當前位置: 首頁>>代碼示例>>C++>>正文


C++ Buffercmp函數代碼示例

本文整理匯總了C++中Buffercmp函數的典型用法代碼示例。如果您正苦於以下問題:C++ Buffercmp函數的具體用法?C++ Buffercmp怎麽用?C++ Buffercmp使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了Buffercmp函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: main


//.........這裏部分代碼省略.........
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);

  /* Wait for User push-button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
  {
  }
  
  /* Wait for User push-button release before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
  {
  }
  
  /* The board sends the message and expects to receive it back */
  
  /*##-2- Start the transmission process #####################################*/  
  /* While the I2C in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  /* Timeout is set to 10S */
  while(HAL_I2C_Master_Transmit(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE, 10000)!= HAL_OK)
  {
    /* Error_Handler() function is called when Timeout error occurs.
       When Acknowledge failure occurs (Slave don't acknowledge its address)
       Master restarts communication */
    if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
    {
      Error_Handler();
    }
  }
  
  /* Turn LED2 on: Transfer in Transmission process is correct */
  BSP_LED_On(LED2);

  /* Wait for User push-button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
  {
  }
  
  /* Wait for User push-button release before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_SET)
  {
  }

  /*##-3- Put I2C peripheral in reception process ############################*/ 
  /* Timeout is set to 10S */ 
  while(HAL_I2C_Master_Receive(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE, 10000) != HAL_OK)
  {
    /* Error_Handler() function is called when Timeout error occurs.
       When Acknowledge failure occurs (Slave don't acknowledge it's address)
       Master restarts communication */
    if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
    {
      Error_Handler();
    }
  }
  
  /* Turn LED2 off: Transfer in reception process is correct */
  BSP_LED_Off(LED2);
  
#else
  
  /* The board receives the message and sends it back */

  /*##-2- Put I2C peripheral in reception process ############################*/ 
  /* Timeout is set to 10S  */
  if(HAL_I2C_Slave_Receive(&I2cHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE, 10000) != HAL_OK)
  {
    /* Transfer error in reception process */
    Error_Handler();
  }
  
  /* Turn LED2 on: Transfer in reception process is correct */
  BSP_LED_On(LED2);
  
  /*##-3- Start the transmission process #####################################*/  
  /* While the I2C in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  /* Timeout is set to 10S */
  if(HAL_I2C_Slave_Transmit(&I2cHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE, 10000)!= HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();    
  }
  
  /* Turn LED2 off: Transfer in transmission process is correct */
  BSP_LED_Off(LED2);
  
#endif /* MASTER_BOARD */

  /*##-4- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
  {
    /* Processing Error */
    Error_Handler();      
  }
 
  /* Infinite loop */  
  while (1)
  {
  }
}
開發者ID:afconsult-south,項目名稱:dragonfly-fcb,代碼行數:101,代碼來源:main.c

示例2: main


//.........這裏部分代碼省略.........
  UartHandle.Init.HwFlowCtl  = UART_HWCONTROL_NONE;
  UartHandle.Init.Mode       = UART_MODE_TX_RX;
  UartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if(HAL_UART_DeInit(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }  
  if(HAL_UART_Init(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }
  
#ifdef TRANSMITTER_BOARD
  
  /* The board sends the message and expects to receive it back */
  /* DMA is programmed for reception before starting the transmission, in order to
     be sure DMA Rx is ready when board 2 will start transmitting */

  /*##-2- Program the Reception process #####################################*/  
  if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    Error_Handler();
  }

  /*##-3- Start the transmission process #####################################*/  
  /* While the UART in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    Error_Handler();
  }
  
  /*##-4- Wait for the end of the transfer ###################################*/  
  while (UartReady != SET)
  {
  }

  /* Reset transmission flag */
  UartReady = RESET;
  
#else
  
  /* The board receives the message and sends it back */

  /*##-2- Put UART peripheral in reception process ###########################*/  
  if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    Error_Handler();
  }

  /*##-3- Wait for the end of the transfer ###################################*/
  /* While waiting for message to come from the other board, LED3 is
     blinking according to the following pattern: a double flash every half-second */  
  while (UartReady != SET)
  {
      BSP_LED_On(LED3); 
      HAL_Delay(100);
      BSP_LED_Off(LED3); 
      HAL_Delay(100);
      BSP_LED_On(LED3); 
      HAL_Delay(100);
      BSP_LED_Off(LED3); 
      HAL_Delay(500); 
  }

  /* Reset transmission flag */
  UartReady = RESET;
  BSP_LED_Off(LED3); 
  
  /*##-4- Start the transmission process #####################################*/  
  /* While the UART in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    Error_Handler();
  }
  
#endif /* TRANSMITTER_BOARD */
  
  /*##-5- Wait for the end of the transfer ###################################*/  
  while (UartReady != SET)
  {
  }

  /* Reset transmission flag */
  UartReady = RESET;

  /*##-6- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
  {
    Error_Handler();
  }
   
  /* Turn on LED3 if test passes then enter infinite loop */
  BSP_LED_On(LED3); 
  /* Infinite loop */
  while (1)
  {
  }
}
開發者ID:NjordCZ,項目名稱:stm32cubef0,代碼行數:101,代碼來源:main.c

示例3: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{    
  /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
     */
  HAL_Init();
  
  /* Configure the system clock to 180 MHz */
  SystemClock_Config();
  
  /* Configure LED1, LED2, LED3 and LED4 */
  BSP_LED_Init(LED1);
  BSP_LED_Init(LED2); 
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);
  
  /* WAKEUP button (EXTI_Line0) will be used to wakeup the system from STOP mode */
  BSP_PB_Init(BUTTON_WAKEUP, BUTTON_MODE_EXTI);
  
