當前位置: 首頁>>代碼示例>>C++>>正文


C++ CHECK_GE函數代碼示例

本文整理匯總了C++中CHECK_GE函數的典型用法代碼示例。如果您正苦於以下問題:C++ CHECK_GE函數的具體用法?C++ CHECK_GE怎麽用?C++ CHECK_GE使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了CHECK_GE函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: caffe_set

void RegionPoolingLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_rois = bottom[1]->cpu_data();
  // Number of ROIs
  int num_rois = bottom[1]->num();
  int batch_size = bottom[0]->num();
  int top_count = top[0]->count();
  Dtype* top_data = top[0]->mutable_cpu_data();
  caffe_set(top_count, Dtype(-FLT_MAX), top_data);
  int* argmax_data = max_idx_.mutable_cpu_data();
  caffe_set(top_count, -1, argmax_data);

  // For each ROI R = [batch_index, x_outer_1, y_outer_1, x_outer_2, y_outer_2, x_inner_1, y_inner_1, x_inner_2, y_inner_2]: 
  // where R_outer = [x_outer_1, y_outer_1, x_outer_2, y_outer_2] is the outer rectangle of the region and 
  // R_inner = [x_inner_1, y_inner_1, x_inner_2, y_inner_2] is the inner rectangle of the region
  // max pooler over R by ignoring (setting to zero) the activations that lay inside the inner rectangle R_inner
  for (int n = 0; n < num_rois; ++n) {
    int roi_batch_ind  = bottom_rois[0];
    // outer rectangle of the region
    int roi_start_w    = static_cast<int>(floor(((bottom_rois[1] + 1 + offset_) * spatial_scale_) + 0.5));
    int roi_start_h    = static_cast<int>(floor(((bottom_rois[2] + 1 + offset_) * spatial_scale_) + 0.5));
    int roi_end_w      = static_cast<int>(ceil( ((bottom_rois[3] + 1 - offset_) * spatial_scale_) - 0.5));
    int roi_end_h      = static_cast<int>(ceil( ((bottom_rois[4] + 1 - offset_) * spatial_scale_) - 0.5));
	
    // inner rectangle of the region
    int roi_start_w_in = static_cast<int>(floor(((bottom_rois[5] + 1 + offset_) * spatial_scale_) + 0.5));
    int roi_start_h_in = static_cast<int>(floor(((bottom_rois[6] + 1 + offset_) * spatial_scale_) + 0.5));
    int roi_end_w_in   = static_cast<int>(ceil( ((bottom_rois[7] + 1 - offset_) * spatial_scale_) - 0.5));
    int roi_end_h_in   = static_cast<int>(ceil( ((bottom_rois[8] + 1 - offset_) * spatial_scale_) - 0.5));


	if (roi_start_w > roi_end_w)
	{
		roi_start_w = (roi_start_w + roi_end_w) / 2;
		roi_end_w   = roi_start_w;
	}
	if (roi_start_h > roi_end_h)
	{
		roi_start_h = (roi_start_h + roi_end_h) / 2;
		roi_end_h   = roi_start_h;
	}  
	if (roi_start_w_in > roi_end_w_in)
	{
		roi_start_w_in = (roi_start_w_in + roi_end_w_in) / 2;
		roi_end_w_in   = roi_start_w_in;
	}
	if (roi_start_h_in > roi_end_h_in)
	{
		roi_start_h_in = (roi_start_h_in + roi_end_h_in) / 2;
		roi_end_h_in   = roi_start_h_in;
	} 

    CHECK_GE(roi_batch_ind, 0);
    CHECK_LT(roi_batch_ind, batch_size);

    const int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    const int roi_width  = max(roi_end_w - roi_start_w + 1, 1);
    const Dtype bin_size_h = static_cast<Dtype>(roi_height) / static_cast<Dtype>(pooled_height_);
    const Dtype bin_size_w = static_cast<Dtype>(roi_width)  / static_cast<Dtype>(pooled_width_);
   
    const Dtype* batch_data = bottom_data + bottom[0]->offset(roi_batch_ind);

    for (int c = 0; c < channels_; ++c) {
      for (int ph = 0; ph < pooled_height_; ++ph) {
        for (int pw = 0; pw < pooled_width_; ++pw) {
          // Compute pooling region for this output unit:
          //  start (included) = floor(ph * roi_height / pooled_height_)
          //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
          
          const int hstart = min(height_, max(0, static_cast<int>(floor(static_cast<Dtype>(ph)   * bin_size_h)) + roi_start_h));
	  const int hend   = min(height_, max(0, static_cast<int>(ceil( static_cast<Dtype>(ph+1) * bin_size_h)) + roi_start_h));
          const int wstart = min(width_,  max(0, static_cast<int>(floor(static_cast<Dtype>(pw)   * bin_size_w)) + roi_start_w));
          const int wend   = min(width_,  max(0, static_cast<int>(ceil( static_cast<Dtype>(pw+1) * bin_size_w)) + roi_start_w));

          const int pool_index = ph * pooled_width_ + pw;
          top_data[pool_index] = 0;
          argmax_data[pool_index] = -1;


          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
	      if (!(w > roi_start_w_in && w < roi_end_w_in && h > roi_start_h_in && h < roi_end_h_in)) { 
                // if it is not inside the inner rectangle of the region
		const int index = h * width_ + w;
		if (batch_data[index] > top_data[pool_index]) {
		  top_data[pool_index] = batch_data[index];
		  argmax_data[pool_index] = index;
		}					
	      }
            }
          }
        }
      }
      // Increment all data pointers by one channel
      batch_data += bottom[0]->offset(0, 1);
      top_data += top[0]->offset(0, 1);
      argmax_data += max_idx_.offset(0, 1);
    }
    // Increment ROI data pointer
//.........這裏部分代碼省略.........
開發者ID:Jieeee,項目名稱:caffe_LocNet,代碼行數:101,代碼來源:region_pooling_layer.cpp

