本文整理匯總了C++中BN_mod_sub函數的典型用法代碼示例。如果您正苦於以下問題:C++ BN_mod_sub函數的具體用法?C++ BN_mod_sub怎麽用?C++ BN_mod_sub使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了BN_mod_sub函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: generate_zkp
/*
* Prove knowledge of x
* Note that p->gx has already been calculated
*/
static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
const BIGNUM *zkpg, JPAKE_CTX *ctx)
{
BIGNUM *r = BN_new();
BIGNUM *h = BN_new();
BIGNUM *t = BN_new();
/*
* r in [0,q)
* XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
*/
BN_rand_range(r, ctx->p.q);
/* g^r */
BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
/* h=hash... */
zkp_hash(h, zkpg, p, ctx->p.name);
/* b = r - x*h */
BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
/* cleanup */
BN_free(t);
BN_free(h);
BN_free(r);
}
示例2: BN_CTX_new
BIGNUM *ClientSide::Calc_S(BIGNUM *B,BIGNUM *k,BIGNUM *g,BIGNUM *a,BIGNUM *u,BIGNUM *x,BIGNUM *N)
{
//S = (B - kg^x) ^ (a + ux) (computes session key)
BIGNUM *tmp = NULL, *tmp2 = NULL, *tmp3 = NULL, *S = NULL;
BN_CTX *bn_ctx;
if (u == NULL || B == NULL || N == NULL || g == NULL || x == NULL
|| a == NULL || (bn_ctx = BN_CTX_new()) == NULL || k == NULL)
return NULL;
if ((tmp = BN_new()) == NULL ||
(tmp2 = BN_new()) == NULL ||
(tmp3 = BN_new()) == NULL || (S = BN_new()) == NULL)
{
BN_CTX_free(bn_ctx);
BN_clear_free(tmp);
BN_clear_free(tmp2);
BN_clear_free(tmp3);
BN_free(S);
return NULL;
}
if(BN_mod_exp(tmp, g, x, N, bn_ctx))
if(BN_mod_mul(tmp2, tmp, k, N, bn_ctx))
if(BN_mod_sub(tmp, B, tmp2, N, bn_ctx))
if(BN_mod_mul(tmp3, u, x, N, bn_ctx))
if(BN_mod_add(tmp2, a, tmp3, N, bn_ctx))
if(BN_mod_exp(S, tmp, tmp2, N, bn_ctx))
;
BN_CTX_free(bn_ctx);
BN_clear_free(tmp);
BN_clear_free(tmp2);
BN_clear_free(tmp3);
return S;
}
示例3: Omega_sign_online
int Omega_sign_online(void *inner, char *msg)
{
assert(inner!=NULL);
OmegaInner *self = (OmegaInner*)inner;
int ret;
/* compute d1 = h1 xor m */
int i;
for (i=0; i<self->bytelen_rec; i++)
self->d1[i] = self->h1[i]^msg[i];
/* Convert d1 to e1 */
BIGNUM *rbn = BN_bin2bn(self->d1, self->bytelen_q, self->e1);
assert(rbn!=NULL);
/* Compute z=re0w - e1*w */
ret = BN_mod_mul(self->e1w, self->e1, self->w, self->q, self->bnctx);
assert(ret==1);
ret = BN_mod_sub(self->z, self->re0w, self->e1w, self->q, self->bnctx);
assert(ret==1);
/*Convert z to z_bytes */
ret = BN2LenBin(self->z, self->z_bytes, self->bytelen_q);
assert(ret==0);
return 0;
}
示例4: test_lehmer_thm
void test_lehmer_thm(void)
{
BIGNUM
*v = BN_new(),
*v2 = BN_new(),
*h = BN_new(),
*n = BN_new(),
*p = BN_new(),
*q = BN_new(),
*g = BN_new();
BN_CTX *ctx = BN_CTX_new();
BN_dec2bn(&v, "2");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505599");
BN_dec2bn(&q,
"220481921324130321200060036818685031159071785249502660004347524"
"831733577485433929892260897846567483448177204481081755191897197"
"38283711758138566145322943999");
BN_mul(n, p, q, ctx);
/* p + 1 */
BN_dec2bn(&h,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505600");
lucas(v, h, n, ctx);
BN_sub(v2, v, BN_value_two());
