUG) << "Sequence::onLoadImage";

	if(reload_flag) {
		// Try to reload sequence.
		if (!findFiles()) {
			CLOG(LERROR) << name() << ": There are no files matching the regular expression "
					<< prop_pattern << " in " << prop_directory;
		}
		frame = -1;
		reload_flag = false;
	}


	// Check whether there are any images loaded.
	if(files.empty())
		return;

	// Check streaming
	if(!prop_auto_streaming && !streaming_flag)
		return;

	streaming_flag = false;

	// Check triggering mode.
	if ((prop_auto_next_image) || (!prop_auto_next_image && next_image_flag))
		frame++;
	
	// Anyway, reset flag.
	next_image_flag = false;

	// Check frame number.
	if (frame <0)
		frame = 0;
	// Check the size of the dataset.
	if (frame >= files.size()) {
		if (prop_loop) {
			frame = 0;
			CLOG(LINFO) << name() << ": loop";
			// TODO: endOfSequence->raise();
		} else {
			frame = files.size() -1;
			CLOG(LINFO) << name() << ": end of sequence";
			// TODO: endOfSequence->raise();
		}

	}

	CLOG(LINFO) << "Sequence: reading image " << files[frame];
	try {
		// Get file extension.
		std::string ext = files[frame].substr(files[frame].rfind(".")+1);
		CLOG(LDEBUG) << "Extracted file Extension " << ext;
		// Read depth from yaml.
		if ((ext == "yaml") || (ext == "yml")){
			cv::FileStorage file(files[frame], cv::FileStorage::READ);
			file["img"] >> img;
		}
		else
			img = cv::imread(files[frame], CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);
	} catch (...) {
開發者ID:qiubix,項目名稱:DCL_CvBasic,代碼行數:61,代碼來源:Sequence.cpp

示例14: err

void
ApplicationImpl::start()
{
    mDatabase->upgradeToCurrentSchema();

    if (mPersistentState->getState(PersistentState::kForceSCPOnNextLaunch) ==
        "true")
    {
        mConfig.FORCE_SCP = true;
    }

    if (mConfig.NETWORK_PASSPHRASE.empty())
    {
        throw std::invalid_argument("NETWORK_PASSPHRASE not configured");
    }
    if (mConfig.QUORUM_SET.threshold == 0)
    {
        throw std::invalid_argument("Quorum not configured");
    }
    if (!mHerder->isQuorumSetSane(mConfig.QUORUM_SET, !mConfig.UNSAFE_QUORUM))
    {
        std::string err("Invalid QUORUM_SET: duplicate entry or bad threshold "
                        "(should be between ");
        if (mConfig.UNSAFE_QUORUM)
        {
            err = err + "1";
        }
        else
        {
            err = err + "51";
        }
        err = err + " and 100)";
        throw std::invalid_argument(err);
    }

    bool done = false;
    mLedgerManager->loadLastKnownLedger(
        [this, &done](asio::error_code const& ec)
        {
            if (ec)
            {
                throw std::runtime_error("Unable to restore last-known ledger state");
            }

            // restores the SCP state before starting overlay
            mHerder->restoreSCPState();
            // perform maintenance tasks if configured to do so
            // for now, we only perform it when CATCHUP_COMPLETE is not set
            if (mConfig.MAINTENANCE_ON_STARTUP && !mConfig.CATCHUP_COMPLETE)
            {
                maintenance();
            }
            mOverlayManager->start();
            auto npub = mHistoryManager->publishQueuedHistory();
            if (npub != 0)
            {
                CLOG(INFO, "Ledger") << "Restarted publishing " << npub
                                     << " queued snapshots";
            }
            if (mConfig.FORCE_SCP)
            {
                std::string flagClearedMsg = "";
                if (mPersistentState->getState(
                        PersistentState::kForceSCPOnNextLaunch) == "true")
                {
                    flagClearedMsg = " (`force scp` flag cleared in the db)";
                    mPersistentState->setState(
                        PersistentState::kForceSCPOnNextLaunch, "false");
                }

