本文整理匯總了C++中BN_mod_add_quick函數的典型用法代碼示例。如果您正苦於以下問題:C++ BN_mod_add_quick函數的具體用法?C++ BN_mod_add_quick怎麽用?C++ BN_mod_add_quick使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了BN_mod_add_quick函數的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: ec_GFp_simple_ladder_pre
/*-
* Set s := p, r := 2p.
*
* For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
* multiplication resistant against side channel attacks" appendix, as described
* at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
*
* The input point p will be in randomized Jacobian projective coords:
* x = X/Z**2, y=Y/Z**3
*
* The output points p, s, and r are converted to standard (homogeneous)
* projective coords:
* x = X/Z, y=Y/Z
*/
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
t1 = r->Z;
t2 = r->Y;
t3 = s->X;
t4 = r->X;
t5 = s->Y;
t6 = s->Z;
/* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */
if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx)
|| !group->meth->field_sqr(group, t1, p->Z, ctx)
|| !group->meth->field_mul(group, p->Z, p->Z, t1, ctx)
/* r := 2p */
|| !group->meth->field_sqr(group, t2, p->X, ctx)
|| !group->meth->field_sqr(group, t3, p->Z, ctx)
|| !group->meth->field_mul(group, t4, t3, group->a, ctx)
|| !BN_mod_sub_quick(t5, t2, t4, group->field)
|| !BN_mod_add_quick(t2, t2, t4, group->field)
|| !group->meth->field_sqr(group, t5, t5, ctx)
|| !group->meth->field_mul(group, t6, t3, group->b, ctx)
|| !group->meth->field_mul(group, t1, p->X, p->Z, ctx)
|| !group->meth->field_mul(group, t4, t1, t6, ctx)
|| !BN_mod_lshift_quick(t4, t4, 3, group->field)
/* r->X coord output */
|| !BN_mod_sub_quick(r->X, t5, t4, group->field)
|| !group->meth->field_mul(group, t1, t1, t2, ctx)
|| !group->meth->field_mul(group, t2, t3, t6, ctx)
|| !BN_mod_add_quick(t1, t1, t2, group->field)
/* r->Z coord output */
|| !BN_mod_lshift_quick(r->Z, t1, 2, group->field)
|| !EC_POINT_copy(s, p))
return 0;
r->Z_is_one = 0;
s->Z_is_one = 0;
p->Z_is_one = 0;
return 1;
}
示例2: BN_bin2bn
void CSignerECDSA::SignFast(const uint256 &hash, unsigned char Signature[65])
{
CBigNum m;
BN_bin2bn((uint8_t*)&hash, 256/8, &m);
// Spread-FIXME: replace with fixed-size arithmetic.
CBigNum s;
BN_mod_add_quick(&s, &pmr, &m, &order);
BN_mod_mul(&s, &s, &kinv, &order, ctx);
int nBitsS = BN_num_bits(&s);
memset(Signature + 33, 0, 32);
BN_bn2bin(&s, &Signature[65-(nBitsS+7)/8]);
}
示例3: ec_GFp_simple_set_compressed_coordinates
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
EC_POINT *point, const BIGNUM *x_,
int y_bit, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
BIGNUM *tmp1, *tmp2, *x, *y;
int ret = 0;
ERR_clear_error();
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
y_bit = (y_bit != 0);
BN_CTX_start(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL) {
goto err;
}
/* Recover y. We have a Weierstrass equation
* y^2 = x^3 + a*x + b,
* so y is one of the square roots of x^3 + a*x + b. */
/* tmp1 := x^3 */
if (!BN_nnmod(x, x_, &group->field, ctx)) {
goto err;
}
if (group->meth->field_decode == 0) {
/* field_{sqr,mul} work on standard representation */
if (!group->meth->field_sqr(group, tmp2, x_, ctx) ||
!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) {
goto err;
}
} else {
if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) ||
!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) {
goto err;
}
}
/* tmp1 := tmp1 + a*x */
if (group->a_is_minus3) {
if (!BN_mod_lshift1_quick(tmp2, x, &group->field) ||
!BN_mod_add_quick(tmp2, tmp2, x, &group->field) ||
!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) {
goto err;
}
} else {
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, tmp2, &group->a, ctx) ||
!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) {
goto err;
}
} else {
/* field_mul works on standard representation */
if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) {
goto err;
}
}
if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
goto err;
}
}
/* tmp1 := tmp1 + b */
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, tmp2, &group->b, ctx) ||
!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
goto err;
}
} else {
if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) {
goto err;
}
}
if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) {
unsigned long err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_BN &&
ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
ERR_clear_error();
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT);
} else {
OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB);
}
goto err;
}
if (y_bit != BN_is_odd(y)) {
//.........這裏部分代碼省略.........
