當前位置: 首頁>>代碼示例>>C++>>正文


C++ BN_mod_mul函數代碼示例

本文整理匯總了C++中BN_mod_mul函數的典型用法代碼示例。如果您正苦於以下問題:C++ BN_mod_mul函數的具體用法?C++ BN_mod_mul怎麽用?C++ BN_mod_mul使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了BN_mod_mul函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: blinded_modexp

/**
 * blinded_modexp(r, a, priv):
 * Compute ${r} = ${a}^(2^258 + ${priv}), where ${r} and ${priv} are treated
 * as big-endian integers; and avoid leaking timing data in this process.
 */
static int
blinded_modexp(uint8_t r[CRYPTO_DH_PUBLEN], BIGNUM * a,
    const uint8_t priv[CRYPTO_DH_PRIVLEN])
{
	BIGNUM * two_exp_256_bn;
	BIGNUM * priv_bn;
	uint8_t blinding[CRYPTO_DH_PRIVLEN];
	BIGNUM * blinding_bn;
	BIGNUM * priv_blinded;
	BIGNUM * m_bn;
	BN_CTX * ctx;
	BIGNUM * r1;
	BIGNUM * r2;
	size_t rlen;

	/* Construct 2^256 in BN representation. */
	if ((two_exp_256_bn = BN_bin2bn(two_exp_256, 33, NULL)) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err0;
	}

	/* Construct 2^258 + ${priv} in BN representation. */
	if ((priv_bn = BN_bin2bn(priv, CRYPTO_DH_PRIVLEN, NULL)) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err1;
	}
	if ((!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
	    (!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
	    (!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
	    (!BN_add(priv_bn, priv_bn, two_exp_256_bn))) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err2;
	}

	/* Generate blinding exponent. */
	if (crypto_entropy_read(blinding, CRYPTO_DH_PRIVLEN))
		goto err2;
	if ((blinding_bn = BN_bin2bn(blinding,
	    CRYPTO_DH_PRIVLEN, NULL)) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err2;
	}
	if (!BN_add(blinding_bn, blinding_bn, two_exp_256_bn)) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err3;
	}

	/* Generate blinded exponent. */
	if ((priv_blinded = BN_new()) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err3;
	}
	if (!BN_sub(priv_blinded, priv_bn, blinding_bn)) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err4;
	}

	/* Construct group #14 modulus in BN representation. */
	if ((m_bn = BN_bin2bn(crypto_dh_group14, 256, NULL)) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err4;
	}

	/* Allocate BN context. */
	if ((ctx = BN_CTX_new()) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err5;
	}

	/* Allocate space for storing results of exponentiations. */
	if ((r1 = BN_new()) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err6;
	}
	if ((r2 = BN_new()) == NULL) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err7;
	}

	/* Perform modular exponentiations. */
	if (!BN_mod_exp(r1, a, blinding_bn, m_bn, ctx)) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err8;
	}
	if (!BN_mod_exp(r2, a, priv_blinded, m_bn, ctx)) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err8;
	}

	/* Compute final result and export to big-endian integer format. */
	if (!BN_mod_mul(r1, r1, r2, m_bn, ctx)) {
		warn0("%s", ERR_error_string(ERR_get_error(), NULL));
		goto err8;
	}
	rlen = BN_num_bytes(r1);
//.........這裏部分代碼省略.........
開發者ID:e6,項目名稱:pkg-spiped,代碼行數:101,代碼來源:crypto_dh.c

示例2: OPENSSL_PUT_ERROR

ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest, size_t digest_len,
                            const BIGNUM *in_kinv, const BIGNUM *in_r,
                            const EC_KEY *eckey) {
  int ok = 0;
  BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL;
  const BIGNUM *ckinv;
  BN_CTX *ctx = NULL;
  const EC_GROUP *group;
  ECDSA_SIG *ret;
  const BIGNUM *priv_key;

  if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
    return NULL;
  }

  group = EC_KEY_get0_group(eckey);
  priv_key = EC_KEY_get0_private_key(eckey);

  if (group == NULL || priv_key == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
    return NULL;
  }

  ret = ECDSA_SIG_new();
  if (!ret) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
    return NULL;
  }
  s = ret->s;

  if ((ctx = BN_CTX_new()) == NULL ||
      (tmp = BN_new()) == NULL ||
      (m = BN_new()) == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
    goto err;
  }

  const BIGNUM *order = EC_GROUP_get0_order(group);

  if (!digest_to_bn(m, digest, digest_len, order)) {
    goto err;
  }
  for (;;) {
    if (in_kinv == NULL || in_r == NULL) {
      if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, digest, digest_len)) {
        OPENSSL_PUT_ERROR(ECDSA, ERR_R_ECDSA_LIB);
        goto err;
      }
      ckinv = kinv;
    } else {
      ckinv = in_kinv;
      if (BN_copy(ret->r, in_r) == NULL) {
        OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
        goto err;
      }
    }