示例2: CHECK_LE

void DataTransformer<Dtype>::Transform(Blob<Dtype>* input_blob,
                                       Blob<Dtype>* transformed_blob) {
  const int crop_size = param_.crop_size();
  const int input_num = input_blob->num();
  const int input_channels = input_blob->channels();
  const int input_height = input_blob->height();
  const int input_width = input_blob->width();

  if (transformed_blob->count() == 0) {
    // Initialize transformed_blob with the right shape.
    if (crop_size) {
      transformed_blob->Reshape(input_num, input_channels,
                                crop_size, crop_size);
    } else {
      transformed_blob->Reshape(input_num, input_channels,
                                input_height, input_width);
    }
  }

  const int num = transformed_blob->num();
  const int channels = transformed_blob->channels();
  const int height = transformed_blob->height();
  const int width = transformed_blob->width();
  const int size = transformed_blob->count();

  CHECK_LE(input_num, num);
  CHECK_EQ(input_channels, channels);
  CHECK_GE(input_height, height);
  CHECK_GE(input_width, width);


  const Dtype scale = param_.scale();
  const bool do_mirror = param_.mirror() && Rand(2);
  const bool has_mean_file = param_.has_mean_file();
  const bool has_mean_values = mean_values_.size() > 0;

  int h_off = 0;
  int w_off = 0;
  if (crop_size) {
    CHECK_EQ(crop_size, height);
    CHECK_EQ(crop_size, width);
    // We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(input_height - crop_size + 1);
      w_off = Rand(input_width - crop_size + 1);
    } else {
      h_off = (input_height - crop_size) / 2;
      w_off = (input_width - crop_size) / 2;
    }
  } else {
    CHECK_EQ(input_height, height);
    CHECK_EQ(input_width, width);
  }

  Dtype* input_data = input_blob->mutable_cpu_data();
  if (has_mean_file) {
    CHECK_EQ(input_channels, data_mean_.channels());
    CHECK_EQ(input_height, data_mean_.height());
    CHECK_EQ(input_width, data_mean_.width());
    for (int n = 0; n < input_num; ++n) {
      int offset = input_blob->offset(n);
      caffe_sub(data_mean_.count(), input_data + offset,
            data_mean_.cpu_data(), input_data + offset);
    }
  }

  if (has_mean_values) {
    CHECK(mean_values_.size() == 1 || mean_values_.size() == input_channels) <<
     "Specify either 1 mean_value or as many as channels: " << input_channels;
    if (mean_values_.size() == 1) {
      caffe_add_scalar(input_blob->count(), -(mean_values_[0]), input_data);
    } else {
      for (int n = 0; n < input_num; ++n) {
        for (int c = 0; c < input_channels; ++c) {
          int offset = input_blob->offset(n, c);
          caffe_add_scalar(input_height * input_width, -(mean_values_[c]),
            input_data + offset);
        }
      }
    }
  }

  Dtype* transformed_data = transformed_blob->mutable_cpu_data();

  for (int n = 0; n < input_num; ++n) {
    int top_index_n = n * channels;
    int data_index_n = n * channels;
    for (int c = 0; c < channels; ++c) {
      int top_index_c = (top_index_n + c) * height;
      int data_index_c = (data_index_n + c) * input_height + h_off;
      for (int h = 0; h < height; ++h) {
        int top_index_h = (top_index_c + h) * width;
        int data_index_h = (data_index_c + h) * input_width + w_off;
        if (do_mirror) {
          int top_index_w = top_index_h + width - 1;
          for (int w = 0; w < width; ++w) {
            transformed_data[top_index_w-w] = input_data[data_index_h + w];
          }
        } else {
          for (int w = 0; w < width; ++w) {
//.........這裏部分代碼省略.........
開發者ID:runauto,項目名稱:caffe-augmentation-1,代碼行數:101,代碼來源:data_transformer.cpp

示例3: CHECK_LE

void DataTransformer<Dtype>::Transform(const Datum& datum,
                                       Blob<Dtype>* transformed_blob,  int &h_off, int &w_off, int &do_mirror, vector<float> & col_ranges) {

  const int img_channels = datum.channels();
  const int img_height = datum.height();
  const int img_width = datum.width();

  const int channels = transformed_blob->channels();
  const int height = transformed_blob->height();
  const int width = transformed_blob->width();
  const int num = transformed_blob->num();

  //CHECK_EQ(channels, img_channels);
  CHECK_LE(height, img_height);
  CHECK_LE(width, img_width);
  CHECK_GE(num, 1);
  CHECK_EQ(img_channels, col_ranges.size());

  const int crop_size = param_.crop_size();
  const Dtype scale = param_.scale();
  const bool has_mean_file = param_.has_mean_file();
  const bool has_mean_values = mean_values_.size() > 0;
  if (do_mirror == -1)
  {
    do_mirror = param_.mirror() && Rand(2);
  }


  CHECK_GT(img_channels, 0);
  CHECK_GE(img_height, crop_size);
  CHECK_GE(img_width, crop_size);

  Dtype* mean = NULL;
  if (has_mean_file)
  {
    CHECK_EQ(img_channels, data_mean_.channels());
    if( (img_height == data_mean_.height() && img_width == data_mean_.width() ) || (crop_size == data_mean_.height() && crop_size == data_mean_.width() ) )
    {
        mean = data_mean_.mutable_cpu_data();
    }
    else
    {
      CHECK_EQ(img_height, data_mean_.height());
      CHECK_EQ(img_width, data_mean_.width());
    }
  }
  if (has_mean_values) {
    CHECK(mean_values_.size() == 1 || mean_values_.size() == img_channels) <<
     "Specify either 1 mean_value or as many as channels: " << img_channels;
    if (img_channels > 1 && mean_values_.size() == 1) {
      // Replicate the mean_value for simplicity
      for (int c = 1; c < img_channels; ++c) {
        mean_values_.push_back(mean_values_[0]);
      }
    }
  }

  //cv::Mat cv_cropped_img = cv_img;
  if (crop_size) {
    CHECK_EQ(crop_size, height);
    CHECK_EQ(crop_size, width);
    // We only do random crop when we do training.
    if (phase_ == TRAIN) {
      if (h_off == -1 && w_off == -1)
      {
        h_off = Rand(img_height - crop_size + 1);
        w_off = Rand(img_width - crop_size + 1);
      }
    }
    else {
      if (h_off == -1 && w_off == -1)
      {
        h_off = (img_height - crop_size) / 2;
        w_off = (img_width - crop_size) / 2;
      }
    }
    //cv::Rect roi(w_off, h_off, crop_size, crop_size);
    //cv_cropped_img = cv_img(roi);
  }
  else {
  h_off = 0;
  w_off = 0;
    CHECK_EQ(img_height, height);
    CHECK_EQ(img_width, width);
  }

