本文整理匯總了C++中BN_value_one函數的典型用法代碼示例。如果您正苦於以下問題:C++ BN_value_one函數的具體用法?C++ BN_value_one怎麽用?C++ BN_value_one使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了BN_value_one函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: ec_GF2m_simple_point_set_affine_coordinates
/*
* Set the coordinates of an EC_POINT using affine coordinates. Note that
* the simple implementation only uses affine coordinates.
*/
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y, BN_CTX *ctx)
{
int ret = 0;
if (x == NULL || y == NULL) {
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (!BN_copy(&point->X, x))
goto err;
BN_set_negative(&point->X, 0);
if (!BN_copy(&point->Y, y))
goto err;
BN_set_negative(&point->Y, 0);
if (!BN_copy(&point->Z, BN_value_one()))
goto err;
BN_set_negative(&point->Z, 0);
point->Z_is_one = 1;
ret = 1;
err:
return ret;
}
示例2: ec_GF2m_simple_point_get_affine_coordinates
/* Gets the affine coordinates of an EC_POINT.
* Note that the simple implementation only uses affine coordinates.
*/
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
int ret = 0;
if (EC_POINT_is_at_infinity(group, point))
{
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
return 0;
}
if (BN_cmp(&point->Z, BN_value_one()))
{
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (x != NULL)
{
if (!BN_copy(x, &point->X)) goto err;
BN_set_negative(x, 0);
}
if (y != NULL)
{
if (!BN_copy(y, &point->Y)) goto err;
BN_set_negative(y, 0);
}
ret = 1;
err:
return ret;
}
示例3: test_bad_key
static int test_bad_key(void) {
RSA *key = RSA_new();
BIGNUM e;
BN_init(&e);
BN_set_word(&e, RSA_F4);
if (!RSA_generate_key_ex(key, 512, &e, NULL)) {
fprintf(stderr, "RSA_generate_key_ex failed.\n");
ERR_print_errors_fp(stderr);
return 0;
}
if (!BN_add(key->p, key->p, BN_value_one())) {
fprintf(stderr, "BN error.\n");
ERR_print_errors_fp(stderr);
return 0;
}
if (RSA_check_key(key)) {
fprintf(stderr, "RSA_check_key passed with invalid key!\n");
return 0;
}
ERR_clear_error();
BN_free(&e);
RSA_free(key);
return 1;
}
示例4: one
/* The secret integers s0 and s1 must be in the range 0 < s < n for
some n, and must be relatively prime to that n. We know a priori
that n is of the form 2**k * p for some small integer k and prime
p. Therefore, it suffices to choose a random integer in the range
[0, n/2), multiply by two and add one (enforcing oddness), and then
reject values which are divisible by p. */
static BIGNUM *
random_s(const BIGNUM *n, const BIGNUM *p, BN_CTX *c)
{
BIGNUM h, m, *r;
BN_init(&h);
BN_init(&m);
FAILZ(r = BN_new());
FAILZ(BN_copy(&h, n));
FAILZ(BN_rshift1(&h, &h));
do {
FAILZ(BN_rand_range(r, &h));
FAILZ(BN_lshift1(r, r));
FAILZ(BN_add(r, r, BN_value_one()));
FAILZ(BN_nnmod(&m, r, p, c));
} while (BN_is_zero(&m));
BN_clear(&h);
BN_clear(&m);
return r;
fail:
BN_clear(&h);
BN_clear(&m);
if (r) BN_clear_free(r);
return 0;
}
示例5: ec_GFp_mont_group_set_curve
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BN_MONT_CTX *mont = NULL;
BIGNUM *one = NULL;
int ret = 0;
if (group->field_data1 != NULL) {
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
}
if (group->field_data2 != NULL) {
BN_free(group->field_data2);
group->field_data2 = NULL;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
mont = BN_MONT_CTX_new();
if (mont == NULL)
goto err;
if (!BN_MONT_CTX_set(mont, p, ctx)) {
ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB);
goto err;
}
one = BN_new();
if (one == NULL)
goto err;
if (!BN_to_montgomery(one, BN_value_one(), mont, ctx))
goto err;
group->field_data1 = mont;
mont = NULL;