示例4: ecdsa_check
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
int ok = 0, i;
BIGNUM *kinv=NULL, *s, *m=NULL,*tmp=NULL,*order=NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
ECDSA_DATA *ecdsa;
const BIGNUM *priv_key;
ecdsa = ecdsa_check(eckey);
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL || ecdsa == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
#ifdef OPENSSL_FIPS
if (!fips_check_ec_prng(eckey))
return NULL;
#endif
ret = ECDSA_SIG_new();
if (!ret)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
goto err;
}
i = BN_num_bits(order);
/* Need to truncate digest if it is too long: first truncate whole
* bytes.
*/
if (8 * dgst_len > i)
dgst_len = (i + 7)/8;
if (!BN_bin2bn(dgst, dgst_len, m))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
/* If still too long truncate remaining bits with a shift */
if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7)))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
do
{
if (in_kinv == NULL || in_r == NULL)
{
if (!ecdsa->meth->ecdsa_sign_setup(eckey, ctx,
&kinv, &ret->r))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
}
else
{
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
//.........這裏部分代碼省略.........
示例5: ecdsa_check
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
int ok = 0;
BIGNUM *kinv=NULL, *s, *m=NULL,*tmp=NULL,*order=NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
ECDSA_DATA *ecdsa;
const BIGNUM *priv_key;
ecdsa = ecdsa_check(eckey);
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL || ecdsa == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
goto err;
}
if (8 * dgst_len > BN_num_bits(order))
{
/* XXX
*
* Should provide for optional hash truncation:
* Keep the BN_num_bits(order) leftmost bits of dgst
* (see March 2006 FIPS 186-3 draft, which has a few
* confusing errors in this part though)
*/
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,
ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
goto err;
}
if (!BN_bin2bn(dgst, dgst_len, m))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
do
{
if (in_kinv == NULL || in_r == NULL)
{
if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
}
else
{
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (BN_is_zero(s))
{
//.........這裏部分代碼省略.........
示例6: ec_GFp_simple_is_on_curve
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx)
{
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *rh, *tmp, *Z4, *Z6;
int ret = -1;
if (EC_POINT_is_at_infinity(group, point))
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
rh = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
Z4 = BN_CTX_get(ctx);
Z6 = BN_CTX_get(ctx);
if (Z6 == NULL)
goto err;
/*-
* We have a curve defined by a Weierstrass equation
* y^2 = x^3 + a*x + b.
* The point to consider is given in Jacobian projective coordinates
* where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
* Substituting this and multiplying by Z^6 transforms the above equation into
* Y^2 = X^3 + a*X*Z^4 + b*Z^6.
* To test this, we add up the right-hand side in 'rh'.
*/
/* rh := X^2 */
if (!field_sqr(group, rh, point->X, ctx))
goto err;
if (!point->Z_is_one) {
if (!field_sqr(group, tmp, point->Z, ctx))
goto err;
if (!field_sqr(group, Z4, tmp, ctx))
goto err;
if (!field_mul(group, Z6, Z4, tmp, ctx))
goto err;
/* rh := (rh + a*Z^4)*X */
if (group->a_is_minus3) {
if (!BN_mod_lshift1_quick(tmp, Z4, p))
goto err;
if (!BN_mod_add_quick(tmp, tmp, Z4, p))
goto err;
if (!BN_mod_sub_quick(rh, rh, tmp, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
} else {
if (!field_mul(group, tmp, Z4, group->a, ctx))
goto err;
if (!BN_mod_add_quick(rh, rh, tmp, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
}
/* rh := rh + b*Z^6 */
if (!field_mul(group, tmp, group->b, Z6, ctx))
goto err;
if (!BN_mod_add_quick(rh, rh, tmp, p))
goto err;
} else {
/* point->Z_is_one */
/* rh := (rh + a)*X */
if (!BN_mod_add_quick(rh, rh, group->a, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
/* rh := rh + b */
if (!BN_mod_add_quick(rh, rh, group->b, p))
goto err;
}
/* 'lh' := Y^2 */
if (!field_sqr(group, tmp, point->Y, ctx))
goto err;
ret = (0 == BN_ucmp(tmp, rh));
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
//.........這裏部分代碼省略.........