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
/* another test */
BN_dec2bn(&v, "3");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"62963937435544948718405055999");
BN_generate_prime(q, 512, 1, NULL, NULL, NULL, NULL);
BN_mul(n, p, q, ctx);
BN_sub(h, p, BN_value_one());
BN_mul(h, h, BN_value_two(), ctx);
lucas(v, h, n, ctx);
BN_mod_sub(v2, v, BN_value_two(), n, ctx);
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
assert(BN_cmp(g, n));
BN_free(q);
BN_free(p);
BN_free(v);
BN_free(v2);
BN_free(h);
BN_CTX_free(ctx);
}
示例5: Omega_sign_offline
int Omega_sign_offline(void *inner)
{
assert(inner!=NULL);
OmegaInner *self = (OmegaInner*)inner;
int ret;
BIGNUM *rbn;
/* Pick r */
ret = BN_rand_range(self->r, self->q);
assert(ret==1);
/* Compute a:=g^r mod p */
ret = BN_mod_exp(self->a, self->g, self->r, self->p, self->bnctx);
assert(ret==1);
/* Convert a into bytes */
int bytelen_a = BN_num_bytes(self->a);
assert(bytelen_a <= self->bytelen_p);
BN2LenBin(self->a, self->a_bytes, self->bytelen_p);
/* Compute h0 = H0(a) = H(a||0x00) */
self->a_bytes[self->bytelen_p] = 0x00;
ret = VHash(self->a_bytes, self->bytelen_p+1,
self->h0, self->bytelen_red);
assert(ret==0);
/* Compute h1 = H1(a) = H(a||0x01) */
self->a_bytes[self->bytelen_p] = 0x01;
ret = VHash(self->a_bytes, self->bytelen_p+1,
self->h1, self->bytelen_rec);
assert(ret==0);
/* Convert h0(bytes) to e0*/
rbn = BN_bin2bn(self->h0, self->bytelen_q, self->e0);
assert(rbn!=NULL);
/* Compute re0w = r-e0*w */
ret = BN_mod_mul(self->e0w, self->e0, self->w, self->q, self->bnctx);
assert(ret==1);
ret = BN_mod_sub(self->re0w, self->r, self->e0w, self->q, self->bnctx);
assert(ret==1);
return 0;
}
示例6: AO_sign_online
int AO_sign_online(void *inner, char *msg)
{
assert(inner!=NULL);
AOInner *self = (AOInner*)inner;
int ret;
/* h1 := H1(a_bytes||msg) */
memcpy(&self->am_bytes[self->bytelen_p], msg, self->bytelen_rec);
VHash(self->am_bytes, self->bytelen_p+self->bytelen_rec, self->n, self->bytelen_red);
/* h2 := H2(a_bytes||h1) xor msg*/
memcpy(&self->am_bytes[self->bytelen_p], self->n, self->bytelen_red);
VHash(self->am_bytes, self->bytelen_p+self->bytelen_red, &self->n[self->bytelen_red], self->bytelen_rec);
{
int i;
for (i=0; i<self->bytelen_rec; i++)
self->n[self->bytelen_red+i]^=msg[i];
}
/* n := h1||h2
* Already done. */
/* e_bytes := H(n) */
ret = VHash(self->n, self->bytelen_rec+self->bytelen_red, self->e_bytes, self->bytelen_q);
assert(ret==0);
/* e := int(e_bytes) */
BN_bin2bn(self->e_bytes, self->bytelen_q, self->e);
/* Compute z = r-e*w */
ret = BN_mod_mul(self->ew, self->e, self->w, self->q, self->bnctx);
assert(ret==1);
ret = BN_mod_sub(self->z, self->r, self->ew, self->q, self->bnctx);
assert(ret==1);
/*Convert z to z_bytes */
ret = BN2LenBin(self->z, self->z_bytes, self->bytelen_q);
assert(ret==0);
return 0;
}
示例7: BN_CTX_new
BIGNUM *SRP_Calc_client_key(BIGNUM *N, BIGNUM *B, BIGNUM *g, BIGNUM *x,
BIGNUM *a, BIGNUM *u)
{
BIGNUM *tmp = NULL, *tmp2 = NULL, *tmp3 = NULL, *k = NULL, *K = NULL;
BN_CTX *bn_ctx;
if (u == NULL || B == NULL || N == NULL || g == NULL || x == NULL