  /* Configure Key Button */
  BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);
  
  /*##-1- Configure the SDRAM device #########################################*/
  /* SDRAM device configuration */ 
  BSP_SDRAM_Init();  
    
  /*##-2- SDRAM memory write access ##########################################*/  
  /* Fill the buffer to write */
  Fill_Buffer(aTxBuffer, BUFFER_SIZE, 0xA244250F);
  
  /* Write data to the SDRAM memory */
  BSP_SDRAM_WriteData(SDRAM_DEVICE_ADDR + WRITE_READ_ADDR, aTxBuffer, BUFFER_SIZE);
  
  /* Wait for TAMPER/KEY to be pushed to enter stop mode */
  while(BSP_PB_GetState(BUTTON_TAMPER) != RESET)
  {
  }  

  /*##-3- Issue self-refresh command to SDRAM device #########################*/ 
  SDRAMCommandStructure.CommandMode            = FMC_SDRAM_CMD_SELFREFRESH_MODE;
  SDRAMCommandStructure.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
  SDRAMCommandStructure.AutoRefreshNumber      = 1;
  SDRAMCommandStructure.ModeRegisterDefinition = 0;
  
  if(BSP_SDRAM_Sendcmd(&SDRAMCommandStructure) != HAL_OK) 
  {
    /* Command send Error */
    Error_Handler(); 
  }
   
  /*##-4- Enter CPU power stop mode ##########################################*/   
  /* Put LED4 on to indicate entering to STOP mode */
  BSP_LED_On(LED4);  
                        
  /* Request to enter STOP mode */
  HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI);
  
  /*##-5- Wakeup CPU from  power stop mode ###################################*/  
  /* Configure the system clock after wakeup from STOP: enable HSE, PLL and select 
       PLL as system clock source (HSE and PLL are disabled in STOP mode) */
  SystemClock_Config();
  
  /*##-6- SDRAM memory read back access ######################################*/
  SDRAMCommandStructure.CommandMode = FMC_SDRAM_CMD_NORMAL_MODE;
  
  if(BSP_SDRAM_Sendcmd(&SDRAMCommandStructure) != HAL_OK) 
  {
    /* Command send Error */
    Error_Handler(); 
  }

  /* Read back data from the SDRAM memory */
  BSP_SDRAM_ReadData(SDRAM_DEVICE_ADDR + WRITE_READ_ADDR, aRxBuffer, BUFFER_SIZE); 

  /*##-7- Checking data integrity ############################################*/    
  uwWriteReadStatus = Buffercmp(aTxBuffer, aRxBuffer, BUFFER_SIZE);

  if (uwWriteReadStatus != PASSED)
  {
    /* KO */
    /* Turn on LED2 */
    BSP_LED_On(LED2);     
  }
  else
  { 
    /* OK */
    /* Turn on LED1 */
    BSP_LED_On(LED1);
  }

  /* Infinite loop */  
  while (1)
//.........這裏部分代碼省略.........
開發者ID:PaxInstruments,項目名稱:STM32CubeF4,代碼行數:101,代碼來源:main.c

示例4: main

/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F0xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LED2 */
  BSP_LED_Init(LED2);

  /* Configure the system clock to 48 MHz */
  SystemClock_Config();

  /*##-1- Configure the SPI peripheral #######################################*/
  /* Set the SPI parameters */
  SpiHandle.Instance               = SPIx;
  SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  SpiHandle.Init.Direction         = SPI_DIRECTION_2LINES;
  SpiHandle.Init.CLKPhase          = SPI_PHASE_1EDGE;
  SpiHandle.Init.CLKPolarity       = SPI_POLARITY_LOW;
  SpiHandle.Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLE;
  SpiHandle.Init.CRCPolynomial     = 7;
  SpiHandle.Init.DataSize          = SPI_DATASIZE_8BIT;
  SpiHandle.Init.FirstBit          = SPI_FIRSTBIT_MSB;
  SpiHandle.Init.NSS               = SPI_NSS_SOFT;
  SpiHandle.Init.TIMode            = SPI_TIMODE_DISABLE;
  SpiHandle.Init.NSSPMode          = SPI_NSS_PULSE_DISABLE;
  SpiHandle.Init.CRCLength         = SPI_CRC_LENGTH_8BIT;

#ifdef MASTER_BOARD
  SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
  SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */

  if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
#ifdef MASTER_BOARD
  /* Configure User push-button */
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);
  /* Wait for User push-button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
  {
    BSP_LED_Toggle(LED2);
    HAL_Delay(40);
  }
  BSP_LED_Off(LED2);
#endif /* MASTER_BOARD */

  /*##-2- Start the Full Duplex Communication process ########################*/  
  /* While the SPI in TransmitReceive process, user can transmit data through 
     "aTxBuffer" buffer & receive data through "aRxBuffer" */
  if(HAL_SPI_TransmitReceive_IT(&SpiHandle, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }

  /*##-3- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you need to check the current   
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
  {
  } 

  /*##-4- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer, (uint8_t*)aRxBuffer, BUFFERSIZE))
  {
    /* Processing Error */
    Error_Handler();     
  }

  /* Infinite loop */  
  while (1)
  {
  }
}
開發者ID:jmoyerman,項目名稱:stm32f0_cube,代碼行數:96,代碼來源:main.c

示例5: main

/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F0xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LED2 */
  BSP_LED_Init(LED2);
  /* Configure the system clock to 48 MHz */
  SystemClock_Config();

  /*##-1- Configure the SPI peripheral #######################################*/
  /* Set the SPI parameters */
  SpiHandle.Instance               = SPIx;

  SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  SpiHandle.Init.Direction         = SPI_DIRECTION_2LINES;
  SpiHandle.Init.CLKPhase          = SPI_PHASE_1EDGE;
  SpiHandle.Init.CLKPolarity       = SPI_POLARITY_LOW;
  SpiHandle.Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLED;
  SpiHandle.Init.CRCPolynomial     = 7;
  SpiHandle.Init.DataSize          = SPI_DATASIZE_8BIT;
  SpiHandle.Init.FirstBit          = SPI_FIRSTBIT_MSB;
  SpiHandle.Init.NSS               = SPI_NSS_SOFT;
  SpiHandle.Init.TIMode            = SPI_TIMODE_DISABLED;
  SpiHandle.Init.NSSPMode          = SPI_NSS_PULSE_DISABLED;
  SpiHandle.Init.CRCLength         = SPI_CRC_LENGTH_8BIT;

#ifdef MASTER_BOARD
  SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
  SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */

  if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

#ifdef MASTER_BOARD
  /* Configure User push-button */
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);
  /* Wait for User push-button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
  {
    BSP_LED_Toggle(LED2);
    HAL_Delay(100);
  }
  BSP_LED_Off(LED2);
#endif /* MASTER_BOARD */

  /*##-2- Start the Full Duplex Communication process ########################*/  
  /* While the SPI in TransmitReceive process, user can transmit data through 
     "aTxBuffer" buffer & receive data through "aRxBuffer" */
  /* Timeout is set to 5S */
  
  switch(HAL_SPI_TransmitReceive(&SpiHandle, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE, 5000))
  {
    case HAL_OK:
      /* Communication is completed ___________________________________________ */
      /* Compare the sent and received buffers */
      if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE))
      {
        /* Transfer error in transmission process */
        Error_Handler();
      }
      /* Turn LED2 on: Transfer in transmission/Reception process is correct */
      BSP_LED_On(LED2);
      break;

    case HAL_TIMEOUT:
      /* An Error Occur ______________________________________________________ */
    case HAL_ERROR:
      /* Call Timeout Handler */
      Error_Handler();
      break;
    default:
      break;
  }

  /* Infinite loop */
  while (1)
  {
  }
}
開發者ID:GreyCardinalRus,項目名稱:stm32-cube,代碼行數:98,代碼來源:main.c

示例6: main

/*******************************************************************************
* Function Name  : main
* Description    : Main program
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
  
#ifdef DEBUG
    debug();
#endif

  SCU_MCLKSourceConfig(SCU_MCLK_OSC);    /*Use OSC as the default clock source*/
  SCU_PCLKDivisorConfig(SCU_PCLK_Div1);  /* ARM Peripheral bus clokdivisor = 1*/
  
  /* SCU configuration */
  SCU_Configuration();
  /* GPIO pins configuration */
  GPIO_Configuration();
  /* VIC configuration */
  VIC_Configuration();
  
  /*I2C0 & I2C1 reset */
  I2C_DeInit(I2C0);
  I2C_DeInit(I2C1);
   
  /* Enable I2C0, I2C1 */
  I2C_Cmd(I2C0, ENABLE);
  I2C_Cmd(I2C1, ENABLE);
  /* Configure GPIO2, I2C0 and I2C1 */
  /* I2C0 Configuration */
  I2C_Struct.I2C_GeneralCall = I2C_GeneralCall_Disable;
  I2C_Struct.I2C_Ack = I2C_Ack_Enable;
  I2C_Struct.I2C_CLKSpeed = 400000;
  I2C_Struct.I2C_OwnAddress = I2C0OwnAddr;
  I2C_Init(I2C0, &I2C_Struct);

  /* I2C1 Configuration */
  /* we keep the same config as I2C0 for the other I2C_Struct members */ 
  /* We change just the address*/ 

  I2C_Struct.I2C_OwnAddress = I2C1OwnAddr;
  I2C_Init(I2C1, &I2C_Struct);
  Direction = I2C_MODE_TRANSMITTER;
  Fill_Buffer(I2C1_Buffer_Tx, 0x1);
  I2C_ITConfig(I2C1, ENABLE);
  I2C_ITConfig(I2C0, ENABLE);
  I2C_GenerateStart(I2C1, ENABLE);
  while (Tx_Idx < BUFFER_SIZE+1);
  /* Check if the transmitted data is read correctly */
  TransferStatus1 = Buffercmp(I2C0_Buffer_Rx, I2C1_Buffer_Tx, BUFFER_SIZE);
  /* TransferStatus = PASSED, if the transmitted from I2C1 and received data 
     by the I2C0 are the same */
  /* TransferStatus = FAILED, if the transmitted from I2C1 and received data 
     by the I2C0 are different */
  /*--------------------------------------------------*/
  /* Delay between transmission and reception --------*/
  /*--------------------------------------------------*/
  Delay(100000);

  /*--------------------------------------------------*/
  /* Reception Phase----------------------------------*/
  /*--------------------------------------------------*/
  /*reset counters*/
  Tx_Idx = Rx_Idx = 0;
  Direction = I2C_MODE_RECEIVER;
  Fill_Buffer(I2C0_Buffer_Tx, 0x5);
  I2C_GenerateStart(I2C1, ENABLE);
  while (Tx_Idx < BUFFER_SIZE+1);
  /* Check if the transmitted data is read correctly */
  TransferStatus2 = Buffercmp(I2C1_Buffer_Rx, I2C0_Buffer_Tx, BUFFER_SIZE);
  /* TransferStatus = PASSED, if the transmitted from I2C0 and received data 
     by the I2C1 are the same */
  /* TransferStatus = FAILED, if the transmitted from I2C0 and received data 
     by the I2C1 are different */

  while(1);
}
開發者ID:LupusDei,項目名稱:8LU-DSP,代碼行數:80,代碼來源:main.c

示例7: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* SPI1 configuration ------------------------------------------------------*/
  SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b;
  SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
  SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
  SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
  SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
  SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
  SPI_InitStructure.SPI_CRCPolynomial = 7;
  SPI_Init(SPI1, &SPI_InitStructure);