示例7: ec_GFp_simple_dbl
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx)
{
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
BN_zero(r->Z);
r->Z_is_one = 0;
return 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
if (n3 == NULL)
goto err;
/*
* Note that in this function we must not read components of 'a' once we
* have written the corresponding components of 'r'. ('r' might the same
* as 'a'.)
*/
/* n1 */
if (a->Z_is_one) {
if (!field_sqr(group, n0, a->X, ctx))
goto err;
if (!BN_mod_lshift1_quick(n1, n0, p))
goto err;
if (!BN_mod_add_quick(n0, n0, n1, p))
goto err;
if (!BN_mod_add_quick(n1, n0, group->a, p))
goto err;
/* n1 = 3 * X_a^2 + a_curve */
} else if (group->a_is_minus3) {
if (!field_sqr(group, n1, a->Z, ctx))
goto err;
if (!BN_mod_add_quick(n0, a->X, n1, p))
goto err;
if (!BN_mod_sub_quick(n2, a->X, n1, p))
goto err;
if (!field_mul(group, n1, n0, n2, ctx))
goto err;
if (!BN_mod_lshift1_quick(n0, n1, p))
goto err;
if (!BN_mod_add_quick(n1, n0, n1, p))
goto err;
/*-
* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
* = 3 * X_a^2 - 3 * Z_a^4
*/
} else {
if (!field_sqr(group, n0, a->X, ctx))
goto err;
if (!BN_mod_lshift1_quick(n1, n0, p))
goto err;
if (!BN_mod_add_quick(n0, n0, n1, p))
goto err;
if (!field_sqr(group, n1, a->Z, ctx))
goto err;
if (!field_sqr(group, n1, n1, ctx))
goto err;
if (!field_mul(group, n1, n1, group->a, ctx))
goto err;
if (!BN_mod_add_quick(n1, n1, n0, p))
goto err;
/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
}
/* Z_r */
if (a->Z_is_one) {
if (!BN_copy(n0, a->Y))
goto err;
} else {
if (!field_mul(group, n0, a->Y, a->Z, ctx))
goto err;
}
if (!BN_mod_lshift1_quick(r->Z, n0, p))
goto err;
r->Z_is_one = 0;
/* Z_r = 2 * Y_a * Z_a */
//.........這裏部分代碼省略.........
示例8: ec_GFp_simple_add
//.........這裏部分代碼省略.........
if (!field_mul(group, n0, n0, a->Z, ctx))
goto end;
if (!field_mul(group, n4, b->Y, n0, ctx))
goto end;
/* n4 = Y_b * Z_a^3 */
}
/* n5, n6 */
if (!BN_mod_sub_quick(n5, n1, n3, p))
goto end;
if (!BN_mod_sub_quick(n6, n2, n4, p))
goto end;
/* n5 = n1 - n3 */
/* n6 = n2 - n4 */
if (BN_is_zero(n5)) {
if (BN_is_zero(n6)) {
/* a is the same point as b */
BN_CTX_end(ctx);
ret = EC_POINT_dbl(group, r, a, ctx);
ctx = NULL;
goto end;
} else {
/* a is the inverse of b */
BN_zero(r->Z);
r->Z_is_one = 0;
ret = 1;
goto end;
}
}
/* 'n7', 'n8' */
if (!BN_mod_add_quick(n1, n1, n3, p))
goto end;
if (!BN_mod_add_quick(n2, n2, n4, p))
goto end;
/* 'n7' = n1 + n3 */
/* 'n8' = n2 + n4 */
/* Z_r */
if (a->Z_is_one && b->Z_is_one) {
if (!BN_copy(r->Z, n5))
goto end;
} else {
if (a->Z_is_one) {
if (!BN_copy(n0, b->Z))
goto end;
} else if (b->Z_is_one) {
if (!BN_copy(n0, a->Z))
goto end;
} else {
if (!field_mul(group, n0, a->Z, b->Z, ctx))
goto end;
}
if (!field_mul(group, r->Z, n0, n5, ctx))
goto end;
}
r->Z_is_one = 0;
/* Z_r = Z_a * Z_b * n5 */
/* X_r */
if (!field_sqr(group, n0, n6, ctx))
goto end;
if (!field_sqr(group, n4, n5, ctx))
goto end;
示例9: ec_GFp_simple_ladder_post
/*-
* Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
* Elliptic Curves and Side-Channel Attacks", modified to work in projective
* coordinates and return r in Jacobian projective coordinates.