                LOG(INFO) << "* ";
                LOG(INFO) << "* Force-starting scp from the current db state."
                          << flagClearedMsg;
                LOG(INFO) << "* ";

                mHerder->bootstrap();
            }
            done = true;
        });

    while (!done)
    {
        mVirtualClock.crank(true);
    }
}
開發者ID:AnthonyAkentiev,項目名稱:stellar-core,代碼行數:85,代碼來源:ApplicationImpl.cpp

示例15: CLOG

void CalcObjectLocation::calculate() {
    CLOG(LDEBUG)<<"in calculate()";

    Types::HomogMatrix homogMatrix;
    vector<cv::Mat_<double> > rvec;
    vector<cv::Mat_<double> > tvec;
    vector<cv::Mat_<double> > axis;
    vector<double> fi;
    cv::Mat_<double> tvectemp;
    cv::Mat_<double> rotMatrix;
    rotMatrix = cv::Mat_<double>::zeros(3,3);
    tvectemp = cv::Mat_<double>::zeros(3,1);

    while (!in_homogMatrix.empty()) {
        cv::Mat_<double> rvectemp;
        homogMatrix=in_homogMatrix.read();

        if (homogMatrix.getElements() == Eigen::Matrix4f::Identity()) {
            continue;
        }

        for (int i = 0; i < 3; ++i) {
            for (int j = 0; j < 3; ++j) {
                rotMatrix(i,j)=homogMatrix.getElement(i, j);
            }
            tvectemp(i, 0) = homogMatrix.getElement(i, 3);
        }

        Rodrigues(rotMatrix, rvectemp);
        CLOG(LINFO) << rvectemp << "\n";
        rvec.push_back(rvectemp);
        tvec.push_back(tvectemp);
    }

    if (rvec.size() == 1) {
        out_homogMatrix.write(homogMatrix);
        return;
    }

    float fi_sum=0, fi_avg;
    cv::Mat_<double> axis_sum, axis_avg;
    cv::Mat_<double> rvec_avg;
    cv::Mat_<double> tvec_avg, tvec_sum;

    axis_sum = cv::Mat_<double>::zeros(3,1);
    tvec_sum = cv::Mat_<double>::zeros(3,1);

    for(int i = 0; i < rvec.size(); i++) {
        float fitmp = sqrt((pow(rvec.at(i)(0,0), 2) + pow(rvec.at(i)(1,0), 2)+pow(rvec.at(i)(2,0),2)));
        fi.push_back(fitmp);

        fi_sum+=fitmp;
        cv::Mat_<double> axistemp;
        axistemp.create(3,1);
        for(int k=0; k<3; k++) {
            axistemp(k,0)=rvec.at(i)(k,0)/fitmp;
        }
        axis.push_back(axistemp);
        axis_sum+=axistemp;
        tvec_sum+=tvec.at(i);
    }

    fi_avg = fi_sum/fi.size();
    axis_avg = axis_sum/axis.size();
    rvec_avg = axis_avg * fi_avg;
    tvec_avg = tvec_sum/tvec.size();

    Types::HomogMatrix hm;
    cv::Mat_<double> rottMatrix;
    Rodrigues(rvec_avg, rottMatrix);

    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j < 3; ++j) {
            hm.setElement(i, j, rottMatrix(i, j));
            CLOG(LINFO) << hm.getElement(i, j) << "  ";
        }
        hm.setElement(i, 3, tvec_avg(i, 0));
        CLOG(LINFO) << hm.getElement(i, 3) << "\n";
    }
    out_homogMatrix.write(hm);
}
開發者ID:qiubix,項目名稱:DCL_CvBasic,代碼行數:81,代碼來源:CalcObjectLocation.cpp


注:本文中的CLOG函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。