本文整理匯總了C++中CHECK_EQ函數的典型用法代碼示例。如果您正苦於以下問題:C++ CHECK_EQ函數的具體用法?C++ CHECK_EQ怎麽用?C++ CHECK_EQ使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了CHECK_EQ函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: CHECK_GE
void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// Configure the kernel size, padding, stride, and inputs.
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
force_nd_im2col_ = conv_param.force_nd_im2col();
channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
const int first_spatial_axis = channel_axis_ + 1;
const int num_axes = bottom[0]->num_axes();
num_spatial_axes_ = num_axes - first_spatial_axis;
CHECK_GE(num_spatial_axes_, 0);
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
// Setup filter kernel dimensions (kernel_shape_).
kernel_shape_.Reshape(spatial_dim_blob_shape);
int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) {
CHECK_EQ(num_spatial_axes_, 2)
<< "kernel_h & kernel_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.kernel_size_size())
<< "Either kernel_size or kernel_h/w should be specified; not both.";
kernel_shape_data[0] = conv_param.kernel_h();
kernel_shape_data[1] = conv_param.kernel_w();
} else {
const int num_kernel_dims = conv_param.kernel_size_size();
CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_)
<< "kernel_size must be specified once, or once per spatial dimension "
<< "(kernel_size specified " << num_kernel_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
for (int i = 0; i < num_spatial_axes_; ++i) {
kernel_shape_data[i] =
conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i);
}
}
for (int i = 0; i < num_spatial_axes_; ++i) {
CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero.";
}
// Setup stride dimensions (stride_).
stride_.Reshape(spatial_dim_blob_shape);
int* stride_data = stride_.mutable_cpu_data();
if (conv_param.has_stride_h() || conv_param.has_stride_w()) {
CHECK_EQ(num_spatial_axes_, 2)
<< "stride_h & stride_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.stride_size())
<< "Either stride or stride_h/w should be specified; not both.";
stride_data[0] = conv_param.stride_h();
stride_data[1] = conv_param.stride_w();
} else {
const int num_stride_dims = conv_param.stride_size();
CHECK(num_stride_dims == 0 || num_stride_dims == 1 ||
num_stride_dims == num_spatial_axes_)
<< "stride must be specified once, or once per spatial dimension "
<< "(stride specified " << num_stride_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultStride = 1;
for (int i = 0; i < num_spatial_axes_; ++i) {
stride_data[i] = (num_stride_dims == 0) ? kDefaultStride :
conv_param.stride((num_stride_dims == 1) ? 0 : i);
CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero.";
}
}
// Setup pad dimensions (pad_).
pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
if (conv_param.has_pad_h() || conv_param.has_pad_w()) {
CHECK_EQ(num_spatial_axes_, 2)
<< "pad_h & pad_w can only be used for 2D convolution.";
CHECK_EQ(0, conv_param.pad_size())
<< "Either pad or pad_h/w should be specified; not both.";
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
} else {
const int num_pad_dims = conv_param.pad_size();
CHECK(num_pad_dims == 0 || num_pad_dims == 1 ||
num_pad_dims == num_spatial_axes_)
<< "pad must be specified once, or once per spatial dimension "
<< "(pad specified " << num_pad_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultPad = 0;
for (int i = 0; i < num_spatial_axes_; ++i) {
pad_data[i] = (num_pad_dims == 0) ? kDefaultPad :
conv_param.pad((num_pad_dims == 1) ? 0 : i);
}
}
// Setup dilation dimensions (dilation_).
dilation_.Reshape(spatial_dim_blob_shape);
int* dilation_data = dilation_.mutable_cpu_data();
const int num_dilation_dims = conv_param.dilation_size();
CHECK(num_dilation_dims == 0 || num_dilation_dims == 1 ||
num_dilation_dims == num_spatial_axes_)
<< "dilation must be specified once, or once per spatial dimension "
<< "(dilation specified " << num_dilation_dims << " times; "
<< num_spatial_axes_ << " spatial dims).";
const int kDefaultDilation = 1;
for (int i = 0; i < num_spatial_axes_; ++i) {
dilation_data[i] = (num_dilation_dims == 0) ? kDefaultDilation :
conv_param.dilation((num_dilation_dims == 1) ? 0 : i);
}
// Special case: im2col is the identity for 1x1 convolution with stride 1
// and no padding, so flag for skipping the buffer and transformation.
is_1x1_ = true;
//.........這裏部分代碼省略.........