|| a == NULL || (bn_ctx = BN_CTX_new()) == NULL)
return NULL;
if ((tmp = BN_new()) == NULL ||
(tmp2 = BN_new()) == NULL ||
(tmp3 = BN_new()) == NULL ||
(K = BN_new()) == NULL)
goto err;
if (!BN_mod_exp(tmp, g, x, N, bn_ctx))
goto err;
if ((k = srp_Calc_k(N, g)) == NULL)
goto err;
if (!BN_mod_mul(tmp2, tmp, k, N, bn_ctx))
goto err;
if (!BN_mod_sub(tmp, B, tmp2, N, bn_ctx))
goto err;
if (!BN_mod_mul(tmp3, u, x, N, bn_ctx))
goto err;
if (!BN_mod_add(tmp2, a, tmp3, N, bn_ctx))
goto err;
if (!BN_mod_exp(K, tmp, tmp2, N, bn_ctx))
goto err;
err:
BN_CTX_free(bn_ctx);
BN_clear_free(tmp);
BN_clear_free(tmp2);
BN_clear_free(tmp3);
BN_free(k);
return K;
}
示例8: CreateZKP
// Prove knowledge of x
// Note that we don't send g^x because, as it happens, we've always
// sent it elsewhere. Also note that because of that, we could avoid
// calculating it here, but we don't, for clarity...
static void CreateZKP(JPakeZKP * zkp, const BIGNUM *x, const JPakeUser * us,
const BIGNUM *zkpg, const JPakeParameters * params,
int n, const char *suffix)
{
BIGNUM *r = BN_new();
BIGNUM *gx = BN_new();
BIGNUM *h = BN_new();
BIGNUM *t = BN_new();
// r in [0,q)
// XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
BN_rand_range(r, params->q);
// g^r
zkp->gr = BN_new();
BN_mod_exp(zkp->gr, zkpg, r, params->p, params->ctx);
// g^x
BN_mod_exp(gx, zkpg, x, params->p, params->ctx);
// h=hash...
zkpHash(h, zkp, gx, &us->p, params);
// b = r - x*h
BN_mod_mul(t, x, h, params->q, params->ctx);
zkp->b = BN_new();
BN_mod_sub(zkp->b, r, t, params->q, params->ctx);
// show
printf(" ZKP(x%d%s)\n", n, suffix);
showbn(" zkpg", zkpg);
showbn(" g^x", gx);
showbn(" g^r", zkp->gr);
showbn(" b", zkp->b);
// cleanup
BN_free(t);
BN_free(h);
BN_free(gx);
BN_free(r);
}
示例9: SM9err
//.........這裏部分代碼省略.........
/* md = mpk->hashfcn */
if (!(md = EVP_get_digestbyobj(mpk->hashfcn))) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, SM9_R_INVALID_MD);
goto end;
}
do {
/* rand r in [1, mpk->order - 1] */
do {
if (!BN_rand_range(r, mpk->order)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
} while (BN_is_zero(r));
/* get w = mpk->g = e(mpk->pointP1, mpk->pointPpub) */
if (!BN_bn2gfp2(mpk->g1, w, mpk->p, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
/* w = w^r = (mpk->g)^r in F_p^2 */
if (!BN_GFP2_exp(w, w, r, mpk->p, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
/* prepare w buf and canonical(w, order=0) */
if (!BN_GFP2_canonical(w, NULL, &size, 0, mpk->p, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
if (!(buf = OPENSSL_malloc(size))) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_MALLOC_FAILURE);
goto end;
}
if (!BN_GFP2_canonical(w, buf, &size, 0, mpk->p, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
/* ret->h = H2(H(m)||w) in range defined by mpk->order */
if (!SM9_hash2(md, &ret->h, dgst, dgstlen, buf, size, mpk->order, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_SM9_LIB);
goto end;
}
/* l = (r - ret->h) (mod mpk->order) */
if (!BN_mod_sub(l, r, ret->h, mpk->order, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_BN_LIB);