group->field_data2 = one;
one = NULL;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
if (!ret) {
BN_MONT_CTX_free(group->field_data1);
group->field_data1 = NULL;
BN_free(group->field_data2);
group->field_data2 = NULL;
}
err:
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (mont != NULL)
BN_MONT_CTX_free(mont);
if (one != NULL)
BN_free(one);
return ret;
}
示例6: dh_pub_is_valid
int
dh_pub_is_valid(const DH *dh, const BIGNUM *dh_pub)
{
int i;
int n = BN_num_bits(dh_pub);
int bits_set = 0;
BIGNUM *tmp;
const BIGNUM *p;
if (BN_is_negative(dh_pub)) {
logit("invalid public DH value: negative");
return 0;
}
if (BN_cmp(dh_pub, BN_value_one()) != 1) { /* pub_exp <= 1 */
logit("invalid public DH value: <= 1");
return 0;
}
if ((tmp = BN_new()) == NULL) {
error("%s: BN_new failed", __func__);
return 0;
}
DH_get0_pqg(dh, &p, NULL, NULL);
if (!BN_sub(tmp, p, BN_value_one()) ||
BN_cmp(dh_pub, tmp) != -1) { /* pub_exp > p-2 */
BN_clear_free(tmp);
logit("invalid public DH value: >= p-1");
return 0;
}
BN_clear_free(tmp);
for (i = 0; i <= n; i++)
if (BN_is_bit_set(dh_pub, i))
bits_set++;
debug2("bits set: %d/%d", bits_set, BN_num_bits(p));
/*
* if g==2 and bits_set==1 then computing log_g(dh_pub) is trivial
*/
if (bits_set < 4) {
logit("invalid public DH value (%d/%d)",
bits_set, BN_num_bits(p));
return 0;
}
return 1;
}
示例7: ASN1_INTEGER_to_BN
a1int &a1int::operator ++ (void)
{
BIGNUM *bn = ASN1_INTEGER_to_BN(in, NULL);
BN_add(bn, bn, BN_value_one());
BN_to_ASN1_INTEGER(bn, in);
BN_free(bn);
return *this;
}
示例8: test_lehmer_thm
void test_lehmer_thm(void)
{
BIGNUM
*v = BN_new(),
*v2 = BN_new(),
*h = BN_new(),
*n = BN_new(),
*p = BN_new(),
*q = BN_new(),
*g = BN_new();
BN_CTX *ctx = BN_CTX_new();
BN_dec2bn(&v, "2");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505599");
BN_dec2bn(&q,
"220481921324130321200060036818685031159071785249502660004347524"
"831733577485433929892260897846567483448177204481081755191897197"
"38283711758138566145322943999");
BN_mul(n, p, q, ctx);
/* p + 1 */
BN_dec2bn(&h,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505600");
lucas(v, h, n, ctx);
BN_sub(v2, v, BN_value_two());
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
/* another test */
BN_dec2bn(&v, "3");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"62963937435544948718405055999");
BN_generate_prime(q, 512, 1, NULL, NULL, NULL, NULL);
BN_mul(n, p, q, ctx);
BN_sub(h, p, BN_value_one());
BN_mul(h, h, BN_value_two(), ctx);
lucas(v, h, n, ctx);
BN_mod_sub(v2, v, BN_value_two(), n, ctx);
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
assert(BN_cmp(g, n));
BN_free(q);
BN_free(p);
BN_free(v);
BN_free(v2);
BN_free(h);
BN_CTX_free(ctx);
}
示例9: old_dsa_priv_decode
static int
old_dsa_priv_decode(EVP_PKEY *pkey, const unsigned char **pder, int derlen)
{
DSA *dsa;
BN_CTX *ctx = NULL;
BIGNUM *j, *p1, *newp1;
if (!(dsa = d2i_DSAPrivateKey(NULL, pder, derlen))) {
DSAerror(ERR_R_DSA_LIB);
return 0;
}
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
/*
* Check that p and q are consistent with each other.
*/
j = BN_CTX_get(ctx);
p1 = BN_CTX_get(ctx);
newp1 = BN_CTX_get(ctx);
if (j == NULL || p1 == NULL || newp1 == NULL)
goto err;
/* p1 = p - 1 */
if (BN_sub(p1, dsa->p, BN_value_one()) == 0)
goto err;
/* j = (p - 1) / q */
if (BN_div_ct(j, NULL, p1, dsa->q, ctx) == 0)
goto err;
/* q * j should == p - 1 */
if (BN_mul(newp1, dsa->q, j, ctx) == 0)
goto err;
if (BN_cmp(newp1, p1) != 0) {
DSAerror(DSA_R_BAD_Q_VALUE);
goto err;
}
/*
* Check that q is not a composite number.