    if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
      OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
      goto err;
    }
    if (!BN_mod_add_quick(s, tmp, m, order)) {
      OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
      goto err;
    }
    if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
      OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
      goto err;
    }
    if (BN_is_zero(s)) {
      // if kinv and r have been supplied by the caller
      // don't to generate new kinv and r values
      if (in_kinv != NULL && in_r != NULL) {
        OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NEED_NEW_SETUP_VALUES);
        goto err;
      }
    } else {
      // s != 0 => we have a valid signature
      break;
    }
  }

  ok = 1;

err:
  if (!ok) {
    ECDSA_SIG_free(ret);
    ret = NULL;
  }
  BN_CTX_free(ctx);
  BN_clear_free(m);
  BN_clear_free(tmp);
  BN_clear_free(kinv);
  return ret;
}
開發者ID:dseerapu,項目名稱:workmanager,代碼行數:96,代碼來源:ecdsa.c

示例3: jpake_key_confirm

/* Shared parts of key derivation and confirmation calculation */
void
jpake_key_confirm(struct modp_group *grp, BIGNUM *s, BIGNUM *step2_val,
    BIGNUM *mypriv2, BIGNUM *mypub1, BIGNUM *mypub2,
    BIGNUM *theirpub1, BIGNUM *theirpub2,
    const u_char *my_id, u_int my_id_len,
    const u_char *their_id, u_int their_id_len,
    const u_char *sess_id, u_int sess_id_len,
    const u_char *theirpriv2_s_proof, u_int theirpriv2_s_proof_len,
    BIGNUM **k,
    u_char **confirm_hash, u_int *confirm_hash_len)
{
	BN_CTX *bn_ctx;
	BIGNUM *tmp;

	if ((bn_ctx = BN_CTX_new()) == NULL)
		fatal("%s: BN_CTX_new", __func__);
	if ((tmp = BN_new()) == NULL ||
	    (*k = BN_new()) == NULL)
		fatal("%s: BN_new", __func__);

	/* Validate step 2 values */
	if (BN_cmp(step2_val, BN_value_one()) <= 0)
		fatal("%s: step2_val <= 1", __func__);
	if (BN_cmp(step2_val, grp->p) >= 0)
		fatal("%s: step2_val >= p", __func__);

	/*
	 * theirpriv2_s_proof is calculated with a different generator:
	 * tmp = g^(mypriv1+mypriv2+theirpub1) = g^mypub1*g^mypub2*g^theirpub1
	 * Calculate it here so we can check the signature.
	 */
	if (BN_mod_mul(tmp, mypub1, mypub2, grp->p, bn_ctx) != 1)
		fatal("%s: BN_mod_mul (tmp = mypub1 * mypub2 mod p)", __func__);
	if (BN_mod_mul(tmp, tmp, theirpub1, grp->p, bn_ctx) != 1)
		fatal("%s: BN_mod_mul (tmp = tmp * theirpub1 mod p)", __func__);

	JPAKE_DEBUG_BN((tmp, "%s: tmp = ", __func__));

	if (schnorr_verify_buf(grp->p, grp->q, tmp, step2_val, 
	    their_id, their_id_len,
	    theirpriv2_s_proof, theirpriv2_s_proof_len) != 1)
		fatal("%s: schnorr_verify theirpriv2_s_proof failed", __func__);

	/*
	 * Derive shared key:
	 *     client: k = (b / g^(x2*x4*s))^x2 = g^((x1+x3)*x2*x4*s)
	 *     server: k = (a / g^(x2*x4*s))^x4 = g^((x1+x3)*x2*x4*s)
	 *
	 * Computed as:
	 *     client: k = (g_x4^(q - (x2 * s)) * b)^x2 mod p
	 *     server: k = (g_x2^(q - (x4 * s)) * b)^x4 mod p
	 */
	if (BN_mul(tmp, mypriv2, s, bn_ctx) != 1)
		fatal("%s: BN_mul (tmp = mypriv2 * s)", __func__);
	if (BN_mod_sub(tmp, grp->q, tmp, grp->q, bn_ctx) != 1)
		fatal("%s: BN_mod_sub (tmp = q - tmp mod q)", __func__);
	if (BN_mod_exp(tmp, theirpub2, tmp, grp->p, bn_ctx) != 1)
		fatal("%s: BN_mod_exp (tmp = theirpub2^tmp) mod p", __func__);
	if (BN_mod_mul(tmp, tmp, step2_val, grp->p, bn_ctx) != 1)
		fatal("%s: BN_mod_mul (tmp = tmp * step2_val) mod p", __func__);
	if (BN_mod_exp(*k, tmp, mypriv2, grp->p, bn_ctx) != 1)
		fatal("%s: BN_mod_exp (k = tmp^mypriv2) mod p", __func__);
	
	BN_CTX_free(bn_ctx);
	BN_clear_free(tmp);

	jpake_confirm_hash(*k, my_id, my_id_len, sess_id, sess_id_len,
	    confirm_hash, confirm_hash_len);
}
開發者ID:openssh,項目名稱:libopenssh,代碼行數:70,代碼來源:jpake.c