goto end;
}
/* if l == 0, re-generate r */
} while (BN_is_zero(l));
/* point = sk->prointPoint */
if (!EC_POINT_oct2point(group, point,
sk->privatePoint->data, sk->privatePoint->length, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
goto end;
}
/* sig->pointS = sk->privatePoint * l */
if (!EC_POINT_mul(group, point, NULL, point, l, bn_ctx)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
goto end;
}
if (!(size = EC_POINT_point2oct(group, point, point_form,
NULL, 0, bn_ctx))) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
goto end;
}
if (!ASN1_OCTET_STRING_set(ret->pointS, NULL, size)) {
SM9err(SM9_F_SM9_DO_SIGN_TYPE1CURVE, ERR_R_EC_LIB);
goto end;
}
if (!EC_POINT_point2oct(group, point, point_form,
ret->pointS->data, ret->pointS->length, bn_ctx)) {
goto end;
}
e = 0;
end:
if (e && ret) {
SM9Signature_free(ret);
ret = NULL;
}
if (bn_ctx) {
BN_CTX_end(bn_ctx);
}
BN_CTX_free(bn_ctx);
EC_GROUP_free(group);
EC_POINT_free(point);
BN_GFP2_free(w);
OPENSSL_free(buf);
return NULL;
}
示例10: BN_X931_derive_prime_ex
int
BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp,
const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
BIGNUM *t, *p1p2, *pm1;
/* Only even e supported */
if (!BN_is_odd(e))
return 0;
BN_CTX_start(ctx);
if (p1 == NULL) {
if ((p1 = BN_CTX_get(ctx)) == NULL)
goto err;
}
if (p2 == NULL) {
if ((p2 = BN_CTX_get(ctx)) == NULL)
goto err;
}
if ((t = BN_CTX_get(ctx)) == NULL)
goto err;
if ((p1p2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((pm1 = BN_CTX_get(ctx)) == NULL)
goto err;
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
goto err;
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
goto err;
if (!BN_mul(p1p2, p1, p2, ctx))
goto err;
/* First set p to value of Rp */
if (!BN_mod_inverse(p, p2, p1, ctx))
goto err;
if (!BN_mul(p, p, p2, ctx))
goto err;
if (!BN_mod_inverse(t, p1, p2, ctx))
goto err;
if (!BN_mul(t, t, p1, ctx))
goto err;
if (!BN_sub(p, p, t))
goto err;
if (p->neg && !BN_add(p, p, p1p2))
goto err;
/* p now equals Rp */
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
goto err;
if (!BN_add(p, p, Xp))
goto err;
/* p now equals Yp0 */
for (;;) {
int i = 1;
BN_GENCB_call(cb, 0, i++);
if (!BN_copy(pm1, p))
goto err;
if (!BN_sub_word(pm1, 1))
goto err;
if (!BN_gcd(t, pm1, e, ctx))
goto err;
if (BN_is_one(t)
/* X9.31 specifies 8 MR and 1 Lucas test or any prime test
* offering similar or better guarantees 50 MR is considerably
* better.
*/
&& BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
break;
if (!BN_add(p, p, p1p2))
goto err;
}
BN_GENCB_call(cb, 3, 0);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
示例11: ecdsa_sign_setup
//.........這裏部分代碼省略.........
EC_R_RANDOM_NUMBER_GENERATION_FAILED);
goto err;
}
} else {
if (!BN_rand_range(k, order)) {
ECerr(EC_F_ECDSA_SIGN_SETUP,
EC_R_RANDOM_NUMBER_GENERATION_FAILED);
goto err;
}
}
while (BN_is_zero(k));
/*
* We do not want timing information to leak the length of k, so we
* compute G*k using an equivalent scalar of fixed bit-length.