示例2: CHECK
//.........這裏部分代碼省略.........
if (!pool_param.has_pad_h()) {
pad_h_ = pad_w_ = pool_param.pad();
} else {
pad_h_ = pool_param.pad_h();
pad_w_ = pool_param.pad_w();
}
if (!pool_param.has_stride_h()) {
stride_h_ = stride_w_ = pool_param.stride();
} else {
stride_h_ = pool_param.stride_h();
stride_w_ = pool_param.stride_w();
}
if (global_pooling_) {
CHECK(pad_h_ == 0 && pad_w_ == 0 && stride_h_ == 1 && stride_w_ == 1)
<< "With Global_pooling: true; only pad = 0 and stride = 1";
}
if (pad_h_ != 0 || pad_w_ != 0) {
CHECK(this->layer_param_.pooling_param().pool()
== PoolingParameter_PoolMethod_AVE
|| this->layer_param_.pooling_param().pool()
== PoolingParameter_PoolMethod_MAX)
<< "Padding implemented only for average and max pooling.";
CHECK_LT(pad_h_, kernel_h_);
CHECK_LT(pad_w_, kernel_w_);
}
pooled_height_ = static_cast<int>(ceil(static_cast<float>(
bottom[0]->height() + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
pooled_width_ = static_cast<int>(ceil(static_cast<float>(
bottom[0]->height() + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
if (pad_h_ || pad_w_) {
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
if ((pooled_height_ - 1) * stride_h_ >= bottom[0]->height() + pad_h_) {
--pooled_height_;
}
if ((pooled_width_ - 1) * stride_w_ >= bottom[0]->height() + pad_w_) {
--pooled_width_;
}
CHECK_LT((pooled_height_ - 1) * stride_h_, bottom[0]->height() + pad_h_);
CHECK_LT((pooled_width_ - 1) * stride_w_, bottom[0]->height() + pad_w_);
}
size_t dim = 4;
size_t src_sizes[4], src_strides[4];
size_t dst_sizes[4], dst_strides[4];
src_sizes[0] = bottom[0]->width();
src_sizes[1] = bottom[0]->height();
src_sizes[2] = bottom[0]->channels();
src_sizes[3] = bottom[0]->num();
src_strides[0] = 1;
src_strides[1] = src_sizes[0];
src_strides[2] = src_sizes[0]*src_sizes[1];
src_strides[3] = src_sizes[0]*src_sizes[1]*src_sizes[2];
dst_sizes[0] = pooled_width_;
dst_sizes[1] = pooled_height_;
dst_sizes[2] = src_sizes[2];
dst_sizes[3] = src_sizes[3];
dst_strides[0] = 1;
dst_strides[1] = dst_sizes[0];
dst_strides[2] = dst_sizes[0]*dst_sizes[1];
dst_strides[3] = dst_sizes[0]*dst_sizes[1]*dst_sizes[2];
src_offset[0] = -pad_w_;
src_offset[1] = -pad_h_;
kernel_stride[0] = stride_w_;
kernel_stride[1] = stride_h_;
kernel_size[0] = kernel_w_;
kernel_size[1] = kernel_h_;
dnnError_t e;
e = dnnLayoutCreate<Dtype>(&fwd_bottom_data->layout_usr, dim, src_sizes,
src_strides);
CHECK_EQ(e, E_SUCCESS);
e = dnnLayoutCreate<Dtype>(&fwd_top_data->layout_usr, dim, dst_sizes,
dst_strides);
CHECK_EQ(e, E_SUCCESS);
e = dnnLayoutCreate<Dtype>(&bwd_bottom_diff->layout_usr, dim, src_sizes,
src_strides);
CHECK_EQ(e, E_SUCCESS);
e = dnnLayoutCreate<Dtype>(&bwd_top_diff->layout_usr, dim, dst_sizes,
dst_strides);
CHECK_EQ(e, E_SUCCESS);
// Names are for debugging only
fwd_bottom_data->name = "fwd_bottom_data @ " + this->layer_param_.name();
fwd_top_data->name = "fwd_top_data @ " + this->layer_param_.name();
bwd_top_diff->name = "bwd_top_diff @ " + this->layer_param_.name();
bwd_bottom_diff->name = "bwd_bottom_diff @ " + this->layer_param_.name();
// Primitives will be allocated during the first fwd pass
poolingFwd = NULL;
poolingBwd = NULL;
}
示例3: sender
static void* sender(void* arg) {
SendArg* sa = (SendArg*)arg;
int64_t value = 0;
while (!brpc::IsAskedToQuit()) {
braft::PeerId leader;
// Select leader of the target group from RouteTable
if (braft::rtb::select_leader(FLAGS_group, &leader) != 0) {
// Leader is unknown in RouteTable. Ask RouteTable to refresh leader
// by sending RPCs.
butil::Status st = braft::rtb::refresh_leader(
FLAGS_group, FLAGS_timeout_ms);
if (!st.ok()) {
// Not sure about the leader, sleep for a while and the ask again.