  /* SPI2 configuration ------------------------------------------------------*/
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPI2, &SPI_InitStructure);

  /* Enable SPI1 CRC calculation */
  SPI_CalculateCRC(SPI1, ENABLE);
  /* Enable SPI2 CRC calculation */
  SPI_CalculateCRC(SPI2, ENABLE);

  /* Enable SPI1 */
  SPI_Cmd(SPI1, ENABLE);
  /* Enable SPI2 */
  SPI_Cmd(SPI2, ENABLE);

  /* Transfer procedure */
  while (TxIdx < BufferSize - 1)
  {
    /* Wait for SPI1 Tx buffer empty */
    while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
    /* Send SPI2 data */
    SPI_I2S_SendData(SPI2, SPI2_Buffer_Tx[TxIdx]);
    /* Send SPI1 data */
    SPI_I2S_SendData(SPI1, SPI1_Buffer_Tx[TxIdx++]);
    /* Wait for SPI2 data reception */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI2 received data */
    SPI2_Buffer_Rx[RxIdx] = SPI_I2S_ReceiveData(SPI2);
    /* Wait for SPI1 data reception */
    while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
    /* Read SPI1 received data */
    SPI1_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI1);
  }

  /* Wait for SPI1 Tx buffer empty */
  while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
  /* Wait for SPI2 Tx buffer empty */
  while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET);

  /* Send last SPI2_Buffer_Tx data */
  SPI_I2S_SendData(SPI2, SPI2_Buffer_Tx[TxIdx]);
  /* Enable SPI2 CRC transmission */
  SPI_TransmitCRC(SPI2);
  /* Send last SPI1_Buffer_Tx data */
  SPI_I2S_SendData(SPI1, SPI1_Buffer_Tx[TxIdx]);
  /* Enable SPI1 CRC transmission */
  SPI_TransmitCRC(SPI1);

  /* Wait for SPI1 last data reception */
  while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
  /* Read SPI1 last received data */
  SPI1_Buffer_Rx[RxIdx] = SPI_I2S_ReceiveData(SPI1);

  /* Wait for SPI2 last data reception */
  while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);
  /* Read SPI2 last received data */
  SPI2_Buffer_Rx[RxIdx] = SPI_I2S_ReceiveData(SPI2);

  /* Wait for SPI1 data reception: CRC transmitted by SPI2 */
  while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
  /* Wait for SPI2 data reception: CRC transmitted by SPI1 */
  while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET);

  /* Check the received data with the send ones */
  TransferStatus1 = Buffercmp(SPI2_Buffer_Rx, SPI1_Buffer_Tx, BufferSize);
  TransferStatus2 = Buffercmp(SPI1_Buffer_Rx, SPI2_Buffer_Tx, BufferSize);
  /* TransferStatus1, TransferStatus2 = PASSED, if the data transmitted and received
     are correct */
  /* TransferStatus1, TransferStatus2 = FAILED, if the data transmitted and received
//.........這裏部分代碼省略.........
開發者ID:0x00f,項目名稱:STM32F1-workarea,代碼行數:101,代碼來源:main.c

示例8: main


//.........這裏部分代碼省略.........
  
  /* The board sends the message and expects to receive it back */
  
  /*##-2- Start the transmission process #####################################*/  
  /* While the UART in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    Error_Handler();
  }
  
  /*##-3- Wait for the end of the transfer ###################################*/  
  while (UartReady != SET)
  {
  }

  
  /* Reset transmission flag */
  UartReady = RESET;
  
  /*##-4- Put UART peripheral in reception process ###########################*/ 
  if(HAL_UART_DeInit(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }  
  if(HAL_UART_Init(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }   
  if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    Error_Handler();
  }

#else
  
  /* The board receives the message and sends it back */

  /*##-2- Put UART peripheral in reception process ###########################*/  
  if(HAL_UART_Receive_DMA(&UartHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    Error_Handler();
  }

  /*##-3- Wait for the end of the transfer ###################################*/
  /* While waiting for message to come from the other board, LED2 is
     blinking according to the following pattern: a double flash every half-second */  
  while (UartReady != SET)
  {
      BSP_LED_On(LED2); 
      HAL_Delay(100);
      BSP_LED_Off(LED2); 
      HAL_Delay(100);
      BSP_LED_On(LED2); 
      HAL_Delay(100);
      BSP_LED_Off(LED2); 
      HAL_Delay(500); 
  }

  /* Reset transmission flag */
  UartReady = RESET;
  BSP_LED_Off(LED2); 
  
  /*##-4- Start the transmission process #####################################*/  
  /* While the UART in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  if(HAL_UART_DeInit(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }  
  if(HAL_UART_Init(&UartHandle) != HAL_OK)
  {
    Error_Handler();
  }     
  if(HAL_UART_Transmit_DMA(&UartHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    Error_Handler();
  }
  
#endif /* TRANSMITTER_BOARD */
  
  /*##-5- Wait for the end of the transfer ###################################*/  
  while (UartReady != SET)
  {
  }

  /* Reset transmission flag */
  UartReady = RESET;

  /*##-6- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
  {
    Error_Handler();
  }
   
  /* Infinite loop */
  while (1)
  {
  }
}
開發者ID:Lembed,項目名稱:STM32CubeF4-mirrors,代碼行數:101,代碼來源:main.c