*/
if (!BN_add(k, k, order))
goto err;
if (BN_num_bits(k) <= BN_num_bits(order))
if (!BN_add(k, k, order))
goto err;
/* compute r the x-coordinate of generator * k */
if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) ==
NID_X9_62_prime_field) {
if (!EC_POINT_get_affine_coordinates_GFp
(group, tmp_point, X, NULL, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
}
#ifndef OPENSSL_NO_EC2M
else { /* NID_X9_62_characteristic_two_field */
if (!EC_POINT_get_affine_coordinates_GF2m(group,
tmp_point, X, NULL,
ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
}
#endif
if (!BN_nnmod(r, X, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
while (BN_is_zero(r));
/* compute the inverse of k */
if (EC_GROUP_get_mont_data(group) != NULL) {
/*
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(X, 2)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_sub(X, order, X, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime
(k, k, X, order, ctx, EC_GROUP_get_mont_data(group))) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
} else {
if (!BN_mod_inverse(k, k, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
/* clear old values if necessary */
BN_clear_free(*rp);
BN_clear_free(*kinvp);
/* save the pre-computed values */
*rp = r;
*kinvp = k;
ret = 1;
err:
if (!ret) {
BN_clear_free(k);
BN_clear_free(r);
}
if (ctx != ctx_in)
BN_CTX_free(ctx);
BN_free(order);
EC_POINT_free(tmp_point);
BN_clear_free(X);
return (ret);
}
示例12: schnorr_sign
/*
* Generate Schnorr signature to prove knowledge of private value 'x' used
* in public exponent g^x, under group defined by 'grp_p', 'grp_q' and 'grp_g'
* using the hash function "hash_alg".
* 'idlen' bytes from 'id' will be included in the signature hash as an anti-
* replay salt.
*
* On success, 0 is returned. The signature values are returned as *e_p
* (g^v mod p) and *r_p (v - xh mod q). The caller must free these values.
* On failure, -1 is returned.
*/
int
schnorr_sign(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g,
int hash_alg, const BIGNUM *x, const BIGNUM *g_x,
const u_char *id, u_int idlen, BIGNUM **r_p, BIGNUM **e_p)
{
int success = -1;
BIGNUM *h, *tmp, *v, *g_v, *r;
BN_CTX *bn_ctx;
SCHNORR_DEBUG_BN((x, "%s: x = ", __func__));
SCHNORR_DEBUG_BN((g_x, "%s: g_x = ", __func__));
/* Avoid degenerate cases: g^0 yields a spoofable signature */
if (BN_cmp(g_x, BN_value_one()) <= 0) {
error("%s: g_x < 1", __func__);
return -1;
}
if (BN_cmp(g_x, grp_p) >= 0) {
error("%s: g_x > g", __func__);
return -1;
}
h = g_v = r = tmp = v = NULL;
if ((bn_ctx = BN_CTX_new()) == NULL) {
error("%s: BN_CTX_new", __func__);
goto out;
}
if ((g_v = BN_new()) == NULL ||
(r = BN_new()) == NULL ||
(tmp = BN_new()) == NULL) {
error("%s: BN_new", __func__);
goto out;
}
/*
* v must be a random element of Zq, so 1 <= v < q
* we also exclude v = 1, since g^1 looks dangerous
*/
if ((v = bn_rand_range_gt_one(grp_p)) == NULL) {
error("%s: bn_rand_range2", __func__);
goto out;
}
SCHNORR_DEBUG_BN((v, "%s: v = ", __func__));
/* g_v = g^v mod p */
if (BN_mod_exp(g_v, grp_g, v, grp_p, bn_ctx) == -1) {
error("%s: BN_mod_exp (g^v mod p)", __func__);
goto out;
}
SCHNORR_DEBUG_BN((g_v, "%s: g_v = ", __func__));
/* h = H(g || g^v || g^x || id) */
if ((h = schnorr_hash(grp_p, grp_q, grp_g, hash_alg, g_v, g_x,
id, idlen)) == NULL) {
error("%s: schnorr_hash failed", __func__);
goto out;
}
/* r = v - xh mod q */
if (BN_mod_mul(tmp, x, h, grp_q, bn_ctx) == -1) {
error("%s: BN_mod_mul (tmp = xv mod q)", __func__);
goto out;
}
if (BN_mod_sub(r, v, tmp, grp_q, bn_ctx) == -1) {
error("%s: BN_mod_mul (r = v - tmp)", __func__);
goto out;
}
SCHNORR_DEBUG_BN((g_v, "%s: e = ", __func__));
SCHNORR_DEBUG_BN((r, "%s: r = ", __func__));
*e_p = g_v;
*r_p = r;
success = 0;
out:
BN_CTX_free(bn_ctx);
if (h != NULL)
BN_clear_free(h);
if (v != NULL)
BN_clear_free(v);
BN_clear_free(tmp);
return success;
}
示例13: ecdsa_sign_setup
//.........這裏部分代碼省略.........
* We do not want timing information to leak the length of k, so we
* compute G*k using an equivalent scalar of fixed bit-length.
