本文整理匯總了C++中C2函數的典型用法代碼示例。如果您正苦於以下問題:C++ C2函數的具體用法?C++ C2怎麽用?C++ C2使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了C2函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: compute
virtual void compute(const vd::Time& t)
{
f2 = DSAT() * C2();
f1 = C1() * p1;
grad(C3) = (f2);
grad(C1) = 0 - (f1);
grad(DSAT) = 0;
grad(C2) = (f1) - (f2);
}
示例2: collision
bool collision(const CircleHitBox &cercleBox1, const CircleHitBox &cercleBox2)
{
sf::Vector2f C1(cercleBox1.p), C2(cercleBox2.p);
float d2 = (C1.x-C2.x)*(C1.x-C2.x) + (C1.y-C2.y)*(C1.y-C2.y);
if (d2 > (cercleBox1.rayon + cercleBox2.rayon)*(cercleBox1.rayon + cercleBox2.rayon))
return false;
else
return true;
}
示例3: assert
double SpinAdapted::CreCreDesDes::redMatrixElement(Csf c1, vector<Csf>& ladder, const SpinBlock* b)
{
assert( build_pattern == "(((CC)(D))(D))" );
double element = 0.0;
int I = get_orbs()[0];
int J = get_orbs()[1];
int K = get_orbs()[2];
int L = get_orbs()[3];
// Must take into account how the 4-index is built from a combination of the 2-index ops
std::vector<SpinQuantum> quantum_ladder = get_quantum_ladder().at("(((CC)(D))(D))");
assert( quantum_ladder.size() == 3 );
SpinQuantum deltaQuantum12 = quantum_ladder.at(0);
SpinQuantum deltaQuantum123 = quantum_ladder.at(1);
SpinQuantum deltaQuantum1234 = quantum_ladder.at(2);
//FIXME components != 0
deltaQuantum[0] = deltaQuantum1234;
// Spin quantum data for CC
IrrepSpace sym12 = deltaQuantum12.get_symm();
int irrep12 = deltaQuantum12.get_symm().getirrep();
int spin12 = deltaQuantum12.get_s().getirrep();
// Spin quantum data for (CC)D
IrrepSpace sym123 = deltaQuantum123.get_symm();
int irrep123 = deltaQuantum123.get_symm().getirrep();
int spin123= deltaQuantum123.get_s().getirrep();
// Spin quantum data for total operator
IrrepSpace sym1234 = deltaQuantum1234.get_symm();
int irrep1234 = deltaQuantum1234.get_symm().getirrep();
int spin1234 = deltaQuantum1234.get_s().getirrep();
TensorOp C1(I, 1);
TensorOp C2(J, 1);
TensorOp D3(K,-1);
TensorOp D4(L,-1);
TensorOp CC = C1.product(C2, spin12, irrep12);
TensorOp CCD = CC.product(D3, spin123, irrep123);
TensorOp CCDD = CCD.product(D4, spin1234, irrep1234);
//FIXME loop over deltaQuantum components
int j = 0;
for (int i=0; i<ladder.size(); i++)
{
int index = 0; double cleb=0.0;
if (nonZeroTensorComponent(c1, deltaQuantum[j], ladder[i], index, cleb)) {
std::vector<double> MatElements = calcMatrixElements(c1, CCDD, ladder[i]) ;
element = MatElements[index]/cleb;
break;
}
else
continue;
}
return element;
}
示例4: assert
double SpinAdapted::StackCreCreCreCre::redMatrixElement(Csf c1, vector<Csf>& ladder, const StackSpinBlock* b)
{
assert( build_pattern == "(((CC)(C))(C))" );
double element = 0.0;
int I = get_orbs()[0];
int J = get_orbs()[1];
int K = get_orbs()[2];
int L = get_orbs()[3];
int Slaterlength = c1.det_rep.begin()->first.size();
vector<bool> backupSlater1(Slaterlength,0), backupSlater2(Slaterlength,0);
// Must take into account how the 4-index is built from a combination of the 2-index ops
std::vector<SpinQuantum> quantum_ladder = get_quantum_ladder().at("(((CC)(C))(C))");
assert( quantum_ladder.size() == 3 );
SpinQuantum deltaQuantum12 = quantum_ladder.at(0);