示例9: main


//.........這裏部分代碼省略.........
    TimeOut_UserCallback();
  }
  
  /* Transfer complete or time out */
  TimeOut = USER_TIMEOUT;
  while ((DMA_GetFlagStatus(I2Cx_DMA_STREAM_RX,I2Cx_RX_DMA_TCFLAG)==RESET)&&(TimeOut != 0x00))
  {}
  if(TimeOut == 0)
  {
    TimeOut_UserCallback();
  }
  /* Send I2Cx STOP Condition */
  I2C_GenerateSTOP(I2Cx, ENABLE);

  /* Disable DMA RX Channel */
  DMA_Cmd(I2Cx_DMA_STREAM_RX, DISABLE);
  
  /* Wait until I2Cx_DMA_STREAM_RX disabled or time out */
  TimeOut = USER_TIMEOUT;
  while ((DMA_GetCmdStatus(I2Cx_DMA_STREAM_RX)!= DISABLE)&&(TimeOut != 0x00))
  {}  
  if(TimeOut == 0)
  {
    TimeOut_UserCallback();
  }
  
  /* Disable I2C DMA request */  
  I2C_DMACmd(I2Cx,DISABLE);
  
  /* Clear any pending flag on Rx Stream  */
  DMA_ClearFlag(I2Cx_DMA_STREAM_RX, I2Cx_RX_DMA_TCFLAG | I2Cx_RX_DMA_FEIFLAG | I2Cx_RX_DMA_DMEIFLAG | \
                                       I2Cx_RX_DMA_TEIFLAG | I2Cx_RX_DMA_HTIFLAG);
  
  if (Buffercmp(TxBuffer, RxBuffer, RXBUFFERSIZE) == PASSED)
  {
    /* LED2, LED3 and LED4 Toggle */
    STM_EVAL_LEDOn(LED2);
    STM_EVAL_LEDOn(LED3);
    STM_EVAL_LEDOn(LED4);
  }
  else 
  {   /* ED2, LED3 and LED4 On */
    STM_EVAL_LEDOff(LED2);
    STM_EVAL_LEDOff(LED3);
    STM_EVAL_LEDOff(LED4);
  }
  
#endif /* I2C_MASTER */
  
/**********************************Slave Code**********************************/
#if defined (I2C_SLAVE)
  
  /* Initialize I2C peripheral */
  /* I2C Init */
  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
  I2C_InitStructure.I2C_DutyCycle = I2C_DUTYCYCLE;
  I2C_InitStructure.I2C_OwnAddress1 = SLAVE_ADDRESS;
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
  I2C_InitStructure.I2C_ClockSpeed = I2C_SPEED;
  
#ifndef I2C_10BITS_ADDRESS
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
#else
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_10bit;
#endif /* I2C_10BITS_ADDRESS */
  
開發者ID:agb861,項目名稱:STM32F,代碼行數:66,代碼來源:main.c

示例10: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
     */
  HAL_Init();

  /* Configure LED3, LED4, LED5 and LED6 */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);
  BSP_LED_Init(LED5);
  BSP_LED_Init(LED6);

  /* Configure the system clock to 84 MHz */
  SystemClock_Config();
  
  /*##-1- Configure the SPI peripheral #######################################*/
  /* Set the SPI parameters */
  SpiHandle.Instance               = SPIx;
  SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  SpiHandle.Init.Direction         = SPI_DIRECTION_2LINES;
  SpiHandle.Init.CLKPhase          = SPI_PHASE_1EDGE;
  SpiHandle.Init.CLKPolarity       = SPI_POLARITY_HIGH;
  SpiHandle.Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLE;
  SpiHandle.Init.CRCPolynomial     = 7;
  SpiHandle.Init.DataSize          = SPI_DATASIZE_8BIT;
  SpiHandle.Init.FirstBit          = SPI_FIRSTBIT_MSB;
  SpiHandle.Init.NSS               = SPI_NSS_SOFT;
  SpiHandle.Init.TIMode            = SPI_TIMODE_DISABLE;
  
#ifdef MASTER_BOARD
  SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
  SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */

  if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
#ifdef MASTER_BOARD
  /* Configure Tamper push button */
  BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);

  /* Wait for Tamper Button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_KEY) != 1)
  {
    BSP_LED_Toggle(LED3);
    HAL_Delay(40);
  }
  
  BSP_LED_Off(LED3);
#endif /* MASTER_BOARD */

  /*##-2- Start the Full Duplex Communication process ########################*/  
  /* While the SPI in TransmitReceive process, user can transmit data through 
     "aTxBuffer" buffer & receive data through "aRxBuffer" */
  if(HAL_SPI_TransmitReceive_DMA(&SpiHandle, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }


  /*##-3- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you need to check the current   
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (HAL_SPI_GetState(&SpiHandle) != HAL_SPI_STATE_READY)
  {
  } 

  /*##-4- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer, (uint8_t*)aRxBuffer, BUFFERSIZE))
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }

  /* Infinite loop */
  while (1)
  {
  }
}
開發者ID:matianfu,項目名稱:stm32f4cube,代碼行數:97,代碼來源:main.c

示例11: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F103xB HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure the system clock to 64 MHz */
  SystemClock_Config();

  /* Configure LED2, LED2 and LED2 */
  BSP_LED_Init(LED2);