  //CHECK(cv_cropped_img.data);

  Dtype* transformed_data = transformed_blob->mutable_cpu_data();
  int top_index;
  // debug
  /*char ss1[1010];
  sprintf(ss1,"/home/xiaolonw/opt_flows/temp_results/sth.jpg");
  cv::Mat img(Size(crop_size, crop_size), CV_8UC1);*/

  for (int h = 0; h < height; ++h) {
    int img_index = 0;
    for (int w = 0; w < width; ++w) {
      for (int c = 0; c < img_channels; ++c) {
      float now_col = col_ranges[c];
//.........這裏部分代碼省略.........
開發者ID:Geekking,項目名稱:lisa-caffe-lstm,代碼行數:101,代碼來源:data_transformer.cpp

示例4: CHECK_GE

void BaseConvolutionNDLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  ConvolutionParameter conv_param = this->layer_param_.convolution_param();
  channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
  const int first_spatial_axis = channel_axis_ + 1;
  const int num_axes = bottom[0]->num_axes();
  num_spatial_axes_ = num_axes - first_spatial_axis;
  CHECK_GE(num_spatial_axes_, 1);
  num_ = bottom[0]->count(0, channel_axis_);
  CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
      << "Input size incompatible with convolution kernel.";
  // TODO: generalize to handle inputs of different shapes.
  for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
    CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
        << "All inputs must have the same shape.";
  }
  // Shape the tops.
  compute_output_shape();
  vector<int> top_shape = bottom[0]->shape();
  top_shape[channel_axis_] = num_output_;
  top_shape.resize(first_spatial_axis);  // Discard input spatial axes.
  for (int i = 0; i < num_spatial_axes_; ++i) {
    top_shape.push_back(output_shape_[i]);
  }
  for (int top_id = 0; top_id < top.size(); ++top_id) {
    top[top_id]->Reshape(top_shape);
  }
  if (reverse_dimensions()) {
    conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
  } else {
    conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
  }
  const int* kernel_shape_data = kernel_shape_.cpu_data();
  kernel_dim_ = conv_in_channels_;
  for (int i = 0; i < num_spatial_axes_; ++i) {
    kernel_dim_ *= kernel_shape_data[i];
  }
  weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_;
  col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_;
  output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
  // Setup input dimensions (conv_input_shape_).
  vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
  conv_input_shape_.Reshape(bottom_dim_blob_shape);
  int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
  for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
    if (reverse_dimensions()) {
      conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
    } else {
      conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
    }
  }
  // The im2col result buffer will only hold one image at a time to avoid
  // overly large memory usage. In the special case of 1x1 convolution
  // it goes lazily unused to save memory.
  col_buffer_shape_.clear();
  col_buffer_shape_.push_back(kernel_dim_);
  const int* input_shape_data = input_shape_.cpu_data() + 1;
  for (int i = 0; i < num_spatial_axes_; ++i) {
    if (reverse_dimensions()) {
      col_buffer_shape_.push_back(input_shape_data[i]);
    } else {
      col_buffer_shape_.push_back(output_shape_[i]);
    }
  }
  col_buffer_.Reshape(col_buffer_shape_);
  bottom_dim_ = bottom[0]->count(channel_axis_);
  top_dim_ = top[0]->count(channel_axis_);
  num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
  num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
  // Set up the all ones "bias multiplier" for adding biases by BLAS
  out_spatial_dim_ = top[0]->count(first_spatial_axis);
  if (bias_term_) {
    vector<int> bias_multiplier_shape(1, out_spatial_dim_);
    bias_multiplier_.Reshape(bias_multiplier_shape);
    caffe_set(bias_multiplier_.count(), Dtype(1),
        bias_multiplier_.mutable_cpu_data());
  }
}
開發者ID:aharrison24,項目名稱:caffe,代碼行數:78,代碼來源:base_conv_nd_layer.cpp

示例5: RngUniformFillGPU

 void RngUniformFillGPU(const Dtype lower, const Dtype upper, void* gpu_data) {
   CHECK_GE(upper, lower);
   Dtype* rng_data = static_cast<Dtype*>(gpu_data);
   caffe_gpu_rng_uniform(sample_size_, lower, upper, rng_data);
 }
開發者ID:0hm,項目名稱:caffe,代碼行數:5,代碼來源:test_random_number_generator.cpp

示例6: CHECK_GE

void ASessionDescription::getFormat(size_t index, AString *value) const {
    CHECK_GE(index, 0u);
    CHECK_LT(index, mTracks.size());

    *value = mFormats.itemAt(index);
}
開發者ID:Gaia-ROM,項目名稱:android_frameworks_base,代碼行數:6,代碼來源:ASessionDescription.cpp

示例7: caffe_set

void ROIPoolingLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_rois = bottom[1]->cpu_data();
  // Number of ROIs
  int num_rois = bottom[1]->num();
  int batch_size = bottom[0]->num();
  int top_count = top[0]->count();
  Dtype* top_data = top[0]->mutable_cpu_data();
  caffe_set(top_count, Dtype(-FLT_MAX), top_data);
  int* argmax_data = max_idx_.mutable_cpu_data();
  caffe_set(top_count, -1, argmax_data);

  // For each ROI R = [batch_index x1 y1 x2 y2]: max pool over R
  for (int n = 0; n < num_rois; ++n) {
    int roi_batch_ind = bottom_rois[0];
    int roi_start_w = floorf(bottom_rois[1] * spatial_scale_ + 0.5);
    int roi_start_h = floorf(bottom_rois[2] * spatial_scale_ + 0.5);
    int roi_end_w = floorf(bottom_rois[3] * spatial_scale_ + 0.5);
    int roi_end_h = floorf(bottom_rois[4] * spatial_scale_ + 0.5);
    CHECK_GE(roi_batch_ind, 0);
    CHECK_LT(roi_batch_ind, batch_size);