LOG(WARNING) << "Fail to refresh_leader : " << st;
bthread_usleep(FLAGS_timeout_ms * 1000L);
}
continue;
}
// Now we known who is the leader, construct Stub and then sending
// rpc
brpc::Channel channel;
if (channel.Init(leader.addr, NULL) != 0) {
LOG(ERROR) << "Fail to init channel to " << leader;
bthread_usleep(FLAGS_timeout_ms * 1000L);
continue;
}
example::AtomicService_Stub stub(&channel);
brpc::Controller cntl;
cntl.set_timeout_ms(FLAGS_timeout_ms);
example::CompareExchangeRequest request;
example::AtomicResponse response;
request.set_id(sa->id);
request.set_expected_value(value);
request.set_new_value(value + 1);
stub.compare_exchange(&cntl, &request, &response, NULL);
if (cntl.Failed()) {
LOG(WARNING) << "Fail to send request to " << leader
<< " : " << cntl.ErrorText();
// Clear leadership since this RPC failed.
braft::rtb::update_leader(FLAGS_group, braft::PeerId());
bthread_usleep(FLAGS_timeout_ms * 1000L);
continue;
}
if (!response.success()) {
// A redirect response
if (!response.has_old_value()) {
LOG(WARNING) << "Fail to send request to " << leader
<< ", redirecting to "
<< (response.has_redirect()
? response.redirect() : "nowhere");
// Update route table since we have redirect information
braft::rtb::update_leader(FLAGS_group, response.redirect());
continue;
}
// old_value unmatches expected value check if this is the initial
// request
if (value == 0 || response.old_value() == value + 1) {
// ^^^ ^^^
// It's initalized value ^^^
// There was false negative
value = response.old_value();
} else {
CHECK_EQ(value, response.old_value());
exit(-1);
}
} else {
value = response.new_value();
}
g_latency_recorder << cntl.latency_us();
if (FLAGS_log_each_request) {
LOG(INFO) << "Received response from " << leader
<< " old_value=" << response.old_value()
<< " new_value=" << response.new_value()
<< " latency=" << cntl.latency_us();
bthread_usleep(1000L * 1000L);
}
}
return NULL;
}
示例4: CHECK_EQ
void DataLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
CHECK_EQ(bottom.size(), 0) << "Data Layer takes no input blobs.";
CHECK_GE(top->size(), 1) << "Data Layer takes at least one blob as output.";
CHECK_LE(top->size(), 2) << "Data Layer takes at most two blobs as output.";
if (top->size() == 1) {
output_labels_ = false;
} else {
output_labels_ = true;
}
// Initialize the leveldb
leveldb::DB* db_temp;
leveldb::Options options;
options.create_if_missing = false;
options.max_open_files = 10;
LOG(INFO) << "Opening leveldb " << this->layer_param_.data_param().source();
leveldb::Status status = leveldb::DB::Open(
options, this->layer_param_.data_param().source(), &db_temp);
CHECK(status.ok()) << "Failed to open leveldb "
<< this->layer_param_.data_param().source() << std::endl
<< status.ToString();
db_.reset(db_temp);
iter_.reset(db_->NewIterator(leveldb::ReadOptions()));
iter_->SeekToFirst();
// Check if we would need to randomly skip a few data points
if (this->layer_param_.data_param().rand_skip()) {
unsigned int skip = caffe_rng_rand() %
this->layer_param_.data_param().rand_skip();
LOG(INFO) << "Skipping first " << skip << " data points.";
while (skip-- > 0) {
iter_->Next();
if (!iter_->Valid()) {
iter_->SeekToFirst();
}
}
}
// Read a data point, and use it to initialize the top blob.
Datum datum;
datum.ParseFromString(iter_->value().ToString());
// image
int crop_size = this->layer_param_.data_param().crop_size();
if (crop_size > 0) {
(*top)[0]->Reshape(this->layer_param_.data_param().batch_size(),
datum.channels(), crop_size, crop_size);
prefetch_data_.reset(new Blob<Dtype>(
this->layer_param_.data_param().batch_size(), datum.channels(),
crop_size, crop_size));
} else {
(*top)[0]->Reshape(
this->layer_param_.data_param().batch_size(), datum.channels(),
datum.height(), datum.width());
prefetch_data_.reset(new Blob<Dtype>(
this->layer_param_.data_param().batch_size(), datum.channels(),
datum.height(), datum.width()));
}
LOG(INFO) << "output data size: " << (*top)[0]->num() << ","
<< (*top)[0]->channels() << "," << (*top)[0]->height() << ","
<< (*top)[0]->width();
// label
if (output_labels_) {
(*top)[1]->Reshape(this->layer_param_.data_param().batch_size(), 1, 1, 1);
prefetch_label_.reset(
new Blob<Dtype>(this->layer_param_.data_param().batch_size(), 1, 1, 1));
}
// datum size
datum_channels_ = datum.channels();
datum_height_ = datum.height();
datum_width_ = datum.width();
datum_size_ = datum.channels() * datum.height() * datum.width();
CHECK_GT(datum_height_, crop_size);
CHECK_GT(datum_width_, crop_size);
// check if we want to have mean
if (this->layer_param_.data_param().has_mean_file()) {
const string& mean_file = this->layer_param_.data_param().mean_file();
LOG(INFO) << "Loading mean file from" << mean_file;
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
data_mean_.FromProto(blob_proto);
CHECK_EQ(data_mean_.num(), 1);
CHECK_EQ(data_mean_.channels(), datum_channels_);
CHECK_EQ(data_mean_.height(), datum_height_);
CHECK_EQ(data_mean_.width(), datum_width_);
} else {
// Simply initialize an all-empty mean.