SpinQuantum deltaQuantum123 = quantum_ladder.at(1);
SpinQuantum deltaQuantum1234 = quantum_ladder.at(2);
deltaQuantum[0] = deltaQuantum1234;
// Spin quantum data for CC
IrrepSpace sym12 = deltaQuantum12.get_symm();
int irrep12 = deltaQuantum12.get_symm().getirrep();
int spin12 = deltaQuantum12.get_s().getirrep();
// Spin quantum data for (CC)C
IrrepSpace sym123 = deltaQuantum123.get_symm();
int irrep123 = deltaQuantum123.get_symm().getirrep();
int spin123= deltaQuantum123.get_s().getirrep();
// Spin quantum data for total operator
IrrepSpace sym1234 = deltaQuantum1234.get_symm();
int irrep1234 = deltaQuantum1234.get_symm().getirrep();
int spin1234 = deltaQuantum1234.get_s().getirrep();
TensorOp C1(I, 1);
TensorOp C2(J, 1);
TensorOp C3(K, 1);
TensorOp C4(L, 1);
TensorOp CC = C1.product(C2, spin12, irrep12);
TensorOp CCC = CC.product(C3, spin123, irrep123);
TensorOp CCCC = CCC.product(C4, spin1234, irrep1234);
for (int i=0; i<ladder.size(); i++)
{
int index = 0; double cleb=0.0;
if (nonZeroTensorComponent(c1, deltaQuantum[0], ladder[i], index, cleb)) {
std::vector<double> MatElements = calcMatrixElements(c1, CCCC, ladder[i], backupSlater1, backupSlater2) ;
element = MatElements[index]/cleb;
break;
}
else
continue;
}
return element;
}
示例5: assert
void RatioNSDistanceTransform::processRow(const BinaryPixelType *imageRow) {
int col;
#define N1_SETMINUS_N2_COUNT 1
#define N2_SETMINUS_N1_COUNT 5
#define N1_CAP_N2_COUNT 3
static vect n1[N1_SETMINUS_N2_COUNT] = {{-1, 1}};
static vect n2[N2_SETMINUS_N1_COUNT] = {{1, 0}, {2, 0}, {2, 1}, {1, 2}, {2, 2}};
static vect n12[N1_CAP_N2_COUNT] = {{0, 1}, {1, 1}, {0, 2}};
for (col = 0; col < _cols; col++) {
if (imageRow[col] == 0)
dtLines[0][col + 2] = 0;
else {
GrayscalePixelType val;
GrayscalePixelType dt;
int k;
val = GRAYSCALE_MAX;
for (k = 0; k < N1_SETMINUS_N2_COUNT; k++) {
assert(n1[k].y >= 0);
assert(n1[k].y <= 2);
assert(col + 2 - n1[k].x >= 0);
assert(col + 2 - n1[k].x < _cols + 3);
val = std::min(val, dtLines[n1[k].y][col + 2 - n1[k].x]);
}
assert(C1(d.num, d.den, (int) val) == d.mbf1i(d.mbf1(val)+1)+1);
dt = std::min((int)_dMax, d.mbf1i(d.mbf1(val)+1)+1);
val = GRAYSCALE_MAX;
for (k = 0; k < N2_SETMINUS_N1_COUNT; k++) {
assert(n2[k].y >= 0);
assert(n2[k].y <= 2);
assert(col + 2 - n2[k].x >= 0);
assert(col + 2 - n2[k].x < _cols + 3);
val = std::min(val, dtLines[n2[k].y][col + 2 - n2[k].x]);
}
assert(C2(d.num, d.den, (int) val) == d.mbf2i(d.mbf2(val)+1)+1);
dt = std::min((int) dt, d.mbf2i(d.mbf2(val)+1)+1);
val = GRAYSCALE_MAX;
for (k = 0; k < N1_CAP_N2_COUNT; k++) {
assert(n12[k].y >= 0);
assert(n12[k].y <= 2);
assert(col + 2 - n12[k].x >= 0);
assert(col + 2 - n12[k].x < _cols + 3);
val = std::min(val, dtLines[n12[k].y][col + 2 - n12[k].x]);
}
dt = std::min((int) dt, val + 1);
dtLines[0][col + 2] = dt;
}
}
_consumer->processRow(dtLines[0]+2);
rotate();
}
示例6: C2H4
Molecule C2H4()
{
int nAtoms = 6;
Eigen::Vector3d C1(0.0000000000, 0.0000000000, 1.2578920000);
Eigen::Vector3d H1(0.0000000000, 1.7454620000, 2.3427160000);
Eigen::Vector3d H2(0.0000000000, -1.7454620000, 2.3427160000);
Eigen::Vector3d C2(0.0000000000, 0.0000000000, -1.2578920000);