*
* X4 = two*Y1*X2*Z3*Z2*Z1;
* Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1);
* Z4 = two*Y1*Z3*SQR(Z2)*Z1;
*
* Z4 != 0 because:
* - Z1==0 implies p is at infinity, which would have caused an early exit in
* the caller;
* - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
* - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
* - Y1==0 implies p has order 2, so either r or s are infinity and handled by
* one of the BN_is_zero(...) branches.
*/
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
if (BN_is_zero(r->Z))
return EC_POINT_set_to_infinity(group, r);
if (BN_is_zero(s->Z)) {
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx)
|| !group->meth->field_sqr(group, r->Z, p->Z, ctx)
|| !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx)
|| !BN_copy(r->Z, p->Z)
|| !EC_POINT_invert(group, r, ctx))
return 0;
return 1;
}
BN_CTX_start(ctx);
t0 = BN_CTX_get(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
t6 = BN_CTX_get(ctx);
if (t6 == NULL
|| !BN_mod_lshift1_quick(t0, p->Y, group->field)
|| !group->meth->field_mul(group, t1, r->X, p->Z, ctx)
|| !group->meth->field_mul(group, t2, r->Z, s->Z, ctx)
|| !group->meth->field_mul(group, t2, t1, t2, ctx)
|| !group->meth->field_mul(group, t3, t2, t0, ctx)
|| !group->meth->field_mul(group, t2, r->Z, p->Z, ctx)
|| !group->meth->field_sqr(group, t4, t2, ctx)
|| !BN_mod_lshift1_quick(t5, group->b, group->field)
|| !group->meth->field_mul(group, t4, t4, t5, ctx)
|| !group->meth->field_mul(group, t6, t2, group->a, ctx)
|| !group->meth->field_mul(group, t5, r->X, p->X, ctx)
|| !BN_mod_add_quick(t5, t6, t5, group->field)
|| !group->meth->field_mul(group, t6, r->Z, p->X, ctx)
|| !BN_mod_add_quick(t2, t6, t1, group->field)
|| !group->meth->field_mul(group, t5, t5, t2, ctx)
|| !BN_mod_sub_quick(t6, t6, t1, group->field)
|| !group->meth->field_sqr(group, t6, t6, ctx)
|| !group->meth->field_mul(group, t6, t6, s->X, ctx)
|| !BN_mod_add_quick(t4, t5, t4, group->field)
|| !group->meth->field_mul(group, t4, t4, s->Z, ctx)
|| !BN_mod_sub_quick(t4, t4, t6, group->field)
|| !group->meth->field_sqr(group, t5, r->Z, ctx)
|| !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx)
|| !group->meth->field_mul(group, r->Z, t5, r->Z, ctx)
|| !group->meth->field_mul(group, r->Z, r->Z, t0, ctx)
/* t3 := X, t4 := Y */
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
|| !group->meth->field_mul(group, r->X, t3, r->Z, ctx)
|| !group->meth->field_sqr(group, t3, r->Z, ctx)
|| !group->meth->field_mul(group, r->Y, t4, t3, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
示例10: ec_GFp_simple_ladder_step
/*-
* Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
* "A fast parallel elliptic curve multiplication resistant against side channel
* attacks", as described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
*/
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL;
BN_CTX_start(ctx);
t0 = BN_CTX_get(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
t6 = BN_CTX_get(ctx);
t7 = BN_CTX_get(ctx);
if (t7 == NULL
|| !group->meth->field_mul(group, t0, r->X, s->X, ctx)
|| !group->meth->field_mul(group, t1, r->Z, s->Z, ctx)
|| !group->meth->field_mul(group, t2, r->X, s->Z, ctx)
|| !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
|| !group->meth->field_mul(group, t4, group->a, t1, ctx)
|| !BN_mod_add_quick(t0, t0, t4, group->field)
|| !BN_mod_add_quick(t4, t3, t2, group->field)
|| !group->meth->field_mul(group, t0, t4, t0, ctx)
|| !group->meth->field_sqr(group, t1, t1, ctx)
|| !BN_mod_lshift_quick(t7, group->b, 2, group->field)
|| !group->meth->field_mul(group, t1, t7, t1, ctx)