data_mean_.Reshape(1, datum_channels_, datum_height_, datum_width_);
}
// Now, start the prefetch thread. Before calling prefetch, we make two
// cpu_data calls so that the prefetch thread does not accidentally make
// simultaneous cudaMalloc calls when the main thread is running. In some
// GPUs this seems to cause failures if we do not so.
prefetch_data_->mutable_cpu_data();
if (output_labels_) {
prefetch_label_->mutable_cpu_data();
}
data_mean_.cpu_data();
DLOG(INFO) << "Initializing prefetch";
CreatePrefetchThread();
DLOG(INFO) << "Prefetch initialized.";
}
示例5: CHECK_EQ
void FilterLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
CHECK_EQ(top.size(), bottom.size() - 1);
first_reshape_ = true;
}
示例6: ir_call_external_1
void ir_call_external_1(struct ir *ir, struct ir_value *addr) {
CHECK_EQ(addr->type, VALUE_I64);
struct ir_instr *instr = ir_append_instr(ir, OP_CALL_EXTERNAL, VALUE_V);
ir_set_arg0(ir, instr, addr);
}
示例7: parseStreamMuxConfig
static status_t parseStreamMuxConfig(
ABitReader *bits,
unsigned *numSubFrames,
unsigned *frameLengthType,
ssize_t *fixedFrameLength,
bool *otherDataPresent,
unsigned *otherDataLenBits) {
unsigned audioMuxVersion = bits->getBits(1);
unsigned audioMuxVersionA = 0;
if (audioMuxVersion == 1) {
audioMuxVersionA = bits->getBits(1);
}
CHECK_EQ(audioMuxVersionA, 0u); // otherwise future spec
if (audioMuxVersion != 0) {
return ERROR_UNSUPPORTED; // XXX to be implemented;
}
CHECK_EQ(audioMuxVersion, 0u); // XXX to be implemented
unsigned allStreamsSameTimeFraming = bits->getBits(1);
CHECK_EQ(allStreamsSameTimeFraming, 1u); // There's only one stream.
*numSubFrames = bits->getBits(6);
unsigned numProgram = bits->getBits(4);
CHECK_EQ(numProgram, 0u); // disabled in RTP LATM
unsigned numLayer = bits->getBits(3);
CHECK_EQ(numLayer, 0u); // disabled in RTP LATM
if (audioMuxVersion == 0) {
// AudioSpecificConfig
CHECK_EQ(parseAudioSpecificConfig(bits, NULL /* asc */), (status_t)OK);
} else {
TRESPASS(); // XXX to be implemented
}
*frameLengthType = bits->getBits(3);
*fixedFrameLength = -1;
switch (*frameLengthType) {
case 0:
{
/* unsigned bufferFullness = */bits->getBits(8);
// The "coreFrameOffset" does not apply since there's only
// a single layer.
break;
}
case 1:
{
*fixedFrameLength = bits->getBits(9);
break;
}
case 2:
{
// reserved
TRESPASS();
break;
}
case 3:
case 4:
case 5:
{
/* unsigned CELPframeLengthTableIndex = */bits->getBits(6);
break;
}
case 6:
case 7:
{
/* unsigned HVXCframeLengthTableIndex = */bits->getBits(1);
break;
}
default:
break;
}
#ifdef STE_HARDWARE
status_t parseResult = OK;
#endif
*otherDataPresent = bits->getBits(1);
*otherDataLenBits = 0;
if (*otherDataPresent) {
if (audioMuxVersion == 1) {
TRESPASS(); // XXX to be implemented
#ifdef STE_HARDWARE
} else if (bits->numBitsLeft() < 9) {
parseResult = ERROR_MALFORMED;
#endif
} else {
*otherDataLenBits = 0;
unsigned otherDataLenEsc;
do {
//.........這裏部分代碼省略.........
示例8: LOG
void Net<Dtype>::Init(const NetParameter& in_param) {
LOG(INFO) << "Initializing net from parameters: " << std::endl
<< in_param.DebugString();
// Create a copy of in_param with splits added where necessary.