*
* We unconditionally perform both of these additions to prevent a
* small timing information leakage. We then choose the sum that is
* one bit longer than the order. This guarantees the code
* path used in the constant time implementations elsewhere.
*
* TODO: revisit the BN_copy aiming for a memory access agnostic
* conditional copy.
*/
if (!BN_add(r, k, order)
|| !BN_add(X, r, order)
|| !BN_copy(k, BN_num_bits(r) > order_bits ? r : X))
goto err;
/* compute r the x-coordinate of generator * k */
if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) ==
NID_X9_62_prime_field) {
if (!EC_POINT_get_affine_coordinates_GFp
(group, tmp_point, X, NULL, ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
}
#ifndef OPENSSL_NO_EC2M
else { /* NID_X9_62_characteristic_two_field */
if (!EC_POINT_get_affine_coordinates_GF2m(group,
tmp_point, X, NULL,
ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB);
goto err;
}
}
#endif
if (!BN_nnmod(r, X, order, ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
while (BN_is_zero(r));
/* compute the inverse of k */
if (EC_GROUP_get_mont_data(group) != NULL) {
/*
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(X, 2)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_sub(X, order, X, order, ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime
(k, k, X, order, ctx, EC_GROUP_get_mont_data(group))) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
} else {
if (!BN_mod_inverse(k, k, order, ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
/* clear old values if necessary */
if (*rp != NULL)
BN_clear_free(*rp);
if (*kinvp != NULL)
BN_clear_free(*kinvp);
/* save the pre-computed values */
*rp = r;
*kinvp = k;
ret = 1;
err:
if (!ret) {
if (k != NULL)
BN_clear_free(k);
if (r != NULL)
BN_clear_free(r);
}
if (ctx_in == NULL)
BN_CTX_free(ctx);
if (order != NULL)
BN_free(order);
if (tmp_point != NULL)
EC_POINT_free(tmp_point);
if (X)
BN_clear_free(X);
return (ret);
}
示例14: jpake_key_confirm
/* Shared parts of key derivation and confirmation calculation */
void
jpake_key_confirm(struct modp_group *grp, BIGNUM *s, BIGNUM *step2_val,
BIGNUM *mypriv2, BIGNUM *mypub1, BIGNUM *mypub2,
BIGNUM *theirpub1, BIGNUM *theirpub2,
const u_char *my_id, u_int my_id_len,
const u_char *their_id, u_int their_id_len,
const u_char *sess_id, u_int sess_id_len,
const u_char *theirpriv2_s_proof, u_int theirpriv2_s_proof_len,
BIGNUM **k,
u_char **confirm_hash, u_int *confirm_hash_len)
{
BN_CTX *bn_ctx;
BIGNUM *tmp;
if ((bn_ctx = BN_CTX_new()) == NULL)
fatal("%s: BN_CTX_new", __func__);
if ((tmp = BN_new()) == NULL ||
(*k = BN_new()) == NULL)
fatal("%s: BN_new", __func__);
/* Validate step 2 values */
if (BN_cmp(step2_val, BN_value_one()) <= 0)
fatal("%s: step2_val <= 1", __func__);
if (BN_cmp(step2_val, grp->p) >= 0)
fatal("%s: step2_val >= p", __func__);
/*
* theirpriv2_s_proof is calculated with a different generator:
* tmp = g^(mypriv1+mypriv2+theirpub1) = g^mypub1*g^mypub2*g^theirpub1
* Calculate it here so we can check the signature.