    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    const Dtype bin_size_h = static_cast<Dtype>(roi_height)
                             / static_cast<Dtype>(pooled_height_);
    const Dtype bin_size_w = static_cast<Dtype>(roi_width)
                             / static_cast<Dtype>(pooled_width_);

    const Dtype* batch_data = bottom_data + bottom[0]->offset(roi_batch_ind);

    for (int c = 0; c < channels_; ++c) {
      for (int ph = 0; ph < pooled_height_; ++ph) {
        for (int pw = 0; pw < pooled_width_; ++pw) {
          // Compute pooling region for this output unit:
          //  start (included) = floor(ph * roi_height / pooled_height_)
          //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
          int hstart = static_cast<int>(floor(static_cast<Dtype>(ph)
                                              * bin_size_h));
          int wstart = static_cast<int>(floor(static_cast<Dtype>(pw)
                                              * bin_size_w));
          int hend = static_cast<int>(ceil(static_cast<Dtype>(ph + 1)
                                           * bin_size_h));
          int wend = static_cast<int>(ceil(static_cast<Dtype>(pw + 1)
                                           * bin_size_w));

          hstart = min(max(hstart + roi_start_h, 0), height_);
          hend = min(max(hend + roi_start_h, 0), height_);
          wstart = min(max(wstart + roi_start_w, 0), width_);
          wend = min(max(wend + roi_start_w, 0), width_);

          bool is_empty = (hend <= hstart) || (wend <= wstart);

          const int pool_index = ph * pooled_width_ + pw;
          if (is_empty) {
            top_data[pool_index] = 0;
            argmax_data[pool_index] = -1;
          }

          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              const int index = h * width_ + w;
              if (batch_data[index] > top_data[pool_index]) {
                top_data[pool_index] = batch_data[index];
                argmax_data[pool_index] = index;
              }
            }
          }
        }
      }
      // Increment all data pointers by one channel
      batch_data += bottom[0]->offset(0, 1);
      top_data += top[0]->offset(0, 1);
      argmax_data += max_idx_.offset(0, 1);
    }
    // Increment ROI data pointer
    bottom_rois += bottom[1]->offset(1);
  }
}
開發者ID:clcarwin,項目名稱:caffe-win-tools-faceverification,代碼行數:80,代碼來源:roi_pooling_layer.cpp

示例8: CHECK_LE

void DataTransformer<Dtype>::Transform(Blob<Dtype>* input_blob,
                                       Blob<Dtype>* transformed_blob) {
  const int crop_size = param_.crop_size();
  const int input_num = input_blob->num();
  const int input_channels = input_blob->channels();
  const int input_height = input_blob->height();
  const int input_width = input_blob->width();

  if (transformed_blob->count() == 0) {
    // Initialize transformed_blob with the right shape.
    if (crop_size) {
      transformed_blob->Reshape(input_num, input_channels,
                                crop_size, crop_size);
    } else {
      transformed_blob->Reshape(input_num, input_channels,
                                input_height, input_width);
    }
  }

  const int num = transformed_blob->num();
  const int channels = transformed_blob->channels();
  const int height = transformed_blob->height();
  const int width = transformed_blob->width();
  const int size = transformed_blob->count();

  CHECK_LE(input_num, num);
  CHECK_EQ(input_channels, channels);
  CHECK_GE(input_height, height);
  CHECK_GE(input_width, width);


  const Dtype scale = param_.scale();
  const bool do_mirror = param_.mirror() && Rand(2);
  const bool has_mean_file = param_.has_mean_file();
  const bool has_mean_values = mean_values_.size() > 0;
  // mask_size is defaulted to 0 in caffe/proto/caffe.proto
  const int mask_size = param_.mask_size();
  // mask_freq is defaulted to 1 in 3 in caffe/proto/caffe.proto
  const int mask_freq = param_.mask_freq();

  int h_off = 0;
  int w_off = 0;
  if (crop_size) {
    CHECK_EQ(crop_size, height);
    CHECK_EQ(crop_size, width);
    // We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(input_height - crop_size + 1);
      w_off = Rand(input_width - crop_size + 1);
    } else {
      h_off = (input_height - crop_size) / 2;
      w_off = (input_width - crop_size) / 2;
    }
  } else {
    CHECK_EQ(input_height, height);
    CHECK_EQ(input_width, width);
  }

  // initialize masking offsets to be same as cropping offsets
  // so that there is no conflict
  bool masking = (phase_ == TRAIN) && (mask_size > 0) && (Rand(mask_freq) == 0);
  int h_mask_start = h_off;
  int w_mask_start = w_off;
  if (masking) {
    int h_effective = input_height;
    int w_effective = input_width;
    if (crop_size) { h_effective = w_effective = crop_size; }
    CHECK_GE(h_effective, mask_size);
    CHECK_GE(w_effective, mask_size);
    h_mask_start += Rand(h_effective-mask_size+1);
    w_mask_start += Rand(w_effective-mask_size+1);
  }
  int h_mask_end = h_mask_start + mask_size;
  int w_mask_end = w_mask_start + mask_size;

  Dtype* input_data = input_blob->mutable_cpu_data();
  if (has_mean_file) {
    CHECK_EQ(input_channels, data_mean_.channels());
    CHECK_EQ(input_height, data_mean_.height());
    CHECK_EQ(input_width, data_mean_.width());
    for (int n = 0; n < input_num; ++n) {
      int offset = input_blob->offset(n);
      caffe_sub(data_mean_.count(), input_data + offset,
            data_mean_.cpu_data(), input_data + offset);
    }
  }

  if (has_mean_values) {
    CHECK(mean_values_.size() == 1 || mean_values_.size() == input_channels) <<
     "Specify either 1 mean_value or as many as channels: " << input_channels;
    if (mean_values_.size() == 1) {
      caffe_add_scalar(input_blob->count(), -(mean_values_[0]), input_data);
    } else {
      for (int n = 0; n < input_num; ++n) {
        for (int c = 0; c < input_channels; ++c) {
          int offset = input_blob->offset(n, c);
          caffe_add_scalar(input_height * input_width, -(mean_values_[c]),
            input_data + offset);
        }
      }
//.........這裏部分代碼省略.........
開發者ID:chprasad,項目名稱:caffe,代碼行數:101,代碼來源:data_transformer.cpp