NetParameter param;
InsertSplits(in_param, ¶m);
// Basically, build all the layers and set up its connections.
name_ = param.name();
map<string, int> blob_name_to_idx;
set<string> available_blobs;
int num_layers = param.layers_size();
CHECK_EQ(param.input_size() * 4, param.input_dim_size())
<< "Incorrect bottom blob dimension specifications.";
size_t memory_used = 0;
// set the input blobs
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
shared_ptr<Blob<Dtype> > blob_pointer(
new Blob<Dtype>(param.input_dim(i * 4),
param.input_dim(i * 4 + 1),
param.input_dim(i * 4 + 2),
param.input_dim(i * 4 + 3)));
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
net_input_blob_indices_.push_back(i);
net_input_blobs_.push_back(blob_pointer.get());
blob_name_to_idx[blob_name] = i;
available_blobs.insert(blob_name);
memory_used += blob_pointer->count();
}
DLOG(INFO) << "Memory required for Data" << memory_used*sizeof(Dtype);
// For each layer, set up their input and output
bottom_vecs_.resize(param.layers_size());
top_vecs_.resize(param.layers_size());
bottom_id_vecs_.resize(param.layers_size());
top_id_vecs_.resize(param.layers_size());
for (int i = 0; i < param.layers_size(); ++i) {
bool in_place = false;
const LayerParameter& layer_param = param.layers(i);
layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param)));
layer_names_.push_back(layer_param.name());
LOG(INFO) << "Creating Layer " << layer_param.name();
bool need_backward = param.force_backward();
// Figure out this layer's input and output
for (int j = 0; j < layer_param.bottom_size(); ++j) {
const string& blob_name = layer_param.bottom(j);
const int blob_id = blob_name_to_idx[blob_name];
if (available_blobs.find(blob_name) == available_blobs.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name <<
" to layer" << j;
}
LOG(INFO) << layer_param.name() << " <- " << blob_name;
bottom_vecs_[i].push_back(
blobs_[blob_id].get());
bottom_id_vecs_[i].push_back(blob_id);
// If a blob needs backward, this layer should provide it.
need_backward |= blob_need_backward_[blob_id];
available_blobs.erase(blob_name);
}
for (int j = 0; j < layer_param.top_size(); ++j) {
const string& blob_name = layer_param.top(j);
// Check if we are doing in-place computation
if (layer_param.bottom_size() > j &&
blob_name == layer_param.bottom(j)) {
// In-place computation
LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)";
in_place = true;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(
blobs_[blob_name_to_idx[blob_name]].get());
top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]);
} else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) {
// If we are not doing in-place computation but has duplicated blobs,
// raise an error.
LOG(FATAL) << "Duplicate blobs produced by multiple sources.";
} else {
// Normal output.
LOG(INFO) << layer_param.name() << " -> " << blob_name;
shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>());
blobs_.push_back(blob_pointer);
blob_names_.push_back(blob_name);
blob_need_backward_.push_back(param.force_backward());
blob_name_to_idx[blob_name] = blob_names_.size() - 1;
available_blobs.insert(blob_name);
top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get());
top_id_vecs_[i].push_back(blob_names_.size() - 1);
}
}
// After this layer is connected, set it up.
// LOG(INFO) << "Setting up " << layer_names_[i];
layers_[i]->SetUp(bottom_vecs_[i], &top_vecs_[i]);
for (int topid = 0; topid < top_vecs_[i].size(); ++topid) {
LOG(INFO) << "Top shape: " << top_vecs_[i][topid]->num() << " "
<< top_vecs_[i][topid]->channels() << " "
<< top_vecs_[i][topid]->height() << " "
<< top_vecs_[i][topid]->width() << " ("
<< top_vecs_[i][topid]->count() << ")";
if (!in_place)
memory_used += top_vecs_[i][topid]->count();
//.........這裏部分代碼省略.........
示例9: constructor_sanity_check
void constructor_sanity_check() {
CHECK_EQ(0, this->param_.momentum())
<< "Momentum cannot be used with AdaGrad.";
}
示例10: CHECK_GT
void LSTMLayer<Dtype>::FillUnrolledNet(NetParameter* net_param) const {
const int num_output = this->layer_param_.recurrent_param().num_output();
CHECK_GT(num_output, 0) << "num_output must be positive";
const FillerParameter& weight_filler =
this->layer_param_.recurrent_param().weight_filler();
const FillerParameter& bias_filler =
this->layer_param_.recurrent_param().bias_filler();
// Add generic LayerParameter's (without bottoms/tops) of layer types we'll
// use to save redundant code.