示例4: ecdsa_do_sign

static ECDSA_SIG *
ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
    const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
	int     ok = 0, i;
	BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL, *order = NULL;
	const BIGNUM *ckinv;
	BN_CTX     *ctx = NULL;
	const EC_GROUP   *group;
	ECDSA_SIG  *ret;
	ECDSA_DATA *ecdsa;
	const BIGNUM *priv_key;

	ecdsa = ecdsa_check(eckey);
	group = EC_KEY_get0_group(eckey);
	priv_key = EC_KEY_get0_private_key(eckey);

	if (group == NULL || priv_key == NULL || ecdsa == NULL) {
		ECDSAerror(ERR_R_PASSED_NULL_PARAMETER);
		return NULL;
	}

	ret = ECDSA_SIG_new();
	if (!ret) {
		ECDSAerror(ERR_R_MALLOC_FAILURE);
		return NULL;
	}
	s = ret->s;

	if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
	    (tmp = BN_new()) == NULL || (m = BN_new()) == NULL) {
		ECDSAerror(ERR_R_MALLOC_FAILURE);
		goto err;
	}

	if (!EC_GROUP_get_order(group, order, ctx)) {
		ECDSAerror(ERR_R_EC_LIB);
		goto err;
	}
	i = BN_num_bits(order);
	/* Need to truncate digest if it is too long: first truncate whole
	 * bytes.
	 */
	if (8 * dgst_len > i)
		dgst_len = (i + 7)/8;
	if (!BN_bin2bn(dgst, dgst_len, m)) {
		ECDSAerror(ERR_R_BN_LIB);
		goto err;
	}
	/* If still too long truncate remaining bits with a shift */
	if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) {
		ECDSAerror(ERR_R_BN_LIB);
		goto err;
	}
	do {
		if (in_kinv == NULL || in_r == NULL) {
			if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r)) {
				ECDSAerror(ERR_R_ECDSA_LIB);
				goto err;
			}
			ckinv = kinv;
		} else {
			ckinv = in_kinv;
			if (BN_copy(ret->r, in_r) == NULL) {
				ECDSAerror(ERR_R_MALLOC_FAILURE);
				goto err;
			}
		}

		if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
			ECDSAerror(ERR_R_BN_LIB);
			goto err;
		}
		if (!BN_mod_add_quick(s, tmp, m, order)) {
			ECDSAerror(ERR_R_BN_LIB);
			goto err;
		}
		if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
			ECDSAerror(ERR_R_BN_LIB);
			goto err;
		}
		if (BN_is_zero(s)) {
			/* if kinv and r have been supplied by the caller
			 * don't to generate new kinv and r values */
			if (in_kinv != NULL && in_r != NULL) {
				ECDSAerror(ECDSA_R_NEED_NEW_SETUP_VALUES);
				goto err;
			}
		} else
			/* s != 0 => we have a valid signature */
			break;
	} while (1);

	ok = 1;

err:
	if (!ok) {
		ECDSA_SIG_free(ret);
		ret = NULL;
	}
//.........這裏部分代碼省略.........
開發者ID:mr-moai-2016,項目名稱:znk_project,代碼行數:101,代碼來源:ecs_ossl.c

示例5: RSA_check_key

int RSA_check_key(RSA *key)
	{
	BIGNUM *i, *j, *k, *l, *m;
	BN_CTX *ctx;
	int r;
	int ret=1;
	
	i = BN_new();
	j = BN_new();
	k = BN_new();
	l = BN_new();
	m = BN_new();
	ctx = BN_CTX_new();
	if (i == NULL || j == NULL || k == NULL || l == NULL ||
		m == NULL || ctx == NULL)
		{
		ret = -1;
		RSAerr(RSA_F_RSA_CHECK_KEY, ERR_R_MALLOC_FAILURE);
		goto err;
		}
	
	/* p prime? */
	r = BN_is_prime(key->p, BN_prime_checks, NULL, NULL, NULL);
	if (r != 1)
		{
		ret = r;
		if (r != 0)
			goto err;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_P_NOT_PRIME);
		}
	
	/* q prime? */
	r = BN_is_prime(key->q, BN_prime_checks, NULL, NULL, NULL);
	if (r != 1)
		{
		ret = r;
		if (r != 0)
			goto err;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_Q_NOT_PRIME);
		}
	
	/* n = p*q? */
	r = BN_mul(i, key->p, key->q, ctx);
	if (!r) { ret = -1; goto err; }
	
	if (BN_cmp(i, key->n) != 0)
		{
		ret = 0;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_N_DOES_NOT_EQUAL_P_Q);
		}
	
	/* d*e = 1  mod lcm(p-1,q-1)? */

	r = BN_sub(i, key->p, BN_value_one());
	if (!r) { ret = -1; goto err; }
	r = BN_sub(j, key->q, BN_value_one());
	if (!r) { ret = -1; goto err; }