|| !BN_mod_lshift1_quick(t0, t0, group->field)
|| !BN_mod_add_quick(t0, t1, t0, group->field)
|| !BN_mod_sub_quick(t1, t2, t3, group->field)
|| !group->meth->field_sqr(group, t1, t1, ctx)
|| !group->meth->field_mul(group, t3, t1, p->X, ctx)
|| !group->meth->field_mul(group, t0, p->Z, t0, ctx)
/* s->X coord output */
|| !BN_mod_sub_quick(s->X, t0, t3, group->field)
/* s->Z coord output */
|| !group->meth->field_mul(group, s->Z, p->Z, t1, ctx)
|| !group->meth->field_sqr(group, t3, r->X, ctx)
|| !group->meth->field_sqr(group, t2, r->Z, ctx)
|| !group->meth->field_mul(group, t4, t2, group->a, ctx)
|| !BN_mod_add_quick(t5, r->X, r->Z, group->field)
|| !group->meth->field_sqr(group, t5, t5, ctx)
|| !BN_mod_sub_quick(t5, t5, t3, group->field)
|| !BN_mod_sub_quick(t5, t5, t2, group->field)
|| !BN_mod_sub_quick(t6, t3, t4, group->field)
|| !group->meth->field_sqr(group, t6, t6, ctx)
|| !group->meth->field_mul(group, t0, t2, t5, ctx)
|| !group->meth->field_mul(group, t0, t7, t0, ctx)
/* r->X coord output */
|| !BN_mod_sub_quick(r->X, t6, t0, group->field)
|| !BN_mod_add_quick(t6, t3, t4, group->field)
|| !group->meth->field_sqr(group, t3, t2, ctx)
|| !group->meth->field_mul(group, t7, t3, t7, ctx)
|| !group->meth->field_mul(group, t5, t5, t6, ctx)
|| !BN_mod_lshift1_quick(t5, t5, group->field)
/* r->Z coord output */
|| !BN_mod_add_quick(r->Z, t7, t5, group->field))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
示例11: OPENSSL_PUT_ERROR
ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest, size_t digest_len,
const BIGNUM *in_kinv, const BIGNUM *in_r,
const EC_KEY *eckey) {
int ok = 0;
BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
const BIGNUM *priv_key;
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
return NULL;
}
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL ||
(tmp = BN_new()) == NULL ||
(m = BN_new()) == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
const BIGNUM *order = EC_GROUP_get0_order(group);
if (!digest_to_bn(m, digest, digest_len, order)) {
goto err;
}
for (;;) {
if (in_kinv == NULL || in_r == NULL) {
if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, digest, digest_len)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
} else {
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (BN_is_zero(s)) {
// if kinv and r have been supplied by the caller
// don't to generate new kinv and r values
if (in_kinv != NULL && in_r != NULL) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NEED_NEW_SETUP_VALUES);
goto err;
}
} else {
// s != 0 => we have a valid signature
break;
}
}
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
BN_CTX_free(ctx);
BN_clear_free(m);
BN_clear_free(tmp);
BN_clear_free(kinv);
return ret;
}
示例12: ecdsa_check
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
int ok = 0;
BIGNUM *kinv=NULL, *s, *m=NULL,*tmp=NULL,*order=NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
ECDSA_DATA *ecdsa;
const BIGNUM *priv_key;
ecdsa = ecdsa_check(eckey);
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL || ecdsa == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
goto err;
}
if (dgst_len > BN_num_bytes(order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,
ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
goto err;
}
if (!BN_bin2bn(dgst, dgst_len, m))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
do
{
if (in_kinv == NULL || in_r == NULL)
{
if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
}
else
{
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
}
while (BN_is_zero(s));
ok = 1;
err:
if (!ok)
{
ECDSA_SIG_free(ret);
ret = NULL;
}
//.........這裏部分代碼省略.........