LayerParameter hidden_param;
hidden_param.set_type("InnerProduct");
hidden_param.mutable_inner_product_param()->set_num_output(num_output * 4);
hidden_param.mutable_inner_product_param()->set_bias_term(false);
hidden_param.mutable_inner_product_param()->set_axis(2);
hidden_param.mutable_inner_product_param()->
mutable_weight_filler()->CopyFrom(weight_filler);
LayerParameter biased_hidden_param(hidden_param);
biased_hidden_param.mutable_inner_product_param()->set_bias_term(true);
biased_hidden_param.mutable_inner_product_param()->
mutable_bias_filler()->CopyFrom(bias_filler);
LayerParameter sum_param;
sum_param.set_type("Eltwise");
sum_param.mutable_eltwise_param()->set_operation(
EltwiseParameter_EltwiseOp_SUM);
LayerParameter scale_param;
scale_param.set_type("Scale");
scale_param.mutable_scale_param()->set_axis(0);
LayerParameter slice_param;
slice_param.set_type("Slice");
slice_param.mutable_slice_param()->set_axis(0);
LayerParameter split_param;
split_param.set_type("Split");
vector<BlobShape> input_shapes;
RecurrentInputShapes(&input_shapes);
CHECK_EQ(2, input_shapes.size());
LayerParameter* input_layer_param = net_param->add_layer();
input_layer_param->set_type("Input");
InputParameter* input_param = input_layer_param->mutable_input_param();
input_layer_param->add_top("c_0");
input_param->add_shape()->CopyFrom(input_shapes[0]);
input_layer_param->add_top("h_0");
input_param->add_shape()->CopyFrom(input_shapes[1]);
LayerParameter* cont_slice_param = net_param->add_layer();
cont_slice_param->CopyFrom(slice_param);
cont_slice_param->set_name("cont_slice");
cont_slice_param->add_bottom("cont");
cont_slice_param->mutable_slice_param()->set_axis(0);
// Add layer to transform all timesteps of x to the hidden state dimension.
// W_xc_x = W_xc * x + b_c
{
LayerParameter* x_transform_param = net_param->add_layer();
x_transform_param->CopyFrom(biased_hidden_param);
x_transform_param->set_name("x_transform");
x_transform_param->add_param()->set_name("W_xc");
x_transform_param->add_param()->set_name("b_c");
x_transform_param->add_bottom("x");
x_transform_param->add_top("W_xc_x");
x_transform_param->add_propagate_down(true);
}
if (this->static_input_) {
// Add layer to transform x_static to the gate dimension.
// W_xc_x_static = W_xc_static * x_static
LayerParameter* x_static_transform_param = net_param->add_layer();
x_static_transform_param->CopyFrom(hidden_param);
x_static_transform_param->mutable_inner_product_param()->set_axis(1);
x_static_transform_param->set_name("W_xc_x_static");
x_static_transform_param->add_param()->set_name("W_xc_static");
x_static_transform_param->add_bottom("x_static");
x_static_transform_param->add_top("W_xc_x_static_preshape");
x_static_transform_param->add_propagate_down(true);
LayerParameter* reshape_param = net_param->add_layer();
reshape_param->set_type("Reshape");
BlobShape* new_shape =
reshape_param->mutable_reshape_param()->mutable_shape();
new_shape->add_dim(1); // One timestep.
// Should infer this->N as the dimension so we can reshape on batch size.
new_shape->add_dim(-1);
new_shape->add_dim(
x_static_transform_param->inner_product_param().num_output());
reshape_param->set_name("W_xc_x_static_reshape");
reshape_param->add_bottom("W_xc_x_static_preshape");
reshape_param->add_top("W_xc_x_static");
}
LayerParameter* x_slice_param = net_param->add_layer();
x_slice_param->CopyFrom(slice_param);
//.........這裏部分代碼省略.........
示例11: CHECK_EQ
void Convolution3DLayer<Dtype>::SetUp(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top) {
CHECK_EQ(bottom.size(), 1) << "Conv Layer takes a single blob as input.";
CHECK_EQ(top->size(), 1) << "Conv Layer takes a single blob as output.";
kernel_size_ = this->layer_param_.convolution_param().kernel_size();
kernel_depth_ = this->layer_param_.convolution_param().kernel_depth();
stride_ = this->layer_param_.convolution_param().stride();
temporal_stride_ = this->layer_param_.convolution_param().temporal_stride();
pad_ = this->layer_param_.convolution_param().pad();
temporal_pad_ = this->layer_param_.convolution_param().temporal_pad();
num_ = bottom[0]->num();
channels_ = bottom[0]->channels();
length_ = bottom[0]->length();
height_ = bottom[0]->height();
width_ = bottom[0]->width();
num_output_ = this->layer_param_.convolution_param().num_output();
filter_group_ = this->layer_param_.convolution_param().filter_group();
CHECK_GT(num_output_, 0);
// number of output filters must be divided by filter_group
CHECK_EQ(num_output_ % filter_group_, 0);
// The vol2col result buffer would only hold one image at a time to avoid
// overly large memory usage.
int height_out = (height_ + 2 * pad_ - kernel_size_) / stride_ + 1;
int width_out = (width_ + 2 * pad_ - kernel_size_) / stride_ + 1;
int length_out = (length_ + 2 * temporal_pad_ - kernel_depth_) / temporal_stride_ + 1;
// buffer for one image
col_buffer_.Reshape(
1, channels_ * kernel_depth_ * kernel_size_ * kernel_size_, length_out, height_out, width_out);
bias_term_ = this->layer_param_.convolution_param().bias_term();
// Figure out the dimensions for individual gemms.