	/* now compute k = lcm(i,j) */
	r = BN_mul(l, i, j, ctx);
	if (!r) { ret = -1; goto err; }
	r = BN_gcd(m, i, j, ctx);
	if (!r) { ret = -1; goto err; }
	r = BN_div(k, NULL, l, m, ctx); /* remainder is 0 */
	if (!r) { ret = -1; goto err; }

	r = BN_mod_mul(i, key->d, key->e, k, ctx);
	if (!r) { ret = -1; goto err; }

	if (!BN_is_one(i))
		{
		ret = 0;
		RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
		}
	
	if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL)
		{
		/* dmp1 = d mod (p-1)? */
		r = BN_sub(i, key->p, BN_value_one());
		if (!r) { ret = -1; goto err; }

		r = BN_mod(j, key->d, i, ctx);
		if (!r) { ret = -1; goto err; }

		if (BN_cmp(j, key->dmp1) != 0)
			{
			ret = 0;
			RSAerr(RSA_F_RSA_CHECK_KEY,
				RSA_R_DMP1_NOT_CONGRUENT_TO_D);
			}
	
		/* dmq1 = d mod (q-1)? */    
		r = BN_sub(i, key->q, BN_value_one());
		if (!r) { ret = -1; goto err; }
	
		r = BN_mod(j, key->d, i, ctx);
		if (!r) { ret = -1; goto err; }

		if (BN_cmp(j, key->dmq1) != 0)
			{
//.........這裏部分代碼省略.........
開發者ID:darlinghq,項目名稱:darling-security,代碼行數:101,代碼來源:rsa_chk.c

示例6: VKO_compute_key

/* Implementation of CryptoPro VKO 34.10-2001/2012 algorithm */
static int VKO_compute_key(unsigned char *shared_key, size_t shared_key_size,
                           const EC_POINT *pub_key, EC_KEY *priv_key,
                           const unsigned char *ukm, int dgst_nid)
{
    unsigned char *databuf = NULL, *hashbuf = NULL;
    BIGNUM *UKM = NULL, *p = NULL, *order = NULL, *X = NULL, *Y = NULL;
    const BIGNUM *key = EC_KEY_get0_private_key(priv_key);
    EC_POINT *pnt = EC_POINT_new(EC_KEY_get0_group(priv_key));
    int i;
    BN_CTX *ctx = BN_CTX_new();
    EVP_MD_CTX mdctx;
    const EVP_MD *md;
    int effective_dgst_nid = (dgst_nid == NID_id_GostR3411_2012_512) ?
        NID_id_GostR3411_2012_256 : dgst_nid;
    int buf_len = (dgst_nid == NID_id_GostR3411_2012_512) ? 128 : 64,
        half_len = buf_len >> 1;

    if (!ctx) {
        GOSTerr(GOST_F_VKO_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        return 0;
    }
    BN_CTX_start(ctx);

    databuf = OPENSSL_malloc(buf_len);
    hashbuf = OPENSSL_malloc(buf_len);
    if (!databuf || !hashbuf) {
        GOSTerr(GOST_F_VKO_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    md = EVP_get_digestbynid(effective_dgst_nid);
    if (!md) {
        GOSTerr(GOST_F_VKO_COMPUTE_KEY, GOST_R_INVALID_DIGEST_TYPE);
        goto err;
    }

    UKM = hashsum2bn(ukm, 8);
    p = BN_CTX_get(ctx);
    order = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    EC_GROUP_get_order(EC_KEY_get0_group(priv_key), order, ctx);
    BN_mod_mul(p, key, UKM, order, ctx);
    if (!EC_POINT_mul
        (EC_KEY_get0_group(priv_key), pnt, NULL, pub_key, p, ctx)) {
        GOSTerr(GOST_F_VKO_COMPUTE_KEY, GOST_R_ERROR_POINT_MUL);
        goto err;
    }
    EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(priv_key),
                                        pnt, X, Y, ctx);
    /*
     * Serialize elliptic curve point same way as we do it when saving key
     */
    store_bignum(Y, databuf, half_len);
    store_bignum(X, databuf + half_len, half_len);
    /* And reverse byte order of whole buffer */
    for (i = 0; i < buf_len; i++) {
        hashbuf[buf_len - 1 - i] = databuf[i];
    }
    EVP_MD_CTX_init(&mdctx);
    EVP_DigestInit_ex(&mdctx, md, NULL);
    EVP_DigestUpdate(&mdctx, hashbuf, buf_len);
    EVP_DigestFinal_ex(&mdctx, shared_key, NULL);
    EVP_MD_CTX_cleanup(&mdctx);
 err:
    BN_free(UKM);
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    EC_POINT_free(pnt);
    if (databuf)
        OPENSSL_free(databuf);
    if (hashbuf)
        OPENSSL_free(hashbuf);

    return 32;
}
開發者ID:MaXaMaR,項目名稱:engine,代碼行數:77,代碼來源:gost_ec_keyx.c

示例7: ecdsa_check

static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
                                const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
    int     ok = 0;
    BIGNUM *kinv=NULL, *s, *m=NULL,*tmp=NULL,*order=NULL;
    const BIGNUM *ckinv;
    BN_CTX     *ctx = NULL;
    const EC_GROUP   *group;
    ECDSA_SIG  *ret;
    ECDSA_DATA *ecdsa;
    const BIGNUM *priv_key;