Eigen::Vector3d H3(0.0000000000, 1.7454620000, -2.3427160000);
Eigen::Vector3d H4(0.0000000000, -1.7454620000, -2.3427160000);
Eigen::MatrixXd geom(3, nAtoms);
geom.col(0) = C1.transpose();
geom.col(1) = H1.transpose();
geom.col(2) = H2.transpose();
geom.col(3) = C2.transpose();
geom.col(4) = H3.transpose();
geom.col(5) = H4.transpose();
Eigen::VectorXd charges(6), masses(6);
charges << 6.0, 1.0, 1.0, 6.0, 1.0, 1.0;
masses << 12.00, 1.0078250, 1.0078250, 12.0, 1.0078250, 1.0078250;
double radiusC = (1.70 * 1.20) / convertBohrToAngstrom;
double radiusH = (1.20 * 1.20) / convertBohrToAngstrom;
std::vector<Atom> atoms;
atoms.push_back( Atom("Carbon", "C", charges(0), masses(0), radiusC, C1, 1.0) );
atoms.push_back( Atom("Hydrogen", "H", charges(1), masses(1), radiusH, H1, 1.0) );
atoms.push_back( Atom("Hydrogen", "H", charges(2), masses(2), radiusH, H2, 1.0) );
atoms.push_back( Atom("Carbon", "C", charges(3), masses(3), radiusC, C2, 1.0) );
atoms.push_back( Atom("Hydrogen", "H", charges(4), masses(4), radiusH, H3, 1.0) );
atoms.push_back( Atom("Hydrogen", "H", charges(5), masses(5), radiusH, H4, 1.0) );
std::vector<Sphere> spheres;
Sphere sph1(C1, radiusC);
Sphere sph2(H1, radiusH);
Sphere sph3(H2, radiusH);
Sphere sph4(C2, radiusC);
Sphere sph5(H3, radiusH);
Sphere sph6(H4, radiusH);
spheres.push_back(sph1);
spheres.push_back(sph2);
spheres.push_back(sph3);
spheres.push_back(sph4);
spheres.push_back(sph5);
spheres.push_back(sph6);
// D2h as generated by Oxy, Oxz, Oyz
Symmetry pGroup = buildGroup(3, 4, 2, 1);
return Molecule(nAtoms, charges, masses, geom, atoms, spheres, pGroup);
};
示例7: patch
// Update the coefficients associated with the patch field
void Foam::smoluchowskiJumpTFvPatchScalarField::updateCoeffs()
{
if (updated())
{
return;
}
const fvPatchScalarField& pmu =
patch().lookupPatchField<volScalarField, scalar>("mu");
const fvPatchScalarField& prho =
patch().lookupPatchField<volScalarField, scalar>("rho");
const fvPatchField<scalar>& ppsi =
patch().lookupPatchField<volScalarField, scalar>("psi");
const fvPatchVectorField& pU =
patch().lookupPatchField<volVectorField, vector>("U");
// Prandtl number reading consistent with rhoCentralFoam
const dictionary& thermophysicalProperties =
db().lookupObject<IOdictionary>("thermophysicalProperties");
dimensionedScalar Pr
(
dimensionedScalar::lookupOrDefault
(
"Pr",
thermophysicalProperties,
1.0
)
);
Field<scalar> C2
(
pmu/prho
*sqrt(ppsi*constant::mathematical::piByTwo)
*2.0*gamma_/Pr.value()/(gamma_ + 1.0)
*(2.0 - accommodationCoeff_)/accommodationCoeff_
);
Field<scalar> aCoeff(prho.snGrad() - prho/C2);
Field<scalar> KEbyRho(0.5*magSqr(pU));
valueFraction() = (1.0/(1.0 + patch().deltaCoeffs()*C2));
refValue() = Twall_;
refGrad() = 0.0;
mixedFvPatchScalarField::updateCoeffs();
}
示例8: main
int main(int argc, char **argv) {
int m = 8000;
int k = 3600;
int n = 3600;
int numsteps = 1;
Matrix<double> A = RandomMatrix<double>(m, k);
Matrix<double> B = RandomMatrix<double>(k, n);
Matrix<double> C1(m, n), C2(m, n);
Time([&] { MatMul(A, B, C1); }, "Classical gemm");
Time([&] { grey433_29_234::FastMatmul(A, B, C2, numsteps); }, "Fast (4, 3, 3)");
// Test for correctness.