M_ = num_output_ / filter_group_; // doing convolution filter_group_ times per volume
K_ = channels_ * kernel_depth_ * kernel_size_ * kernel_size_;
N_ = length_out * height_out * width_out;
// output size
(*top)[0]->Reshape(bottom[0]->num(), num_output_, length_out, height_out, width_out);
// Check if we need to set up the weights
if (this->blobs_.size() > 0) {
LOG(INFO) << "Skipping parameter initialization";
} else {
if (bias_term_) {
this->blobs_.resize(2);
} else {
this->blobs_.resize(1);
}
// Initialize the weights
this->blobs_[0].reset(new Blob<Dtype>(
num_output_, channels_, kernel_depth_, kernel_size_, kernel_size_));
// fill the weights
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
// If necessary, initialize and fill the bias term
if (bias_term_) {
this->blobs_[1].reset(new Blob<Dtype>(1, 1, 1, 1, num_output_));
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().bias_filler()));
bias_filler->Fill(this->blobs_[1].get());
}
}
// Set up the bias filler
if (bias_term_) {
bias_multiplier_.reset(new SyncedMemory(N_ * sizeof(Dtype)));
Dtype* bias_multiplier_data =
reinterpret_cast<Dtype*>(bias_multiplier_->mutable_cpu_data());
for (int i = 0; i < N_; ++i) {
bias_multiplier_data[i] = 1.;
}
}
}
示例12: CHECK_EQ
void Blob<Dtype>::ShareData(const Blob& other) {
CHECK_EQ(count_, other.count());
data_ = other.data();
}
示例13: CHECK_EQ
void GradientChecker<Dtype>::CheckGradientSingle(Layer<Dtype>* layer,
vector<Blob<Dtype>*>* bottom, vector<Blob<Dtype>*>* top,
int check_bottom, int top_id, int top_data_id, bool element_wise) {
if (element_wise) {
CHECK_EQ(0, layer->blobs().size());
CHECK_LE(0, top_id);
CHECK_LE(0, top_data_id);
const int top_count = (*top)[top_id]->count();
for (int blob_id = 0; blob_id < bottom->size(); ++blob_id) {
CHECK_EQ(top_count, (*bottom)[blob_id]->count());
}
}
// First, figure out what blobs we need to check against.
vector<Blob<Dtype>*> blobs_to_check;
for (int i = 0; i < layer->blobs().size(); ++i) {
blobs_to_check.push_back(layer->blobs()[i].get());
}
if (check_bottom < 0) {
for (int i = 0; i < bottom->size(); ++i) {
blobs_to_check.push_back((*bottom)[i]);
}
} else {
CHECK(check_bottom < bottom->size());
blobs_to_check.push_back((*bottom)[check_bottom]);
}
// Compute the gradient analytically using Backward
Caffe::set_random_seed(seed_);
// Get any loss from the layer
Dtype computed_objective = layer->Forward(*bottom, top);
// Get additional loss from the objective
computed_objective += GetObjAndGradient(top, top_id, top_data_id);
layer->Backward(*top, true, bottom);
// Store computed gradients for all checked blobs
vector<shared_ptr<Blob<Dtype> > >
computed_gradient_blobs(blobs_to_check.size());
for (int blob_id = 0; blob_id < blobs_to_check.size(); ++blob_id) {
Blob<Dtype>* current_blob = blobs_to_check[blob_id];
computed_gradient_blobs[blob_id].reset(new Blob<Dtype>());
computed_gradient_blobs[blob_id]->ReshapeLike(*current_blob);
const int count = blobs_to_check[blob_id]->count();
const Dtype* diff = blobs_to_check[blob_id]->cpu_diff();
Dtype* computed_gradients =
computed_gradient_blobs[blob_id]->mutable_cpu_data();
caffe_copy(count, diff, computed_gradients);
}
// Compute derivative of top w.r.t. each bottom and parameter input using
// finite differencing.
// LOG(ERROR) << "Checking " << blobs_to_check.size() << " blobs.";
for (int blob_id = 0; blob_id < blobs_to_check.size(); ++blob_id) {
Blob<Dtype>* current_blob = blobs_to_check[blob_id];
const Dtype* computed_gradients =
computed_gradient_blobs[blob_id]->cpu_data();
// LOG(ERROR) << "Blob " << blob_id << ": checking "
// << current_blob->count() << " parameters.";
for (int feat_id = 0; feat_id < current_blob->count(); ++feat_id) {
// For an element-wise layer, we only need to do finite differencing to
// compute the derivative of (*top)[top_id][top_data_id] w.r.t.