示例9: Rand

void DataTransformer<Dtype>::Transform(const Datum& datum,
                                       Dtype* transformed_data) {
  const string& data = datum.data();
  const int datum_channels = datum.channels();
  const int datum_height = datum.height();
  const int datum_width = datum.width();

  const int crop_size = param_.crop_size();
  const Dtype scale = param_.scale();
  const bool do_mirror = param_.mirror() && Rand(2);
  const bool has_mean_file = param_.has_mean_file();
  const bool has_uint8 = data.size() > 0;
  const bool has_mean_values = mean_values_.size() > 0;
  // mask_size is defaulted to 0 in caffe/proto/caffe.proto
  const int mask_size = param_.mask_size();
  // mask_freq is defaulted to 1 in 3 in caffe/proto/caffe.proto
  const int mask_freq = param_.mask_freq();

  CHECK_GT(datum_channels, 0);
  CHECK_GE(datum_height, crop_size);
  CHECK_GE(datum_width, crop_size);

  Dtype* mean = NULL;
  if (has_mean_file) {
    CHECK_EQ(datum_channels, data_mean_.channels());
    CHECK_EQ(datum_height, data_mean_.height());
    CHECK_EQ(datum_width, data_mean_.width());
    mean = data_mean_.mutable_cpu_data();
  }
  if (has_mean_values) {
    CHECK(mean_values_.size() == 1 || mean_values_.size() == datum_channels) <<
     "Specify either 1 mean_value or as many as channels: " << datum_channels;
    if (datum_channels > 1 && mean_values_.size() == 1) {
      // Replicate the mean_value for simplicity
      for (int c = 1; c < datum_channels; ++c) {
        mean_values_.push_back(mean_values_[0]);
      }
    }
  }

  int height = datum_height;
  int width = datum_width;

  int h_off = 0;
  int w_off = 0;
  if (crop_size) {
    height = crop_size;
    width = crop_size;
    // We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(datum_height - crop_size + 1);
      w_off = Rand(datum_width - crop_size + 1);
    } else {
      h_off = (datum_height - crop_size) / 2;
      w_off = (datum_width - crop_size) / 2;
    }
  }

  // initialize masking offsets to be same as cropping offsets
  // so that there is no conflict
  bool masking = (phase_ == TRAIN) && (mask_size > 0) && (Rand(mask_freq) == 0);
  int h_mask_start = h_off;
  int w_mask_start = w_off;
  if (masking) {
    int h_effective = datum_height;
    int w_effective = datum_width;
    if (crop_size) { h_effective = w_effective = crop_size; }
    CHECK_GE(h_effective, mask_size);
    CHECK_GE(w_effective, mask_size);
    h_mask_start += Rand(h_effective-mask_size+1);
    w_mask_start += Rand(w_effective-mask_size+1);
  }
  int h_mask_end = h_mask_start + mask_size;
  int w_mask_end = w_mask_start + mask_size;

  Dtype datum_element;
  int top_index, data_index;
  for (int c = 0; c < datum_channels; ++c) {
    for (int h = 0; h < height; ++h) {
      for (int w = 0; w < width; ++w) {
        data_index = (c * datum_height + h_off + h) * datum_width + w_off + w;
        if (do_mirror) {
          top_index = (c * height + h) * width + (width - 1 - w);
        } else {
          top_index = (c * height + h) * width + w;
        }
        if (has_uint8) {
          datum_element =
            static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
        } else {
          datum_element = datum.float_data(data_index);
        }
        if (has_mean_file) {
          transformed_data[top_index] =
            (datum_element - mean[data_index]) * scale;
        } else {
          if (has_mean_values) {
            transformed_data[top_index] =
              (datum_element - mean_values_[c]) * scale;
          } else {
//.........這裏部分代碼省略.........
開發者ID:chprasad,項目名稱:caffe,代碼行數:101,代碼來源:data_transformer.cpp

示例10: collect_input_descs


//.........這裏部分代碼省略.........
  ResetIsNested reset_is_nested(this);
  is_nested_ = true;
  std::vector<Analyzer::Expr*> target_exprs;
  for (auto target_entry : targets) {
    target_exprs.emplace_back(target_entry->get_expr());
  }
  const auto row_count = rows->rowCount();
  if (!row_count) {
    return std::make_shared<ResultSet>(
        std::vector<TargetInfo>{}, ExecutorDeviceType::CPU, QueryMemoryDescriptor{}, nullptr, this);
  }
  std::vector<ColWidths> agg_col_widths;
  for (auto wid : get_col_byte_widths(target_exprs, {})) {
    agg_col_widths.push_back(
        {wid, int8_t(compact_byte_width(wid, pick_target_compact_width(res_ra_unit, {}, get_min_byte_width())))});
  }
  QueryMemoryDescriptor query_mem_desc{this,
                                       allow_multifrag,
                                       GroupByColRangeType::Projection,
                                       false,
                                       false,
                                       -1,
                                       0,
                                       {sizeof(int64_t)},
#ifdef ENABLE_KEY_COMPACTION
                                       0,
#endif
                                       agg_col_widths,
                                       {},
                                       row_count,
                                       small_groups_buffer_entry_count_,
                                       0,
                                       0,
                                       0,
                                       false,
                                       GroupByMemSharing::Shared,
                                       CountDistinctDescriptors{},
                                       false,
                                       true,
                                       false,
                                       false,
                                       {},
                                       {},
                                       false};
  auto compilation_result =
      compileWorkUnit(false,
                      {},
                      res_ra_unit,
                      {ExecutorDeviceType::CPU, hoist_literals, opt_level, g_enable_dynamic_watchdog},
                      {false,
                       allow_multifrag,
                       just_explain,
                       allow_loop_joins,
                       g_enable_watchdog,
                       false,
                       false,
                       g_enable_dynamic_watchdog,
                       g_dynamic_watchdog_time_limit},
                      nullptr,
                      false,
                      row_set_mem_owner_,
                      row_count,
                      small_groups_buffer_entry_count_,
                      get_min_byte_width(),
                      JoinInfo(JoinImplType::Invalid, std::vector<std::shared_ptr<Analyzer::BinOper>>{}, {}, ""),
                      false);
  auto column_buffers = result_columns.getColumnBuffers();
  CHECK_EQ(column_buffers.size(), static_cast<size_t>(in_col_count));
  std::vector<int64_t> init_agg_vals(query_mem_desc.agg_col_widths.size());
  auto query_exe_context = query_mem_desc.getQueryExecutionContext(res_ra_unit,
                                                                   init_agg_vals,
                                                                   this,
                                                                   ExecutorDeviceType::CPU,
                                                                   0,
                                                                   {},
                                                                   {},
                                                                   {},
                                                                   row_set_mem_owner_,
                                                                   false,
                                                                   false,
                                                                   nullptr);
  const auto hoist_buf = serializeLiterals(compilation_result.literal_values, 0);
  *error_code = 0;
  std::vector<std::vector<const int8_t*>> multi_frag_col_buffers{column_buffers};
  query_exe_context->launchCpuCode(res_ra_unit,
                                   compilation_result.native_functions,
                                   hoist_literals,
                                   hoist_buf,
                                   multi_frag_col_buffers,
                                   {{static_cast<int64_t>(result_columns.size())}},
                                   {{0}},
                                   1u,
                                   0,
                                   init_agg_vals,
                                   error_code,
                                   1,
                                   {});
  CHECK_GE(*error_code, 0);
  return query_exe_context->groupBufferToResults(0, target_exprs, false);
}
開發者ID:kanak,項目名稱:mapd-core,代碼行數:101,代碼來源:LegacyExecute.cpp