  /*##-1- Configure the SPI peripheral #######################################*/
  /* Set the SPI parameters */
  SpiHandle.Instance               = SPIx;
  SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  SpiHandle.Init.Direction         = SPI_DIRECTION_2LINES;
  SpiHandle.Init.CLKPhase          = SPI_PHASE_1EDGE;
  SpiHandle.Init.CLKPolarity       = SPI_POLARITY_LOW;
  SpiHandle.Init.DataSize          = SPI_DATASIZE_8BIT;
  SpiHandle.Init.FirstBit          = SPI_FIRSTBIT_MSB;
  SpiHandle.Init.TIMode            = SPI_TIMODE_DISABLE;
  SpiHandle.Init.CRCCalculation    = SPI_CRCCALCULATION_DISABLE;
  SpiHandle.Init.CRCPolynomial     = 7;
  SpiHandle.Init.NSS               = SPI_NSS_SOFT;

#ifdef MASTER_BOARD
  SpiHandle.Init.Mode = SPI_MODE_MASTER;
#else
  SpiHandle.Init.Mode = SPI_MODE_SLAVE;
#endif /* MASTER_BOARD */

  if(HAL_SPI_Init(&SpiHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

#ifdef MASTER_BOARD
  /* SPI block is enabled prior calling SPI transmit/receive functions, in order to get CLK signal properly pulled down.
     Otherwise, SPI CLK signal is not clean on this board and leads to errors during transfer */
  __HAL_SPI_ENABLE(&SpiHandle);

  /* Configure User push-button */
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);
  /* Wait for User push-button press before starting the Communication */
  while (BSP_PB_GetState(BUTTON_USER) != GPIO_PIN_RESET)
  {
    BSP_LED_Toggle(LED2);
    HAL_Delay(100);
  }
  BSP_LED_Off(LED2);
#endif /* MASTER_BOARD */

  /*##-2- Start the Full Duplex Communication process ########################*/  
  /* While the SPI in TransmitReceive process, user can transmit data through 
     "aTxBuffer" buffer & receive data through "aRxBuffer" */
  if(HAL_SPI_TransmitReceive_DMA(&SpiHandle, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, BUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();
  }

  /*##-3- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you must wait the callback call 
      to get the transfer complete confirmation or an error detection.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (wTransferState == TRANSFER_WAIT)
  {
  }
  
  switch(wTransferState)
  {
    case TRANSFER_COMPLETE :
      /*##-4- Compare the sent and received buffers ##############################*/
      if(Buffercmp((uint8_t*)aTxBuffer, (uint8_t*)aRxBuffer, BUFFERSIZE))
      {
        /* Processing Error */
        Error_Handler();     
      }
    break;
    default : 
      Error_Handler();
    break;
  }
//.........這裏部分代碼省略.........
開發者ID:dazuo78,項目名稱:TBall,代碼行數:101,代碼來源:main.c

示例12: main

/**
  * @brief   Main program
  * @param  None
  * @retval None
*/
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32l1xx_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32l1xx.c file
     */    

#ifdef ENABLE_LCD_MSG_DISPLAY
  /* Initialize the LCD screen for information display */
#ifdef USE_STM32L152D_EVAL
  STM32L152D_LCD_Init();
#else
  STM32L152_LCD_Init();
#endif 
  LCD_Clear(LCD_COLOR_BLUE);  
  LCD_SetBackColor(LCD_COLOR_BLUE);
  LCD_SetTextColor(LCD_COLOR_WHITE);
  LCD_DisplayStringLine(LCD_LINE_0, "SMT32L1xx FW Library");
  LCD_DisplayStringLine(LCD_LINE_1, "   EEPROM Example   ");
#endif /* ENABLE_LCD_MSG_DISPLAY */  
  
  /* Initialize the I2C EEPROM driver ----------------------------------------*/
  sEE_Init();  

  /* First write in the memory followed by a read of the written data --------*/
  /* Write on I2C EEPROM from sEE_WRITE_ADDRESS1 */
  sEE_WriteBuffer(Tx1_Buffer, sEE_WRITE_ADDRESS1, BUFFER_SIZE1); 

  /* Wait for EEPROM standby state */
  sEE_WaitEepromStandbyState();  
  
  /* Set the Number of data to be read */
  NumDataRead = BUFFER_SIZE1;
  
  /* Read from I2C EEPROM from sEE_READ_ADDRESS1 */
  sEE_ReadBuffer(Rx1_Buffer, sEE_READ_ADDRESS1, (uint16_t *)(&NumDataRead)); 


  /* Starting from this point, if the requested number of data is higher than 1, 
     then only the DMA is managing the data transfer. Meanwhile, CPU is free to 
     perform other tasks:
  
    // Add your code here: 
    //...
    //...

     For simplicity reasons, this example is just waiting till the end of the 
     transfer. */
 
#ifdef ENABLE_LCD_MSG_DISPLAY  
  LCD_DisplayStringLine(LCD_LINE_3, " Transfer 1 Ongoing ");
#endif /* ENABLE_LCD_MSG_DISPLAY */ 
  
  /* Wait till DMA transfer is compelete (Tranfer complete interrupt handler 
    resets the variable holding the number of data to be read) */
  while (NumDataRead > 0)
  {}  
  
  /* Check if the data written to the memory is read correctly */
  TransferStatus1 = Buffercmp(Tx1_Buffer, Rx1_Buffer, BUFFER_SIZE1);
  /* TransferStatus1 = PASSED, if the transmitted and received data 
     to/from the EEPROM are the same */
  /* TransferStatus1 = FAILED, if the transmitted and received data 
     to/from the EEPROM are different */
#ifdef ENABLE_LCD_MSG_DISPLAY  
  if (TransferStatus1 == PASSED)
  {
    LCD_DisplayStringLine(LCD_LINE_3, " Transfer 1 PASSED  ");
  }
  else
  {
    LCD_DisplayStringLine(LCD_LINE_3, " Transfer 1 FAILED  ");
  }  
#endif /* ENABLE_LCD_MSG_DISPLAY */  