示例13: ec_GFp_simple_dbl
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx) {
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
BN_CTX *);
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
BN_zero(&r->Z);
return 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
if (n3 == NULL) {
goto err;
}
/* Note that in this function we must not read components of 'a'
* once we have written the corresponding components of 'r'.
* ('r' might the same as 'a'.)
*/
/* n1 */
if (BN_cmp(&a->Z, &group->one) == 0) {
if (!field_sqr(group, n0, &a->X, ctx) ||
!BN_mod_lshift1_quick(n1, n0, p) ||
!BN_mod_add_quick(n0, n0, n1, p) ||
!BN_mod_add_quick(n1, n0, &group->a, p)) {
goto err;
}
/* n1 = 3 * X_a^2 + a_curve */
} else {
/* ring: This assumes a == -3. */
if (!field_sqr(group, n1, &a->Z, ctx) ||
!BN_mod_add_quick(n0, &a->X, n1, p) ||
!BN_mod_sub_quick(n2, &a->X, n1, p) ||
!field_mul(group, n1, n0, n2, ctx) ||
!BN_mod_lshift1_quick(n0, n1, p) ||
!BN_mod_add_quick(n1, n0, n1, p)) {
goto err;
}
/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
* = 3 * X_a^2 - 3 * Z_a^4 */
}
/* Z_r */
if (BN_cmp(&a->Z, &group->one) == 0) {
if (!BN_copy(n0, &a->Y)) {
goto err;
}
} else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
goto err;
}
if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
goto err;
}
/* Z_r = 2 * Y_a * Z_a */
/* n2 */
if (!field_sqr(group, n3, &a->Y, ctx) ||
!field_mul(group, n2, &a->X, n3, ctx) ||
!BN_mod_lshift_quick(n2, n2, 2, p)) {
goto err;
}
/* n2 = 4 * X_a * Y_a^2 */
/* X_r */
if (!BN_mod_lshift1_quick(n0, n2, p) ||
!field_sqr(group, &r->X, n1, ctx) ||
!BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
goto err;
}
/* X_r = n1^2 - 2 * n2 */
/* n3 */
if (!field_sqr(group, n0, n3, ctx) ||
!BN_mod_lshift_quick(n3, n0, 3, p)) {
goto err;
}
/* n3 = 8 * Y_a^4 */
/* Y_r */
//.........這裏部分代碼省略.........
示例14: EC_KEY_get0_group
ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r,
EC_KEY *eckey)
{
int ok = 0, i;
BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL;
const BIGNUM *order, *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
const BIGNUM *priv_key;
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (!EC_KEY_can_sign(eckey)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_CURVE_DOES_NOT_SUPPORT_SIGNING);
return NULL;
}
ret = ECDSA_SIG_new();
if (ret == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->r = BN_new();
ret->s = BN_new();
if (ret->r == NULL || ret->s == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE);
goto err;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE);
goto err;
}
order = EC_GROUP_get0_order(group);
if (order == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_EC_LIB);
goto err;
}
i = BN_num_bits(order);
/*
* Need to truncate digest if it is too long: first truncate whole bytes.
*/
if (8 * dgst_len > i)
dgst_len = (i + 7) / 8;
if (!BN_bin2bn(dgst, dgst_len, m)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB);
goto err;
}
/* If still too long truncate remaining bits with a shift */
if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB);
goto err;
}
do {
if (in_kinv == NULL || in_r == NULL) {
if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, dgst, dgst_len)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
} else {
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, ERR_R_BN_LIB);
goto err;
}
if (BN_is_zero(s)) {
/*
* if kinv and r have been supplied by the caller don't to
* generate new kinv and r values
*/
if (in_kinv != NULL && in_r != NULL) {
ECerr(EC_F_OSSL_ECDSA_SIGN_SIG, EC_R_NEED_NEW_SETUP_VALUES);
goto err;
}
//.........這裏部分代碼省略.........