示例11: CHECK_EQ

void DataTransformer<Dtype>::Transform(const cv::Mat& cv_img,
                                       Blob<Dtype>* transformed_blob) {
  const int crop_size = param_.crop_size();
  const int img_channels = cv_img.channels();
  const int img_height = cv_img.rows;
  const int img_width = cv_img.cols;

  // Check dimensions.
  const int channels = transformed_blob->channels();
  const int height = transformed_blob->height();
  const int width = transformed_blob->width();
  const int num = transformed_blob->num();

  CHECK_EQ(channels, img_channels);
  CHECK_LE(height, img_height);
  CHECK_LE(width, img_width);
  CHECK_GE(num, 1);

  CHECK(cv_img.depth() == CV_8U) << "Image data type must be unsigned byte";

  const Dtype scale = param_.scale();
  const bool do_mirror = param_.mirror() && Rand(2);
  const bool has_mean_file = param_.has_mean_file();
  const bool has_mean_values = mean_values_.size() > 0;
  // mask_size is defaulted to 0 in caffe/proto/caffe.proto
  const int mask_size = param_.mask_size();
  // mask_freq is defaulted to 1 in 3 in caffe/proto/caffe.proto
  const int mask_freq = param_.mask_freq();

  CHECK_GT(img_channels, 0);
  CHECK_GE(img_height, crop_size);
  CHECK_GE(img_width, crop_size);

  Dtype* mean = NULL;
  if (has_mean_file) {
    CHECK_EQ(img_channels, data_mean_.channels());
    CHECK_EQ(img_height, data_mean_.height());
    CHECK_EQ(img_width, data_mean_.width());
    mean = data_mean_.mutable_cpu_data();
  }
  if (has_mean_values) {
    CHECK(mean_values_.size() == 1 || mean_values_.size() == img_channels) <<
     "Specify either 1 mean_value or as many as channels: " << img_channels;
    if (img_channels > 1 && mean_values_.size() == 1) {
      // Replicate the mean_value for simplicity
      for (int c = 1; c < img_channels; ++c) {
        mean_values_.push_back(mean_values_[0]);
      }
    }
  }

  int h_off = 0;
  int w_off = 0;
  cv::Mat cv_cropped_img = cv_img;
  if (crop_size) {
    CHECK_EQ(crop_size, height);
    CHECK_EQ(crop_size, width);
    // We only do random crop when we do training.
    if (phase_ == TRAIN) {
      h_off = Rand(img_height - crop_size + 1);
      w_off = Rand(img_width - crop_size + 1);
    } else {
      h_off = (img_height - crop_size) / 2;
      w_off = (img_width - crop_size) / 2;
    }
    cv::Rect roi(w_off, h_off, crop_size, crop_size);
    cv_cropped_img = cv_img(roi);
  } else {
    CHECK_EQ(img_height, height);
    CHECK_EQ(img_width, width);
  }

  CHECK(cv_cropped_img.data);

  // initialize masking offsets to be same as cropping offsets
  // so that there is no conflict
  bool masking = (phase_ == TRAIN) && (mask_size > 0) && (Rand(mask_freq) == 0);
  int h_mask_start = h_off;
  int w_mask_start = w_off;
  if (masking) {
    int h_effective = img_height;
    int w_effective = img_width;
    if (crop_size) { h_effective = w_effective = crop_size; }
    CHECK_GE(h_effective, mask_size);
    CHECK_GE(w_effective, mask_size);
    h_mask_start += Rand(h_effective-mask_size+1);
    w_mask_start += Rand(w_effective-mask_size+1);
  }
  int h_mask_end = h_mask_start + mask_size;
  int w_mask_end = w_mask_start + mask_size;

  Dtype* transformed_data = transformed_blob->mutable_cpu_data();
  int top_index;
  for (int h = 0; h < height; ++h) {
    const uchar* ptr = cv_cropped_img.ptr<uchar>(h);
    int img_index = 0;
    for (int w = 0; w < width; ++w) {
      for (int c = 0; c < img_channels; ++c) {
        if (do_mirror) {
          top_index = (c * height + h) * width + (width - 1 - w);
//.........這裏部分代碼省略.........
開發者ID:chprasad,項目名稱:caffe,代碼行數:101,代碼來源:data_transformer.cpp

示例12: CHECK_GE

void RecurrentLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  CHECK_GE(bottom[0]->num_axes(), 2)
      << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)";
  T_ = bottom[0]->shape(0);
  N_ = bottom[0]->shape(1);
  LOG(INFO) << "Initializing recurrent layer: assuming input batch contains "
            << T_ << " timesteps of " << N_ << " independent streams.";

  CHECK_EQ(bottom[1]->num_axes(), 2)
      << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)";
  CHECK_EQ(T_, bottom[1]->shape(0));
  CHECK_EQ(N_, bottom[1]->shape(1));

  // If provided, bottom[2] is a static input to the recurrent net.
  static_input_ = (bottom.size() > 2);
  if (static_input_) {
    CHECK_GE(bottom[2]->num_axes(), 1);
    CHECK_EQ(N_, bottom[2]->shape(0));
  }