  /* Second write in the memory followed by a read of the written data -------*/
  /* Write on I2C EEPROM from sEE_WRITE_ADDRESS2 */
  sEE_WriteBuffer(Tx2_Buffer, sEE_WRITE_ADDRESS2, BUFFER_SIZE2); 

  /* Wait for EEPROM standby state */
  sEE_WaitEepromStandbyState();  
  
  /* Set the Number of data to be read */
  NumDataRead = BUFFER_SIZE2;  
  
  /* Read from I2C EEPROM from sEE_READ_ADDRESS2 */
  sEE_ReadBuffer(Rx2_Buffer, sEE_READ_ADDRESS2, (uint16_t *)(&NumDataRead));


  /* Starting from this point, if the requested number of data is higher than 1, 
     then only the DMA is managing the data transfer. Meanwhile, CPU is free to 
     perform other tasks:
     
//.........這裏部分代碼省略.........
開發者ID:jongtao,項目名稱:stm32l-dev-chain,代碼行數:101,代碼來源:main.c

示例13: main

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       files (startup_stm32f40_41xxx.s/startup_stm32f427_437xx.s/startup_stm32f429_439xx.s)
       before to branch to application main.
     */
  
  /* SPI configuration */
  SPI_Config();
  
  /* SysTick configuration */
  SysTickConfig();
  
  /* LEDs configuration */
  STM_EVAL_LEDInit(LED1);
  STM_EVAL_LEDInit(LED2);
  STM_EVAL_LEDInit(LED3);
  STM_EVAL_LEDInit(LED4);
  
#ifdef SPI_MASTER
  /* Master board configuration */    
  /* Initializes the SPI communication */
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_Init(SPIx, &SPI_InitStructure);
  
  /* The Data transfer is performed in the SPI interrupt routine */
  /* Configure the Tamper Button */
  STM_EVAL_PBInit(BUTTON_TAMPER,BUTTON_MODE_GPIO);
  
  /* Wait until Tamper Button is pressed */
  while (STM_EVAL_PBGetState(BUTTON_TAMPER));
  
  /* Enable the SPI peripheral */
  SPI_Cmd(SPIx, ENABLE);
  
  /* Initialize Buffer counters */
  ubTxIndex = 0;
  ubRxIndex = 0;
  
  /* Enable the Rx buffer not empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_RXNE, ENABLE);
  
  /* Enable the Tx buffer empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_TXE, ENABLE);
  
#endif /* SPI_MASTER */
  
#ifdef SPI_SLAVE
  /* Slave board configuration */
  /* Initializes the SPI communication */
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPIx, &SPI_InitStructure);
  
  /* The Data transfer is performed in the SPI interrupt routine */
  /* Initialize Buffer counters */
  ubTxIndex = 0;
  ubRxIndex = 0;
  
  /* Enable the Rx buffer not empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_RXNE, ENABLE);
  
  /* Enable the Tx empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_TXE, ENABLE);
  
  /* Enable the SPI peripheral */
  SPI_Cmd(SPIx, ENABLE);
  
#endif /* SPI_SLAVE */
  
  /* Waiting the end of Data transfer */
  while ((ubTxIndex < BUFFERSIZE) && (ubRxIndex < BUFFERSIZE))
  {
  }
  
  /* Disable the Rx buffer not empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_RXNE, DISABLE);
  
  /* Disable the Tx empty interrupt */
  SPI_I2S_ITConfig(SPIx, SPI_I2S_IT_TXE, DISABLE);
  
  /* Disable the SPI peripheral */
  SPI_Cmd(SPIx, DISABLE);
  
  if (Buffercmp(aTxBuffer, aRxBuffer, BUFFERSIZE) != FAILED) 
  {
    /* Turn ON LED1 and LED3 */
    STM_EVAL_LEDOn(LED1);
    STM_EVAL_LEDOn(LED3);
    /* Turn OFF LED2 and LED4 */
    STM_EVAL_LEDOff(LED2);
    STM_EVAL_LEDOff(LED4);
  }
  else 
  {
//.........這裏部分代碼省略.........
開發者ID:Haensi2000,項目名稱:ECSE426G7,代碼行數:101,代碼來源:main.c

示例14: main

/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
  /* System Clocks Configuration */
  RCC_Configuration();

  /* FSMC for SRAM and SRAM pins configuration */
  FSMC_SRAM_Init();

  /* Write to FSMC -----------------------------------------------------------*/
  /* DMA2 channel5 configuration */
  DMA_DeInit(DMA2_Channel5);
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)SRC_Const_Buffer;
  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Bank1_SRAM3_ADDR;    
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
  DMA_InitStructure.DMA_BufferSize = 32;
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;
  DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;
  DMA_Init(DMA2_Channel5, &DMA_InitStructure);

  /* Enable DMA2 channel5 */
  DMA_Cmd(DMA2_Channel5, ENABLE);

  /* Check if DMA2 channel5 transfer is finished */
  while(!DMA_GetFlagStatus(DMA2_FLAG_TC5));

  /* Clear DMA2 channel5 transfer complete flag bit */
  DMA_ClearFlag(DMA2_FLAG_TC5);

  /* Read from FSMC ----------------------------------------------------------*/
  /* Destination buffer initialization */ 
  for(Idx=0; Idx<128; Idx++) DST_Buffer[Idx]=0;

  /* DMA1 channel3 configuration */
  DMA_DeInit(DMA1_Channel3);
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)Bank1_SRAM3_ADDR;  
  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)DST_Buffer;
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
  DMA_InitStructure.DMA_BufferSize = 128;
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable;
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;
  DMA_InitStructure.DMA_M2M = DMA_M2M_Enable;
  DMA_Init(DMA1_Channel3, &DMA_InitStructure);