*/
if (BN_mod_mul(tmp, mypub1, mypub2, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = mypub1 * mypub2 mod p)", __func__);
if (BN_mod_mul(tmp, tmp, theirpub1, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = tmp * theirpub1 mod p)", __func__);
JPAKE_DEBUG_BN((tmp, "%s: tmp = ", __func__));
if (schnorr_verify_buf(grp->p, grp->q, tmp, step2_val,
their_id, their_id_len,
theirpriv2_s_proof, theirpriv2_s_proof_len) != 1)
fatal("%s: schnorr_verify theirpriv2_s_proof failed", __func__);
/*
* Derive shared key:
* client: k = (b / g^(x2*x4*s))^x2 = g^((x1+x3)*x2*x4*s)
* server: k = (a / g^(x2*x4*s))^x4 = g^((x1+x3)*x2*x4*s)
*
* Computed as:
* client: k = (g_x4^(q - (x2 * s)) * b)^x2 mod p
* server: k = (g_x2^(q - (x4 * s)) * b)^x4 mod p
*/
if (BN_mul(tmp, mypriv2, s, bn_ctx) != 1)
fatal("%s: BN_mul (tmp = mypriv2 * s)", __func__);
if (BN_mod_sub(tmp, grp->q, tmp, grp->q, bn_ctx) != 1)
fatal("%s: BN_mod_sub (tmp = q - tmp mod q)", __func__);
if (BN_mod_exp(tmp, theirpub2, tmp, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_exp (tmp = theirpub2^tmp) mod p", __func__);
if (BN_mod_mul(tmp, tmp, step2_val, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = tmp * step2_val) mod p", __func__);
if (BN_mod_exp(*k, tmp, mypriv2, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_exp (k = tmp^mypriv2) mod p", __func__);
BN_CTX_free(bn_ctx);
BN_clear_free(tmp);
jpake_confirm_hash(*k, my_id, my_id_len, sess_id, sess_id_len,
confirm_hash, confirm_hash_len);
}
示例15: ProductEvidence_New
ProductEvidence ProductEvidence_New(ProductStatement st,
const BIGNUM *a, const BIGNUM *r_a, const BIGNUM *r_b, const BIGNUM *r_c)
{
ProductEvidence ev = safe_malloc(sizeof(*ev));
const BIGNUM* g = IntegerGroup_GetG(st->group);
const BIGNUM* h = IntegerGroup_GetH(st->group);
const BIGNUM* q = IntegerGroup_GetQ(st->group);
BN_CTX* ctx = IntegerGroup_GetCtx(st->group);
// A = g^a h^{r_a}
// B = g^b h^{r_b}
// C = g^{ab} h^{r_c}
// r_prod = r_c - a*r_b
BIGNUM* r_prod;
CHECK_CALL(r_prod = BN_dup(a));
CHECK_CALL(BN_mod_mul(r_prod, r_prod, r_b, q, ctx));
CHECK_CALL(BN_mod_sub(r_prod, r_c, r_prod, q, ctx));
// == Commitment ==
// x, s1, s2 in [0, q)
BIGNUM *x = IntegerGroup_RandomExponent(st->group);
BIGNUM *s1 = IntegerGroup_RandomExponent(st->group);
BIGNUM *s2 = IntegerGroup_RandomExponent(st->group);
CHECK_CALL(x);
CHECK_CALL(s1);
CHECK_CALL(s2);
// m1 = g^x h^s1
BIGNUM* m1 = IntegerGroup_CascadeExponentiate(st->group, g, x, h, s1);
CHECK_CALL(m1);
// m2 = B^x h^s2
BIGNUM* m2 = IntegerGroup_CascadeExponentiate(st->group, st->commit_b, x, h, s2);
CHECK_CALL(m2);
// == Challenge ==
// c = H(g, h, q, p, A, B, C, m1, m2)
ev->c = Commit(st, m1, m2);
// == Response ==
// z = x + ca mod q
ev->z = BN_dup(ev->c);
CHECK_CALL(ev->z);
CHECK_CALL(BN_mod_mul(ev->z, ev->z, a, q, ctx));
CHECK_CALL(BN_mod_add(ev->z, ev->z, x, q, ctx));
// w1 = s1 + (c r_a) mod q
ev->w1 = BN_dup(r_a);
CHECK_CALL(ev->w1);
CHECK_CALL(BN_mod_mul(ev->w1, ev->w1, ev->c, q, ctx));
CHECK_CALL(BN_mod_add(ev->w1, ev->w1, s1, q, ctx));
// w2 = s2 + (c r_prod) mod q
ev->w2 = BN_dup(r_prod);
CHECK_CALL(ev->w2);
CHECK_CALL(BN_mod_mul(ev->w2, ev->w2, ev->c, q, ctx));
CHECK_CALL(BN_mod_add(ev->w2, ev->w2, s2, q, ctx));
// proof is (c, z, w1, w2)
BN_free(m1);
BN_free(m2);
BN_clear_free(x);
BN_clear_free(s1);
BN_clear_free(s2);
BN_clear_free(r_prod);
return ev;
}