    ecdsa    = ecdsa_check(eckey);
    group    = EC_KEY_get0_group(eckey);
    priv_key = EC_KEY_get0_private_key(eckey);

    if (group == NULL || priv_key == NULL || ecdsa == NULL)
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
        return NULL;
    }

    ret = ECDSA_SIG_new();
    if (!ret)
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
        return NULL;
    }
    s = ret->s;

    if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
            (tmp = BN_new()) == NULL || (m = BN_new()) == NULL)
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_GROUP_get_order(group, order, ctx))
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
        goto err;
    }
    if (dgst_len > BN_num_bytes(order))
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,
                 ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
        goto err;
    }

    if (!BN_bin2bn(dgst, dgst_len, m))
    {
        ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
        goto err;
    }
    do
    {
        if (in_kinv == NULL || in_r == NULL)
        {
            if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r))
            {
                ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,ERR_R_ECDSA_LIB);
                goto err;
            }
            ckinv = kinv;
        }
        else
        {
            ckinv  = in_kinv;
            if (BN_copy(ret->r, in_r) == NULL)
            {
                ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
                goto err;
            }
        }

        if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx))
        {
            ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
            goto err;
        }
        if (!BN_mod_add_quick(s, tmp, m, order))
        {
            ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
            goto err;
        }
        if (!BN_mod_mul(s, s, ckinv, order, ctx))
        {
            ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
            goto err;
        }
    }
    while (BN_is_zero(s));

    ok = 1;
err:
    if (!ok)
    {
        ECDSA_SIG_free(ret);
        ret = NULL;
    }
//.........這裏部分代碼省略.........
開發者ID:jpbarraca,項目名稱:pacp,代碼行數:101,代碼來源:ecs_ossl.c

示例8: test_mont

int test_mont(BIO *bp, BN_CTX *ctx)
	{
	BIGNUM a,b,c,d,A,B;
	BIGNUM n;
	int i;
	BN_MONT_CTX *mont;

	BN_init(&a);
	BN_init(&b);
	BN_init(&c);
	BN_init(&d);
	BN_init(&A);
	BN_init(&B);
	BN_init(&n);

	mont=BN_MONT_CTX_new();

	BN_bntest_rand(&a,100,0,0); /**/
	BN_bntest_rand(&b,100,0,0); /**/
	for (i=0; i<num2; i++)
		{
		int bits = (200*(i+1))/num2;

		if (bits == 0)
			continue;
		BN_bntest_rand(&n,bits,0,1);
		BN_MONT_CTX_set(mont,&n,ctx);

		BN_nnmod(&a,&a,&n,ctx);
		BN_nnmod(&b,&b,&n,ctx);

		BN_to_montgomery(&A,&a,mont,ctx);
		BN_to_montgomery(&B,&b,mont,ctx);

		BN_mod_mul_montgomery(&c,&A,&B,mont,ctx);/**/
		BN_from_montgomery(&A,&c,mont,ctx);/**/
		if (bp != NULL)
			{
			if (!results)
				{
#ifdef undef
fprintf(stderr,"%d * %d %% %d\n",
BN_num_bits(&a),
BN_num_bits(&b),
BN_num_bits(mont->N));
#endif
				BN_print(bp,&a);
				BIO_puts(bp," * ");
				BN_print(bp,&b);
				BIO_puts(bp," % ");
				BN_print(bp,&(mont->N));
				BIO_puts(bp," - ");
				}
			BN_print(bp,&A);
			BIO_puts(bp,"\n");
			}
		BN_mod_mul(&d,&a,&b,&n,ctx);
		BN_sub(&d,&d,&A);
		if(!BN_is_zero(&d))
		    {
		    fprintf(stderr,"Montgomery multiplication test failed!\n");
		    return 0;
		    }
		}
	BN_MONT_CTX_free(mont);
	BN_free(&a);
	BN_free(&b);
	BN_free(&c);
	BN_free(&d);
	BN_free(&A);
	BN_free(&B);
	BN_free(&n);
	return(1);
	}
開發者ID:froggatt,項目名稱:edimax-br-6528n,代碼行數:74,代碼來源:bntest.c

示例9: test_mod_mul

int test_mod_mul(BIO *bp, BN_CTX *ctx)
	{
	BIGNUM *a,*b,*c,*d,*e;
	int i,j;

	a=BN_new();
	b=BN_new();
	c=BN_new();
	d=BN_new();
	e=BN_new();

	for (j=0; j<3; j++) {
	BN_bntest_rand(c,1024,0,0); /**/
	for (i=0; i<num0; i++)
		{
		BN_bntest_rand(a,475+i*10,0,0); /**/
		BN_bntest_rand(b,425+i*11,0,0); /**/
		a->neg=rand_neg();
		b->neg=rand_neg();
		if (!BN_mod_mul(e,a,b,c,ctx))
			{
			unsigned long l;

