本文整理匯總了C++中B函數的典型用法代碼示例。如果您正苦於以下問題:C++ B函數的具體用法?C++ B怎麽用?C++ B使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了B函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: f
// Don't crash here.
void f() {
X x = X();
(void)noexcept(B(declval<B>()));
}
示例2: Generate
bool Field::initializeBuffers(ID3D11Device* device)
{
Dictionnary* dico;
VertexType* vertices;
Buffers* buffer;
unsigned long* indices;
int index;
int vertexCount;
int indexCount;
float fMax = fSpacing * (unSize/2);
float fMin = -fMax;
float fDiff;
bool filled;
filled = true;
fDiff = fMax - fMin;
Generate();
vertexCount = (unSize-1) * (unSize-1) * 20;
indexCount = vertexCount;
if ((dico = Dictionnary::getInstance()) == nullptr)
return false;
vertices = new VertexType[vertexCount];
if (vertices == false)
return (false);
indices = new unsigned long[indexCount];
if (indices == false)
{
delete []vertices;
return (false);
}
buffer = new Buffers();
if (buffer == nullptr)
{
delete []vertices;
delete []indices;
return (false);
}
index = 0;
DirectX::XMVECTOR vec1;
DirectX::XMVECTOR vec2;
DirectX::XMVECTOR normal;
for(unsigned int i = 0; i < (unSize - 1); i++)
{
float fZ = fMin + i * fSpacing;
for(unsigned int j = 0; j < (unSize - 1); j++)
{
float fX = fMin + j * fSpacing;
if(filled)
{
DirectX::XMFLOAT3 A(fX, vectPoints[i][j], fZ);
DirectX::XMFLOAT3 B(fX, vectPoints[i + 1][j], fZ + fSpacing);
DirectX::XMFLOAT3 C(fX + fSpacing, vectPoints[i + 1][j + 1], fZ + fSpacing);
DirectX::XMFLOAT3 D(fX + fSpacing, vectPoints[i][j + 1], fZ);
vec1 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(B.x - A.x, B.y - A.y, B.z - A.z));
vec2 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(C.x - A.x, C.y - A.y, C.z - A.z));
normal = DirectX::XMVector3Cross(vec1, vec2);
setVertices(fX, vectPoints[i][j], fZ, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fSpacing + fMax) / fMax * 2);
setVertices(fX + fSpacing, vectPoints[i + 1][j + 1], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ + fSpacing + fMax) / fMax * 2);
/*vec1 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(C.x - B.x, C.y - B.y, C.z - B.z));
vec2 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(D.x - B.x, D.y - B.y, D.z - B.z));
normal = DirectX::XMVector3Cross(vec1, vec2);
setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fSpacing + fMax) / fMax * 2);
setVertices(fX + fSpacing, vectPoints[i + 1][j + 1], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ + fSpacing + fMax) / fMax * 2);
setVertices(fX + fSpacing, vectPoints[i][j + 1], fZ, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
*/
vec1 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(D.x - C.x, D.y - C.y, D.z - C.z));
vec2 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(A.x - C.x, A.y - C.y, A.z - C.z));
normal = DirectX::XMVector3Cross(vec1, vec2);
setVertices(fX + fSpacing, vectPoints[i + 1][j + 1], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ +fSpacing + fMax) / fMax * 2);
setVertices(fX + fSpacing, vectPoints[i][j + 1], fZ, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
setVertices(fX, vectPoints[i][j], fZ, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
/*vec1 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(A.x - D.x, A.y - D.y, A.z - D.z));
vec2 = DirectX::XMLoadFloat3(&DirectX::XMFLOAT3(B.x - D.x, B.y - D.y, B.z - D.z));
normal = DirectX::XMVector3Cross(vec1, vec2);
setVertices(fX + fSpacing, vectPoints[i][j + 1], fZ, i, j, vertices, indices, &index, normal, (fX + fSpacing + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
setVertices(fX, vectPoints[i][j], fZ, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fMax) / fMax * 2);
setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index, normal, (fX + fMax) / fMax * 2, (fZ + fSpacing + fMax) / fMax * 2);
*/
/*setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index);
setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index);
setVertices(fX, vectPoints[i][j + 1], fZ, i, j, vertices, indices, &index);
setVertices(fX, vectPoints[i + 1][j], fZ + fSpacing, i, j, vertices, indices, &index);*/
}
//.........這裏部分代碼省略.........