std::cout << "Maximum relative difference: " << MaxRelativeDiff(C1, C2) << std::endl;
return 0;
}
示例9: CanteraError
/*!
* @param rxn Reaction index of the current reaction. This is used
* as an index into vectors which have length n_total_rxn.
* @param k This is a vector of integer values specifying the
* species indices. The length of this vector species
* the number of different species in the description.
* The value of the entries are the species indices.
* These are used as indexes into vectors which have
* length n_total_species.
* @param order This is a vector of the same length as vector k.
* The order is used for the routine power(), which produces
* a power law expression involving the species vector.
* @param stoich This is used to handle fractional stoichiometric coefficients
* on the product side of irreversible reactions.
*/
void StoichManagerN::add(size_t rxn, const std::vector<size_t>& k, const vector_fp& order,
const vector_fp& stoich) {
//printf ("add called\n");
if (order.size() != k.size()) {
throw CanteraError("StoichManagerN::add()", "size of order and species arrays differ");
}
if (stoich.size() != k.size()) {
throw CanteraError("StoichManagerN::add()", "size of stoich and species arrays differ");
}
bool frac = false;
for (size_t n = 0; n < stoich.size(); n++) {
if (fmod(stoich[n], 1.0) || fmod(order[n], 1.0)) {
frac = true;
break;
}
}
if (frac || k.size() > 3) {
m_cn_list.push_back(C_AnyN(rxn, k, order, stoich));
} else {
// Try to express the reaction with unity stoichiometric
// coefficients (by repeating species when necessary) so that the
// simpler 'multiply' function can be used to compute the rate
// instead of 'power'.
std::vector<size_t> kRep;
for (size_t n = 0; n < k.size(); n++) {
for (size_t i = 0; i < stoich[n]; i++)
kRep.push_back(k[n]);
}
switch (kRep.size()) {
case 1:
m_c1_list.push_back(C1(rxn, kRep[0]));
break;
case 2:
m_c2_list.push_back(C2(rxn, kRep[0], kRep[1]));
break;
case 3:
m_c3_list.push_back(C3(rxn, kRep[0], kRep[1], kRep[2]));
break;
default:
m_cn_list.push_back(C_AnyN(rxn, k, order, stoich));
}
}
}
示例10: main
int main(int argc, char **argv) {
int m = 2000;
int k = 1200;
int n = 2000;
int numsteps = 1;
Matrix<double> A = RandomMatrix<double>(m, k);
Matrix<double> B = RandomMatrix<double>(k, n);
Matrix<double> C1(m, n), C2(m, n);
Time([&] { MatMul(A, B, C1); }, "Classical gemm");
Time([&] { classical222_8_24::FastMatmul(A, B, C2, numsteps); },
"Classical recursive (2, 2, 2)");
// Test for correctness.