			while ((l=ERR_get_error()))
				fprintf(stderr,"ERROR:%s\n",
					ERR_error_string(l,NULL));
			EXIT(1);
			}
		if (bp != NULL)
			{
			if (!results)
				{
				BN_print(bp,a);
				BIO_puts(bp," * ");
				BN_print(bp,b);
				BIO_puts(bp," % ");
				BN_print(bp,c);
				if ((a->neg ^ b->neg) && !BN_is_zero(e))
					{
					/* If  (a*b) % c  is negative,  c  must be added
					 * in order to obtain the normalized remainder
					 * (new with OpenSSL 0.9.7, previous versions of
					 * BN_mod_mul could generate negative results)
					 */
					BIO_puts(bp," + ");
					BN_print(bp,c);
					}
				BIO_puts(bp," - ");
				}
			BN_print(bp,e);
			BIO_puts(bp,"\n");
			}
		BN_mul(d,a,b,ctx);
		BN_sub(d,d,e);
		BN_div(a,b,d,c,ctx);
		if(!BN_is_zero(b))
		    {
		    fprintf(stderr,"Modulo multiply test failed!\n");
		    ERR_print_errors_fp(stderr);
		    return 0;
		    }
		}
	}
	BN_free(a);
	BN_free(b);
	BN_free(c);
	BN_free(d);
	BN_free(e);
	return(1);
	}
開發者ID:froggatt,項目名稱:edimax-br-6528n,代碼行數:70,代碼來源:bntest.c

示例10: BN_new


//.........這裏部分代碼省略.........
		 * Thus for
		 *      b := (2*a)^((|p|-5)/8),
		 *      i := (2*a)*b^2
		 * we have
		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
		 *         = (2*a)^((p-1)/2)
		 *         = -1;
		 * so if we set
		 *      x := a*b*(i-1),
		 * then
		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
		 *         = a^2 * b^2 * (-2*i)
		 *         = a*(-i)*(2*a*b^2)
		 *         = a*(-i)*i
		 *         = a.
		 *
		 * (This is due to A.O.L. Atkin, 
		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
		 * November 1992.)
		 */

		/* t := 2*a */
		if (!BN_mod_lshift1_quick(t, A, p)) goto end;

		/* b := (2*a)^((|p|-5)/8) */
		if (!BN_rshift(q, p, 3)) goto end;
		q->neg = 0;
		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

		/* y := b^2 */
		if (!BN_mod_sqr(y, b, p, ctx)) goto end;

		/* t := (2*a)*b^2 - 1*/
		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
		if (!BN_sub_word(t, 1)) goto end;

		/* x = a*b*t */
		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

		if (!BN_copy(ret, x)) goto end;
		err = 0;
		goto vrfy;
		}
	
	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
	 * First, find some  y  that is not a square. */
	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
	q->neg = 0;
	i = 2;
	do
		{
		/* For efficiency, try small numbers first;
		 * if this fails, try random numbers.
		 */
		if (i < 22)
			{
			if (!BN_set_word(y, i)) goto end;
			}
		else
			{
			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
			if (BN_ucmp(y, p) >= 0)
				{
				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
				}
開發者ID:oss-forks,項目名稱:openssl,代碼行數:67,代碼來源:bn_sqrt.c

示例11: ec_GFp_simple_set_compressed_coordinates

int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
                                             EC_POINT *point,
                                             const BIGNUM *x_, int y_bit,
                                             BN_CTX *ctx)
{
    BN_CTX *new_ctx = NULL;
    BIGNUM *tmp1, *tmp2, *x, *y;
    int ret = 0;

    /* clear error queue */
    ERR_clear_error();

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    y_bit = (y_bit != 0);

    BN_CTX_start(ctx);
    tmp1 = BN_CTX_get(ctx);
    tmp2 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);
    if (y == NULL)
        goto err;

    /*-
     * Recover y.  We have a Weierstrass equation
     *     y^2 = x^3 + a*x + b,
     * so  y  is one of the square roots of  x^3 + a*x + b.
     */

    /* tmp1 := x^3 */
    if (!BN_nnmod(x, x_, group->field, ctx))
        goto err;
    if (group->meth->field_decode == 0) {
        /* field_{sqr,mul} work on standard representation */
        if (!group->meth->field_sqr(group, tmp2, x_, ctx))
            goto err;
        if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx))
            goto err;
    } else {
        if (!BN_mod_sqr(tmp2, x_, group->field, ctx))
            goto err;
        if (!BN_mod_mul(tmp1, tmp2, x_, group->field, ctx))
            goto err;
    }

    /* tmp1 := tmp1 + a*x */
    if (group->a_is_minus3) {
        if (!BN_mod_lshift1_quick(tmp2, x, group->field))
            goto err;
        if (!BN_mod_add_quick(tmp2, tmp2, x, group->field))
            goto err;
        if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, group->field))
            goto err;
    } else {
        if (group->meth->field_decode) {
            if (!group->meth->field_decode(group, tmp2, group->a, ctx))
                goto err;
            if (!BN_mod_mul(tmp2, tmp2, x, group->field, ctx))
                goto err;
        } else {
            /* field_mul works on standard representation */
            if (!group->meth->field_mul(group, tmp2, group->a, x, ctx))
                goto err;
        }

        if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field))
            goto err;
    }