*/
if (BN_is_prime_ex(dsa->q, BN_prime_checks, ctx, NULL) <= 0) {
DSAerror(DSA_R_BAD_Q_VALUE);
goto err;
}
BN_CTX_free(ctx);
EVP_PKEY_assign_DSA(pkey, dsa);
return 1;
err:
BN_CTX_free(ctx);
DSA_free(dsa);
return 0;
}
示例10: ec_GFp_simple_point_set_affine_coordinates
int
ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
{
if (x == NULL || y == NULL) {
/* unlike for projective coordinates, we do not tolerate this */
ECerror(ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx);
}
示例11: rsa_generate_additional_parameters
/* calculate p-1 and q-1 */
void
rsa_generate_additional_parameters(RSA *rsa)
{
BIGNUM *aux;
BN_CTX *ctx;
if ((aux = BN_new()) == NULL)
fatal("rsa_generate_additional_parameters: BN_new failed");
if ((ctx = BN_CTX_new()) == NULL)
fatal("rsa_generate_additional_parameters: BN_CTX_new failed");
if ((BN_sub(aux, rsa->q, BN_value_one()) == 0) ||
(BN_mod(rsa->dmq1, rsa->d, aux, ctx) == 0) ||
(BN_sub(aux, rsa->p, BN_value_one()) == 0) ||
(BN_mod(rsa->dmp1, rsa->d, aux, ctx) == 0))
fatal("rsa_generate_additional_parameters: BN_sub/mod failed");
BN_clear_free(aux);
BN_CTX_free(ctx);
}
示例12: BN_is_prime_fasttest_ex
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb) {
if (BN_cmp(a, BN_value_one()) <= 0) {
return 0;
}
/* first look for small factors */
if (!BN_is_odd(a)) {
/* a is even => a is prime if and only if a == 2 */
return BN_is_word(a, 2);
}
/* Enhanced Miller-Rabin does not work for three. */
if (BN_is_word(a, 3)) {
return 1;
}
if (do_trial_division) {
for (int i = 1; i < NUMPRIMES; i++) {
BN_ULONG mod = BN_mod_word(a, primes[i]);
if (mod == (BN_ULONG)-1) {
return -1;
}
if (mod == 0) {
return BN_is_word(a, primes[i]);
}
}
if (!BN_GENCB_call(cb, 1, -1)) {
return -1;
}
}
int ret = -1;
BN_CTX *ctx_allocated = NULL;
if (ctx == NULL) {
ctx_allocated = BN_CTX_new();
if (ctx_allocated == NULL) {
return -1;
}
ctx = ctx_allocated;
}
enum bn_primality_result_t result;
if (!BN_enhanced_miller_rabin_primality_test(&result, a, checks, ctx, cb)) {
goto err;
}
ret = (result == bn_probably_prime);
err:
BN_CTX_free(ctx_allocated);
return ret;
}
示例13: sane_key
uint8_t sane_key(RSA *rsa) { // checks sanity of a RSA key (PKCS#1 v2.1)
uint8_t sane = 1;
BN_CTX *ctx = BN_CTX_new();
BN_CTX_start(ctx);
BIGNUM *p1 = BN_CTX_get(ctx), // p - 1
*q1 = BN_CTX_get(ctx), // q - 1
*chk = BN_CTX_get(ctx), // storage to run checks with
*gcd = BN_CTX_get(ctx), // GCD(p - 1, q - 1)
*lambda = BN_CTX_get(ctx); // LCM(p - 1, q - 1)
BN_sub(p1, rsa->p, BN_value_one()); // p - 1
BN_sub(q1, rsa->q, BN_value_one()); // q - 1
BN_gcd(gcd, p1, q1, ctx); // gcd(p - 1, q - 1)
BN_lcm(lambda, p1, q1, gcd, ctx); // lambda(n)
BN_gcd(chk, lambda, rsa->e, ctx); // check if e is coprime to lambda(n)
if(!BN_is_one(chk))
sane = 0;
// check if public exponent e is less than n - 1
BN_sub(chk, rsa->e, rsa->n); // subtract n from e to avoid checking BN_is_zero
if(!chk->neg)
sane = 0;
BN_mod_inverse(rsa->d, rsa->e, lambda, ctx); // d
BN_mod(rsa->dmp1, rsa->d, p1, ctx); // d mod (p - 1)
BN_mod(rsa->dmq1, rsa->d, q1, ctx); // d mod (q - 1)
BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx); // q ^ -1 mod p
BN_CTX_end(ctx);
BN_CTX_free(ctx);
// this is excessive but you're better off safe than (very) sorry
// in theory this should never be true unless I made a mistake ;)
if((RSA_check_key(rsa) != 1) && sane) {
fprintf(stderr, "WARNING: Key looked okay, but OpenSSL says otherwise!\n");
sane = 0;
}
return sane;
}
示例14: ec_GFp_mont_group_set_curve
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
BN_MONT_CTX *mont = NULL;
BIGNUM *one = NULL;
int ret = 0;
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
BN_free(group->one);
group->one = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
mont = BN_MONT_CTX_new();
if (mont == NULL) {
goto err;
}
if (!BN_MONT_CTX_set(mont, p, ctx)) {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
goto err;
}
one = BN_new();
if (one == NULL || !BN_to_montgomery(one, BN_value_one(), mont, ctx)) {
goto err;
}
group->mont = mont;
mont = NULL;
group->one = one;
one = NULL;
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
if (!ret) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
BN_free(group->one);
group->one = NULL;
}
err:
BN_CTX_free(new_ctx);
BN_MONT_CTX_free(mont);
BN_free(one);
return ret;
}
示例15: rsa_generate_additional_parameters
/* calculate p-1 and q-1 */
static void rsa_generate_additional_parameters(RSA *rsa)
{
BIGNUM *aux = NULL;
BN_CTX *ctx = NULL;
if ((aux = BN_new()) == NULL)
goto error;
if ((ctx = BN_CTX_new()) == NULL)
goto error;
if ((BN_sub(aux, rsa->q, BN_value_one()) == 0) ||
(BN_mod(rsa->dmq1, rsa->d, aux, ctx) == 0) ||
(BN_sub(aux, rsa->p, BN_value_one()) == 0) ||
(BN_mod(rsa->dmp1, rsa->d, aux, ctx) == 0))
goto error;
error:
if (aux)
BN_clear_free(aux);
if (ctx)
BN_CTX_free(ctx);
}