  // Create a NetParameter; setup the inputs that aren't unique to particular
  // recurrent architectures.
  NetParameter net_param;
  net_param.set_force_backward(true);

  net_param.add_input("x");
  BlobShape input_shape;
  for (int i = 0; i < bottom[0]->num_axes(); ++i) {
    input_shape.add_dim(bottom[0]->shape(i));
  }
  net_param.add_input_shape()->CopyFrom(input_shape);

  input_shape.Clear();
  input_shape.add_dim(1);
  for (int i = 0; i < bottom[1]->num_axes(); ++i) {
    input_shape.add_dim(bottom[1]->shape(i));
  }
  net_param.add_input("cont");
  net_param.add_input_shape()->CopyFrom(input_shape);

  if (static_input_) {
    input_shape.Clear();
    for (int i = 0; i < bottom[2]->num_axes(); ++i) {
      input_shape.add_dim(bottom[2]->shape(i));
    }
    net_param.add_input("x_static");
    net_param.add_input_shape()->CopyFrom(input_shape);
  }

  // Call the child's FillUnrolledNet implementation to specify the unrolled
  // recurrent architecture.
  this->FillUnrolledNet(&net_param);

  // Prepend this layer's name to the names of each layer in the unrolled net.
  const string& layer_name = this->layer_param_.name();
  if (layer_name.size() > 0) {
    for (int i = 0; i < net_param.layer_size(); ++i) {
      LayerParameter* layer = net_param.mutable_layer(i);
      layer->set_name(layer_name + "_" + layer->name());
    }
  }

  // Create the unrolled net.
  unrolled_net_.reset(new Net<Dtype>(net_param));
  unrolled_net_->set_debug_info(
      this->layer_param_.recurrent_param().debug_info());

  // Setup pointers to the inputs.
  x_input_blob_ = CHECK_NOTNULL(unrolled_net_->blob_by_name("x").get());
  cont_input_blob_ = CHECK_NOTNULL(unrolled_net_->blob_by_name("cont").get());
  if (static_input_) {
    x_static_input_blob_ =
        CHECK_NOTNULL(unrolled_net_->blob_by_name("x_static").get());
  }

  // Setup pointers to paired recurrent inputs/outputs.
  vector<string> recur_input_names;
  RecurrentInputBlobNames(&recur_input_names);
  vector<string> recur_output_names;
  RecurrentOutputBlobNames(&recur_output_names);
  const int num_recur_blobs = recur_input_names.size();
  CHECK_EQ(num_recur_blobs, recur_output_names.size());
  recur_input_blobs_.resize(num_recur_blobs);
  recur_output_blobs_.resize(num_recur_blobs);
  for (int i = 0; i < recur_input_names.size(); ++i) {
    recur_input_blobs_[i] =
        CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_input_names[i]).get());
    recur_output_blobs_[i] =
        CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_output_names[i]).get());
  }

  // Setup pointers to outputs.
  vector<string> output_names;
  OutputBlobNames(&output_names);
  CHECK_EQ(top.size(), output_names.size())
      << "OutputBlobNames must provide an output blob name for each top.";
  output_blobs_.resize(output_names.size());
  for (int i = 0; i < output_names.size(); ++i) {
    output_blobs_[i] =
//.........這裏部分代碼省略.........
開發者ID:VisionLearningGroup,項目名稱:Ask_Attend_and_Answer,代碼行數:101,代碼來源:recurrent_layer.cpp

示例13: CreateParts

void Pipe::TrainEpoch(int epoch) {
  Instance *instance;
  Parts *parts = CreateParts();
  Features *features = CreateFeatures();
  vector<double> scores;
  vector<double> gold_outputs;
  vector<double> predicted_outputs;
  double total_cost = 0.0;
  double total_loss = 0.0;
  double eta;
  int num_instances = instances_.size();
  double lambda = 1.0/(options_->GetRegularizationConstant() *
                       (static_cast<double>(num_instances)));
  timeval start, end;
  gettimeofday(&start, NULL);
  int time_decoding = 0;
  int time_scores = 0;
  int num_mistakes = 0;

  LOG(INFO) << " Iteration #" << epoch + 1;

  dictionary_->StopGrowth();

  for (int i = 0; i < instances_.size(); i++) {
    int t = num_instances * epoch + i;
    instance = instances_[i];
    MakeParts(instance, parts, &gold_outputs);
    MakeFeatures(instance, parts, features);

    // If using only supported features, must remove the unsupported ones.
    // This is necessary not to mess up the computation of the squared norm
    // of the feature difference vector in MIRA.
    if (options_->only_supported_features()) {
      RemoveUnsupportedFeatures(instance, parts, features);
    }

    timeval start_scores, end_scores;
    gettimeofday(&start_scores, NULL);
    ComputeScores(instance, parts, features, &scores);
    gettimeofday(&end_scores, NULL);
    time_scores += diff_ms(end_scores, start_scores);

    if (options_->GetTrainingAlgorithm() == "perceptron" ||
        options_->GetTrainingAlgorithm() == "mira" ) {
      timeval start_decoding, end_decoding;
      gettimeofday(&start_decoding, NULL);
      decoder_->Decode(instance, parts, scores, &predicted_outputs);
      gettimeofday(&end_decoding, NULL);
      time_decoding += diff_ms(end_decoding, start_decoding);

      if (options_->GetTrainingAlgorithm() == "perceptron") {
        for (int r = 0; r < parts->size(); ++r) {
          if (!NEARLY_EQ_TOL(gold_outputs[r], predicted_outputs[r], 1e-6)) {
            ++num_mistakes;
          }
        }
        eta = 1.0;
      } else {
        CHECK(false) << "Plain mira is not implemented yet.";
      }

      MakeGradientStep(parts, features, eta, t, gold_outputs,
                       predicted_outputs);