    /* tmp1 := tmp1 + b */
    if (group->meth->field_decode) {
        if (!group->meth->field_decode(group, tmp2, group->b, ctx))
            goto err;
        if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field))
            goto err;
    } else {
        if (!BN_mod_add_quick(tmp1, tmp1, group->b, group->field))
            goto err;
    }

    if (!BN_mod_sqrt(y, tmp1, group->field, ctx)) {
        unsigned long err = ERR_peek_last_error();

        if (ERR_GET_LIB(err) == ERR_LIB_BN
            && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
            ERR_clear_error();
            ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES,
                  EC_R_INVALID_COMPRESSED_POINT);
        } else
            ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES,
                  ERR_R_BN_LIB);
        goto err;
    }

    if (y_bit != BN_is_odd(y)) {
//.........這裏部分代碼省略.........
開發者ID:375670450,項目名稱:openssl,代碼行數:101,代碼來源:ecp_oct.c

示例12: ec_GFp_simple_group_check_discriminant

int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) {
  int ret = 0;
  BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
  const BIGNUM *p = &group->field;
  BN_CTX *new_ctx = NULL;

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
      goto err;
    }
  }
  BN_CTX_start(ctx);
  a = BN_CTX_get(ctx);
  b = BN_CTX_get(ctx);
  tmp_1 = BN_CTX_get(ctx);
  tmp_2 = BN_CTX_get(ctx);
  order = BN_CTX_get(ctx);
  if (order == NULL) {
    goto err;
  }

  if (group->meth->field_decode) {
    if (!group->meth->field_decode(group, a, &group->a, ctx) ||
        !group->meth->field_decode(group, b, &group->b, ctx)) {
      goto err;
    }
  } else {
    if (!BN_copy(a, &group->a) || !BN_copy(b, &group->b)) {
      goto err;
    }
  }

  /* check the discriminant:
   * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
   * 0 =< a, b < p */
  if (BN_is_zero(a)) {
    if (BN_is_zero(b)) {
      goto err;
    }
  } else if (!BN_is_zero(b)) {
    if (!BN_mod_sqr(tmp_1, a, p, ctx) ||
        !BN_mod_mul(tmp_2, tmp_1, a, p, ctx) ||
        !BN_lshift(tmp_1, tmp_2, 2)) {
      goto err;
    }
    /* tmp_1 = 4*a^3 */

    if (!BN_mod_sqr(tmp_2, b, p, ctx) ||
        !BN_mul_word(tmp_2, 27)) {
      goto err;
    }
    /* tmp_2 = 27*b^2 */

    if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx) ||
        BN_is_zero(a)) {
      goto err;
    }
  }
  ret = 1;

err:
  if (ctx != NULL) {
    BN_CTX_end(ctx);
  }
  BN_CTX_free(new_ctx);
  return ret;
}
開發者ID:luocn99,項目名稱:tgw-boringssl,代碼行數:69,代碼來源:simple.c

示例13: pgp_elgamal_encrypt

int
pgp_elgamal_encrypt(PGP_PubKey * pk, PGP_MPI * _m,
					PGP_MPI ** c1_p, PGP_MPI ** c2_p)
{
	int			res = PXE_PGP_MATH_FAILED;
	int			k_bits;
	BIGNUM	   *m = mpi_to_bn(_m);
	BIGNUM	   *p = mpi_to_bn(pk->pub.elg.p);
	BIGNUM	   *g = mpi_to_bn(pk->pub.elg.g);
	BIGNUM	   *y = mpi_to_bn(pk->pub.elg.y);
	BIGNUM	   *k = BN_new();
	BIGNUM	   *yk = BN_new();
	BIGNUM	   *c1 = BN_new();
	BIGNUM	   *c2 = BN_new();
	BN_CTX	   *tmp = BN_CTX_new();

	if (!m || !p || !g || !y || !k || !yk || !c1 || !c2 || !tmp)
		goto err;

	/*
	 * generate k
	 */
	k_bits = decide_k_bits(BN_num_bits(p));
	if (!BN_rand(k, k_bits, 0, 0))
		goto err;

	/*
	 * c1 = g^k c2 = m * y^k
	 */
	if (!BN_mod_exp(c1, g, k, p, tmp))
		goto err;
	if (!BN_mod_exp(yk, y, k, p, tmp))
		goto err;
	if (!BN_mod_mul(c2, m, yk, p, tmp))
		goto err;

	/* result */
	*c1_p = bn_to_mpi(c1);
	*c2_p = bn_to_mpi(c2);
	if (*c1_p && *c2_p)
		res = 0;
err:
	if (tmp)
		BN_CTX_free(tmp);
	if (c2)
		BN_clear_free(c2);
	if (c1)
		BN_clear_free(c1);
	if (yk)
		BN_clear_free(yk);
	if (k)
		BN_clear_free(k);
	if (y)
		BN_clear_free(y);
	if (g)
		BN_clear_free(g);
	if (p)
		BN_clear_free(p);
	if (m)
		BN_clear_free(m);
	return res;
}
開發者ID:CraigBryan,項目名稱:PostgresqlFun,代碼行數:62,代碼來源:pgp-mpi-openssl.c