  /* Enable DMA1 channel3 */
  DMA_Cmd(DMA1_Channel3, ENABLE);

  /* Check if DMA1 channel3 transfer is finished */
  while(!DMA_GetFlagStatus(DMA1_FLAG_TC3));

  /* Clear DMA1 channel3 transfer complete flag bit */
  DMA_ClearFlag(DMA1_FLAG_TC3);

  /* Check if the transmitted and received data are equal */
  TransferStatus = Buffercmp(SRC_Const_Buffer, (uint32_t*)DST_Buffer, BufferSize);
  /* TransferStatus = PASSED, if the transmitted and received data 
     are the same */
  /* TransferStatus = FAILED, if the transmitted and received data 
     are different */

  while (1)
  {
  }
}
開發者ID:phungyen,項目名稱:stm32f10x_stdperiph_lib,代碼行數:77,代碼來源:main.c

示例15: SD_demo

/**
  * @brief  SD Demo
  * @param  None
  * @retval None
  */
void SD_demo (void)
{ 
  uint8_t SD_state = MSD_OK;
  __IO uint8_t prev_status = 0; 

  SD_SetHint();

  SD_state = BSP_SD_Init();

   /* Check if the SD card is plugged in the slot */
  if(BSP_SD_IsDetected() == SD_PRESENT)
  {
    BSP_LCD_SetTextColor(LCD_COLOR_GREEN);
    BSP_LCD_DisplayStringAt(20, BSP_LCD_GetYSize()-30, (uint8_t *)"SD Connected    ", LEFT_MODE);
  }
  else 
  {
    BSP_LCD_SetTextColor(LCD_COLOR_RED);
    BSP_LCD_DisplayStringAt(20, BSP_LCD_GetYSize()-30, (uint8_t *)"SD Not Connected", LEFT_MODE);
  }
  BSP_LCD_SetTextColor(LCD_COLOR_BLACK);
  
  if(SD_state != MSD_OK)
  {
    BSP_LCD_DisplayStringAt(20, 100, (uint8_t *)"SD INITIALIZATION : FAIL.", LEFT_MODE);
    BSP_LCD_DisplayStringAt(20, 115, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
  }
  else
  {
    BSP_LCD_DisplayStringAt(20, 100, (uint8_t *)"SD INITIALIZATION : OK.", LEFT_MODE); 
    
    BSP_SD_GetCardInfo(&CardInfo);

  if(SD_state != MSD_OK)
    {
      BSP_LCD_DisplayStringAt(20, 115, (uint8_t *)"SD GET CARD INFO : FAIL.", LEFT_MODE);
      BSP_LCD_DisplayStringAt(20, 130, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
    }
    else
    {
      BSP_LCD_DisplayStringAt(20, 115, (uint8_t *)"SD GET CARD INFO : OK.", LEFT_MODE);

      SD_state = BSP_SD_Erase(BLOCK_START_ADDR, (BLOCKSIZE * NUM_OF_BLOCKS));
    
      /* Verify that SD card is ready to use after the Erase */
      SD_state |= BSP_SD_GetStatus();

      if(SD_state != MSD_OK)
      {
        BSP_LCD_DisplayStringAt(20, 130, (uint8_t *)"SD ERASE : FAILED.", LEFT_MODE);
        BSP_LCD_DisplayStringAt(20, 145, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
      }
      else
      {
        BSP_LCD_DisplayStringAt(20, 130, (uint8_t *)"SD ERASE : OK.", LEFT_MODE);
      
        /* Fill the buffer to write */
        Fill_Buffer(aTxBuffer, BUFFER_WORDS_SIZE, 0x22FF);
        SD_state = BSP_SD_WriteBlocks((uint32_t *)aTxBuffer, BLOCK_START_ADDR, BLOCKSIZE, NUM_OF_BLOCKS);
      
        if(SD_state != MSD_OK)
        {
          BSP_LCD_DisplayStringAt(20, 145, (uint8_t *)"SD WRITE : FAILED.", LEFT_MODE);
          BSP_LCD_DisplayStringAt(20, 160, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
        }
        else
        {
          BSP_LCD_DisplayStringAt(20, 145, (uint8_t *)"SD WRITE : OK.", LEFT_MODE);
          SD_state = BSP_SD_ReadBlocks((uint32_t *)aRxBuffer, BLOCK_START_ADDR, BLOCKSIZE, NUM_OF_BLOCKS);
          if(SD_state != MSD_OK)
          {
            BSP_LCD_DisplayStringAt(20, 160, (uint8_t *)"SD READ : FAILED.", LEFT_MODE);
            BSP_LCD_DisplayStringAt(20, 175, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
          }
          else
          {
            BSP_LCD_DisplayStringAt(20, 160, (uint8_t *)"SD READ : OK.", LEFT_MODE);
            if(Buffercmp(aTxBuffer, aRxBuffer, BUFFER_WORDS_SIZE) > 0)
            {
              BSP_LCD_DisplayStringAt(20, 175, (uint8_t *)"SD COMPARE : FAILED.", LEFT_MODE);
              BSP_LCD_DisplayStringAt(20, 190, (uint8_t *)"SD Test Aborted.", LEFT_MODE);
            }
            else
            {
              BSP_LCD_DisplayStringAt(20, 175, (uint8_t *)"SD TEST : OK.", LEFT_MODE);
            }
          }
        }
      }
    }
  }
  
  while (1)
  {
    /* Check if the SD card is plugged in the slot */
//.........這裏部分代碼省略.........
開發者ID:acrepina,項目名稱:STM32F7_serverWEB,代碼行數:101,代碼來源:sd.c


注:本文中的Buffercmp函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。