    } else if (options_->GetTrainingAlgorithm() == "svm_mira" ||
               options_->GetTrainingAlgorithm() == "crf_mira" ||
               options_->GetTrainingAlgorithm() == "svm_sgd" ||
               options_->GetTrainingAlgorithm() == "crf_sgd") {
      double loss;
      timeval start_decoding, end_decoding;
      gettimeofday(&start_decoding, NULL);
      if (options_->GetTrainingAlgorithm() == "svm_mira" ||
          options_->GetTrainingAlgorithm() == "svm_sgd") {
        // Do cost-augmented inference.
        double cost;
        decoder_->DecodeCostAugmented(instance, parts, scores, gold_outputs,
                                      &predicted_outputs, &cost, &loss);
        total_cost += cost;
      } else {
        // Do marginal inference.
        double entropy;
        decoder_->DecodeMarginals(instance, parts, scores, gold_outputs,
                                  &predicted_outputs, &entropy, &loss);
        CHECK_GE(entropy, 0.0);
      }
      gettimeofday(&end_decoding, NULL);
      time_decoding += diff_ms(end_decoding, start_decoding);

      if (loss < 0.0) {
        if (!NEARLY_EQ_TOL(loss, 0.0, 1e-9)) {
          LOG(INFO) << "Warning: negative loss set to zero: " << loss;
        }
        loss = 0.0;
      }
      total_loss += loss;

      // Compute difference between predicted and gold feature vectors.
      FeatureVector difference;
      MakeFeatureDifference(parts, features, gold_outputs, predicted_outputs,
                            &difference);
//.........這裏部分代碼省略.........
開發者ID:DKlaper,項目名稱:gsw-DepParser,代碼行數:101,代碼來源:Pipe.cpp

示例14: CHECK_EQ

void VolumeDataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
      vector<Blob<Dtype>*>* top) {
  CHECK_EQ(bottom.size(), 0) << "Data Layer takes no input blobs.";
  CHECK_GE(top->size(), 1) << "Data Layer takes at least one blob as output.";
  CHECK_LE(top->size(), 2) << "Data Layer takes at most two blobs as output.";
  if (top->size() == 1) {
    output_labels_ = false;
  } else {
    output_labels_ = true;
  }
  // Initialize the leveldb
  leveldb::DB* db_temp;
  leveldb::Options options;
  options.create_if_missing = false;
  options.max_open_files = 100;
  LOG(INFO) << "Opening leveldb " << this->layer_param_.data_param().source();
  leveldb::Status status = leveldb::DB::Open(
      options, this->layer_param_.data_param().source(), &db_temp);
  CHECK(status.ok()) << "Failed to open leveldb "
      << this->layer_param_.data_param().source() << std::endl
      << status.ToString();
  db_.reset(db_temp);
  iter_.reset(db_->NewIterator(leveldb::ReadOptions()));
  iter_->SeekToFirst();
  // Check if we would need to randomly skip a few data points
  if (this->layer_param_.data_param().rand_skip()) {
    unsigned int skip = caffe_rng_rand() %
                        this->layer_param_.data_param().rand_skip();
    LOG(INFO) << "Skipping first " << skip << " data points.";
    while (skip-- > 0) {
      iter_->Next();
      if (!iter_->Valid()) {
        iter_->SeekToFirst();
      }
    }
  }
  // Read a data point, and use it to initialize the top blob.
  VolumeDatum datum;
  datum.ParseFromString(iter_->value().ToString());
  // image
  int crop_size = this->layer_param_.data_param().crop_size();
  if (crop_size > 0) {
    (*top)[0]->Reshape(this->layer_param_.data_param().batch_size(),
                       datum.channels(), datum.length(), crop_size, crop_size);
    prefetch_data_.reset(new Blob<Dtype>(
        this->layer_param_.data_param().batch_size(), datum.channels(), datum.length(),
        crop_size, crop_size));
  } else {
    (*top)[0]->Reshape(
        this->layer_param_.data_param().batch_size(), datum.channels(), datum.length(),
        datum.height(), datum.width());
    prefetch_data_.reset(new Blob<Dtype>(
        this->layer_param_.data_param().batch_size(), datum.channels(), datum.length(),
        datum.height(), datum.width()));
  }
  LOG(INFO) << "output data size: " << (*top)[0]->num() << ","
      << (*top)[0]->channels() << "," << (*top)[0]->length() << "," << (*top)[0]->height() << ","
      << (*top)[0]->width();
  // label
  if (output_labels_) {
    (*top)[1]->Reshape(this->layer_param_.data_param().batch_size(), 1, 1, 1, 1);
    prefetch_label_.reset(
        new Blob<Dtype>(this->layer_param_.data_param().batch_size(), 1, 1, 1, 1));
  }

  // datum size
  datum_channels_ = datum.channels();
  datum_length_ = datum.length();
  datum_height_ = datum.height();
  datum_width_ = datum.width();
  datum_size_ = datum.channels() * datum.length() * datum.height() * datum.width();
  CHECK_GT(datum_height_, crop_size);
  CHECK_GT(datum_width_, crop_size);
  // check if we want to have mean
  if (this->layer_param_.data_param().has_mean_file()) {
    const string& mean_file = this->layer_param_.data_param().mean_file();
    LOG(INFO) << "Loading mean file from" << mean_file;
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    data_mean_.FromProto(blob_proto);
    CHECK_EQ(data_mean_.num(), 1);
    CHECK_EQ(data_mean_.channels(), datum_channels_);
    CHECK_EQ(data_mean_.length(), datum_length_);
    CHECK_EQ(data_mean_.height(), datum_height_);
    CHECK_EQ(data_mean_.width(), datum_width_);
  } else {
    // Simply initialize an all-empty mean.
    data_mean_.Reshape(1, datum_channels_, datum_length_, datum_height_, datum_width_);
  }


  // Now, start the prefetch thread. Before calling prefetch, we make two
  // cpu_data calls so that the prefetch thread does not accidentally make
  // simultaneous cudaMalloc calls when the main thread is running. In some
  // GPUs this seems to cause failures if we do not so.
  prefetch_data_->mutable_cpu_data();
  if (output_labels_) {
    prefetch_label_->mutable_cpu_data();
  }
  data_mean_.cpu_data();
//.........這裏部分代碼省略.........
開發者ID:MarcoSaku,項目名稱:Spiking-C3D,代碼行數:101,代碼來源:volume_data_layer.cpp

示例15: H5Fclose

HDF5OutputLayer<Dtype>::~HDF5OutputLayer<Dtype>() {
  if (file_opened_) {
    herr_t status = H5Fclose(file_id_);
    CHECK_GE(status, 0) << "Failed to close HDF5 file " << file_name_;
  }
}
開發者ID:azrael417,項目名稱:caffe,代碼行數:6,代碼來源:hdf5_output_layer.cpp


注:本文中的CHECK_GE函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。