// (*bottom)[blob_id][i] only for i == top_data_id. For any other
// i != top_data_id, we know the derivative is 0 by definition, and simply
// check that that's true.
Dtype estimated_gradient = 0;
if (!element_wise || (feat_id == top_data_id)) {
// Do finite differencing.
// Compute loss with stepsize_ added to input.
current_blob->mutable_cpu_data()[feat_id] += stepsize_;
Caffe::set_random_seed(seed_);
Dtype positive_objective = layer->Forward(*bottom, top);
positive_objective += GetObjAndGradient(top, top_id, top_data_id);
// Compute loss with stepsize_ subtracted from input.
current_blob->mutable_cpu_data()[feat_id] -= stepsize_ * 2;
Caffe::set_random_seed(seed_);
Dtype negative_objective = layer->Forward(*bottom, top);
negative_objective += GetObjAndGradient(top, top_id, top_data_id);
// Recover original input value.
current_blob->mutable_cpu_data()[feat_id] += stepsize_;
estimated_gradient = (positive_objective - negative_objective) /
stepsize_ / 2.;
}
Dtype computed_gradient = computed_gradients[feat_id];
Dtype feature = current_blob->cpu_data()[feat_id];
// LOG(ERROR) << "debug: " << current_blob->cpu_data()[feat_id] << " "
// << current_blob->cpu_diff()[feat_id];
if (kink_ - kink_range_ > fabs(feature)
|| fabs(feature) > kink_ + kink_range_) {
// We check relative accuracy, but for too small values, we threshold
// the scale factor by 1.
Dtype scale = max(
max(fabs(computed_gradient), fabs(estimated_gradient)), 1.);
EXPECT_NEAR(computed_gradient, estimated_gradient, threshold_ * scale)
<< "debug: (top_id, top_data_id, blob_id, feat_id)="
<< top_id << "," << top_data_id << "," << blob_id << "," << feat_id;
}
// LOG(ERROR) << "Feature: " << current_blob->cpu_data()[feat_id];
// LOG(ERROR) << "computed gradient: " << computed_gradient
// << " estimated_gradient: " << estimated_gradient;
}
}
}
示例14: CHECK_EQ
void BaseConvolutionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int first_spatial_axis = channel_axis_ + 1;
CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_)
<< "bottom num_axes may not change.";
num_ = bottom[0]->count(0, channel_axis_);
CHECK_EQ(bottom[0]->shape(channel_axis_), channels_)
<< "Input size incompatible with convolution kernel.";
// TODO: generalize to handle inputs of different shapes.
for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) {
CHECK(bottom[0]->shape() == bottom[bottom_id]->shape())
<< "All inputs must have the same shape.";
}
// Shape the tops.
bottom_shape_ = &bottom[0]->shape();
compute_output_shape();
vector<int> top_shape(bottom[0]->shape().begin(),
bottom[0]->shape().begin() + channel_axis_);
top_shape.push_back(num_output_);
for (int i = 0; i < num_spatial_axes_; ++i) {
top_shape.push_back(output_shape_[i]);
}
for (int top_id = 0; top_id < top.size(); ++top_id) {
top[top_id]->Reshape(top_shape);
}
if (reverse_dimensions()) {
conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis);
} else {
conv_out_spatial_dim_ = top[0]->count(first_spatial_axis);
}
col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
// Setup input dimensions (conv_input_shape_).
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
conv_input_shape_.Reshape(bottom_dim_blob_shape);
int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data();
for (int i = 0; i < num_spatial_axes_ + 1; ++i) {
if (reverse_dimensions()) {
conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i);
} else {
conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i);
}
}
// The im2col result buffer will only hold one image at a time to avoid
// overly large memory usage. In the special case of 1x1 convolution
// it goes lazily unused to save memory.
col_buffer_shape_.clear();
col_buffer_shape_.push_back(kernel_dim_ * group_);
for (int i = 0; i < num_spatial_axes_; ++i) {
if (reverse_dimensions()) {
col_buffer_shape_.push_back(input_shape(i + 1));
} else {
col_buffer_shape_.push_back(output_shape_[i]);
}
}
col_buffer_.Reshape(col_buffer_shape_);
bottom_dim_ = bottom[0]->count(channel_axis_);
top_dim_ = top[0]->count(channel_axis_);
num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_;
// Set up the all ones "bias multiplier" for adding biases by BLAS
out_spatial_dim_ = top[0]->count(first_spatial_axis);
if (bias_term_) {
vector<int> bias_multiplier_shape(1, out_spatial_dim_);
bias_multiplier_.Reshape(bias_multiplier_shape);
caffe_set(bias_multiplier_.count(), Dtype(1),
bias_multiplier_.mutable_cpu_data());
}
}
示例15: ALOGD
SoftHEVC::~SoftHEVC() {
ALOGD("In SoftHEVC::~SoftHEVC");
CHECK_EQ(deInitDecoder(), (status_t)OK);
}