示例14: bn_miller_rabin_is_prime

/*
 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
 * The Step numbers listed in the code refer to the enhanced case.
 *
 * if enhanced is set, then status returns one of the following:
 *     BN_PRIMETEST_PROBABLY_PRIME
 *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR
 *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
 * if enhanced is zero, then status returns either
 *     BN_PRIMETEST_PROBABLY_PRIME or
 *     BN_PRIMETEST_COMPOSITE
 *
 * returns 0 if there was an error, otherwise it returns 1.
 */
int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
                             BN_GENCB *cb, int enhanced, int *status)
{
    int i, j, a, ret = 0;
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
    BN_MONT_CTX *mont = NULL;

    /* w must be odd */
    if (!BN_is_odd(w))
        return 0;

    BN_CTX_start(ctx);
    g = BN_CTX_get(ctx);
    w1 = BN_CTX_get(ctx);
    w3 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    m = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);

    if (!(b != NULL
            /* w1 := w - 1 */
            && BN_copy(w1, w)
            && BN_sub_word(w1, 1)
            /* w3 := w - 3 */
            && BN_copy(w3, w)
            && BN_sub_word(w3, 3)))
        goto err;

    /* check w is larger than 3, otherwise the random b will be too small */
    if (BN_is_zero(w3) || BN_is_negative(w3))
        goto err;

    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
    a = 1;
    while (!BN_is_bit_set(w1, a))
        a++;
    /* (Step 2) m = (w-1) / 2^a */
    if (!BN_rshift(m, w1, a))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
        goto err;

    if (iterations == BN_prime_checks)
        iterations = BN_prime_checks_for_size(BN_num_bits(w));

    /* (Step 4) */
    for (i = 0; i < iterations; ++i) {
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
        if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */
            goto err;

        if (enhanced) {
            /* (Step 4.3) */
            if (!BN_gcd(g, b, w, ctx))
                goto err;
            /* (Step 4.4) */
            if (!BN_is_one(g)) {
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
                ret = 1;
                goto err;
            }
        }
        /* (Step 4.5) z = b^m mod w */
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
            goto err;
        /* (Step 4.6) if (z = 1 or z = w-1) */
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
            goto outer_loop;
        /* (Step 4.7) for j = 1 to a-1 */
        for (j = 1; j < a ; ++j) {
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
                goto err;
            /* (Step 4.7.3) */
            if (BN_cmp(z, w1) == 0)
                goto outer_loop;
            /* (Step 4.7.4) */
            if (BN_is_one(z))
                goto composite;
        }
        /* At this point z = b^((w-1)/2) mod w */
//.........這裏部分代碼省略.........
開發者ID:Ana06,項目名稱:openssl,代碼行數:101,代碼來源:bn_prime.c

示例15: ec_GFp_simple_point_get_affine_coordinates

int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
                                               const EC_POINT *point, BIGNUM *x,
                                               BIGNUM *y, BN_CTX *ctx) {
  BN_CTX *new_ctx = NULL;
  BIGNUM *Z, *Z_1, *Z_2, *Z_3;
  const BIGNUM *Z_;
  int ret = 0;

  if (EC_POINT_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  Z = BN_CTX_get(ctx);
  Z_1 = BN_CTX_get(ctx);
  Z_2 = BN_CTX_get(ctx);
  Z_3 = BN_CTX_get(ctx);
  if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
    goto err;
  }

  /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */

  if (group->meth->field_decode) {
    if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
      goto err;
    }
    Z_ = Z;
  } else {
    Z_ = &point->Z;
  }

  if (BN_is_one(Z_)) {
    if (group->meth->field_decode) {
      if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
        goto err;
      }
      if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
        goto err;
      }
    } else {
      if (x != NULL && !BN_copy(x, &point->X)) {
        goto err;
      }
      if (y != NULL && !BN_copy(y, &point->Y)) {
        goto err;
      }
    }
  } else {
    if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
      OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
      goto err;
    }

    if (group->meth->field_encode == 0) {
      /* field_sqr works on standard representation */
      if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
        goto err;
      }
    } else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
      goto err;
    }

    /* in the Montgomery case, field_mul will cancel out Montgomery factor in
     * X: */
    if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
      goto err;
    }

    if (y != NULL) {
      if (group->meth->field_encode == 0) {
        /* field_mul works on standard representation */
        if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
          goto err;
        }
      } else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
        goto err;
      }

      /* in the Montgomery case, field_mul will cancel out Montgomery factor in
       * Y: */
      if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
        goto err;
      }
    }
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
//.........這裏部分代碼省略.........
開發者ID:reaperhulk,項目名稱:ring,代碼行數:101,代碼來源:simple.c


注:本文中的BN_mod_mul函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。