std::cout << "Maximum relative difference: " << MaxRelativeDiff(C1, C2) << std::endl;
return 0;
}
示例11: main
int main()
{
Array<int,2> A(2,3), B(2,3);
A = 0, 3, 5,
1, 6, 9;
B = 2, 5, 1,
9, 3, 4;
Array<int,2> C(A+2*B);
Array<int,2> C2(2,3);
C2 = 4, 13, 7,
19, 12, 17;
BZTEST(count(C2 == C) == 6);
beginCheckAssert();
Array<int,2> D(i*10+j);
endCheckAssert();
}
示例12: C2
//======================================================================
tensor EightNode_Brick_u_p::getDampingTensorS( )
{
int C2_dim[] = {Num_Nodes, Num_Nodes};
tensor C2(2,C2_dim,0.0);
tensor Cc2(2,C2_dim,0.0);
double r = 0.0;
double rw = 0.0;
double s = 0.0;
double sw = 0.0;
double t = 0.0;
double tw = 0.0;
double weight = 0.0;
double det_of_Jacobian = 1.0;
tensor Jacobian;
tensor h;
double Qqinv = (alpha-nf)/ks + nf/kf;
int GP_c_r, GP_c_s, GP_c_t;
for( GP_c_r = 0 ; GP_c_r < Num_IntegrationPts; GP_c_r++ ) {
r = pts[GP_c_r];
rw = wts[GP_c_r];
for( GP_c_s = 0 ; GP_c_s < Num_IntegrationPts; GP_c_s++ ) {
s = pts[GP_c_s];
sw = wts[GP_c_s];
for( GP_c_t = 0 ; GP_c_t < Num_IntegrationPts; GP_c_t++ ) {
t = pts[GP_c_t];
tw = wts[GP_c_t];
h = shapeFunction(r,s,t);
Jacobian = this->Jacobian_3D(r,s,t);
det_of_Jacobian = Jacobian.determinant();
weight = rw * sw * tw * det_of_Jacobian;
Cc2 = h("a")*h("k");
C2 += Cc2*(weight*Qqinv);
}
}
}
return C2;
}
示例13: H2
Z H2(xpn){
A z;
ND2 I1;
{I ar=a->r,an=a->n;XW;
I bn=b0(a->p,an),wl=wr?*wd:1;
aw=0;
Q(bn<0,9)
Q(ar>1,7)
if(!wr) wl=wr=1;
if(wn==1) aw=2;
else Q(wl!=bn,8)
if(wr==1&&wt!=Et){
W(gv(wt,an))
C2((I(*)())(!wt?(I(*)())x0:wt==Ft?(I(*)())x1:(I(*)())x2))
}
v=tr(wr-1,wd+1);
u=wn;
W(ga(t=wt,wr,an*v,wd))*z->d=an;
C2(x3)
}}
示例14: main
int main(int argc, char **argv) {
int m = 90;
int k = 90;
int n = 90;
int numsteps = 1;
Matrix<double> A = RandomMatrix<double>(m, k);
Matrix<double> B = RandomMatrix<double>(k, n);
Matrix<double> C1(m, n), C2(m, n);
MatMul(A, B, C1);
for (int numsteps = 1; numsteps <= 2; ++numsteps) {
double lambda = DBL_EPSILON;
std::cout << numsteps << std::endl;
while (lambda < 1) {
smirnov333_20_182_approx::FastMatmul(A, B, C2, numsteps, lambda);
std::cout << lambda << ", " << MaxRelativeDiff(C1, C2) << "; ";
lambda *= 2;
}
std::cout << std::endl;
}
return 0;
}
示例15: switch
cString cPlainKeyVia::PrintKeyNr(void)
{
char tmp[12];
const char *kn=tmp;
switch(keynr) {
case MBC3('T','P','S'):
kn="TPS"; break;
case MBC3('M','K',0): case MBC3('M','K',1): case MBC3('M','K',2):
case MBC3('M','K',3): case MBC3('M','K',4): case MBC3('M','K',5):
case MBC3('M','K',6): case MBC3('M','K',7): case MBC3('M','K',8):
case MBC3('M','K',9):
snprintf(tmp,sizeof(tmp),"TPSMK%d",C3(keynr)); break;
default:
{
char c2=C2(keynr);
if(c2=='D' || c2=='P' || c2=='X' || c2=='C' || c2=='E' || c2=='T')
snprintf(tmp,sizeof(tmp),"%c%01X",c2,keynr & 0x0f);
else
snprintf(tmp,sizeof(tmp),"%02X",keynr);
break;
}
}
return kn;
}