示例3: MPI_Comm_size
int ParpackSolver::Solve(int nev) {
/* Get MPI info */
int nprocs, me;
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Fint fcomm = MPI_Comm_c2f(MPI_COMM_WORLD);
/* Select number of working Ritz vectors */
if(ncv == -1)
ncv = 2*nev;
ncv = std::min(ncv, n-1);
/* Initialize matrix descriptors */
xdesc = pcontext->new_descriptor(n, 1, divup(n,nprocs), 1);
Bdesc = pcontext->new_descriptor(n, ncv, divup(n,nprocs), ncv);
assert(nloc == Bdesc->num_local_rows() && nloc == xdesc->num_local_rows());
assert(ncv == Bdesc->num_local_cols() && 1 == xdesc->num_local_cols());
/* Allocate local memory for eigenvector matrix $B$ */
Bvalues = (real*) opsec_malloc(Bdesc->local_size() * sizeof(real));
real sigma;
int iparam[11], ipntr[11];
/* Set PARPACK parameters */
char bmat[] = "I";
char which[] = "LA";
char howmny[] = "All";
iparam[0] = 1; // ishfts
iparam[2] = maxitr; // maxitr
iparam[6] = 1; // mode
/* Allocate working memory */
int lworkl = ncv*(ncv + 8);
real* workl = (real*) opsec_calloc(lworkl, sizeof(real));
real* workd = (real*) opsec_calloc(3*nloc, sizeof(real));
real* resid = (real*) opsec_calloc(nloc, sizeof(real));
int* select = (int*) opsec_calloc(ncv, sizeof(int));
/* Begin reverse communication loop */
int itr = 0;
int info = 0;
int ido = 0;
while(ido != 99) {
parpack_psaupd(&fcomm, &ido, bmat, &nloc, which, &nev,
&tol, resid, &ncv, Bvalues, &nloc, iparam, ipntr,
workd, workl, &lworkl, &info);
if(ido == 1 || ido == -1) {
/* Compute y = A*x (don't forget Fortran indexing conventions!) */
slp::Matrix<real> A(Adesc, Avalues);
slp::Matrix<real> x(xdesc, &workd[ipntr[0] - 1]);
slp::Matrix<real> y(xdesc, &workd[ipntr[1] - 1]);
slp::multiply(A, x, y);
}
}
if(me == 0) {
opsec_info("Number of Implicit Arnoldi update iterations taken is %d\n", iparam[2]);
opsec_info(" info = %d\n", info);
opsec_info(" nconv = %d, nev = %d\n", iparam[4], nev);
time_t t = time(NULL);
opsec_info("Time: %s\n", ctime(&t));
opsec_info("Post-processing Ritz values and vectors\n");
}
/* Check return code */
if(info < 0) {
/* Error encountered. Abort. */
if(me == 0)
opsec_error("parpack_psaupd returned error: info = %d\n", info);
return info;
}
else {
/* Save number of successfully computed eigenvalues */
nconv = iparam[4];
evals.resize(nconv);
/* Retrieve eigenvalues and eigenvectors */
int rvec = 1;
int ierr;
parpack_pseupd(&fcomm, &rvec, howmny, select, &evals[0], Bvalues, &nloc, &sigma,
bmat, &nloc, which, &nev, &tol, resid, &ncv, Bvalues, &nloc,
iparam, ipntr, workd, workl, &lworkl, &ierr);
if(ierr != 0) {
if(me == 0)
opsec_error("parpack_pseupd returned error: ierr = %d\n", ierr);
}
}
if(me == 0) {
time_t t = time(NULL);
opsec_info("Time: %s\n", ctime(&t));
}
#if 0
{
int i;
//.........這裏部分代碼省略.........
示例4: GetGeometry
void TotalLagrangian::CalculateAll( MatrixType& rLeftHandSideMatrix,
VectorType& rRightHandSideVector,
ProcessInfo& rCurrentProcessInfo,
bool CalculateStiffnessMatrixFlag,
bool CalculateResidualVectorFlag )
{
KRATOS_TRY
const unsigned int number_of_nodes = GetGeometry().size();
const unsigned int dim = GetGeometry().WorkingSpaceDimension();
unsigned int StrainSize;
if ( dim == 2 )
StrainSize = 3;
else
StrainSize = 6;
Matrix B( StrainSize, number_of_nodes * dim );
Matrix F( dim, dim );
Matrix D( StrainSize, StrainSize );
Matrix C( dim, dim );
Vector StrainVector( StrainSize );
Vector StressVector( StrainSize );
Matrix DN_DX( number_of_nodes, dim );
//resizing as needed the LHS
unsigned int MatSize = number_of_nodes * dim;
if ( CalculateStiffnessMatrixFlag == true ) //calculation of the matrix is required
{
if ( rLeftHandSideMatrix.size1() != MatSize )
rLeftHandSideMatrix.resize( MatSize, MatSize, false );
noalias( rLeftHandSideMatrix ) = ZeroMatrix( MatSize, MatSize ); //resetting LHS
}
//resizing as needed the RHS
if ( CalculateResidualVectorFlag == true ) //calculation of the matrix is required
{
if ( rRightHandSideVector.size() != MatSize )
rRightHandSideVector.resize( MatSize, false );
rRightHandSideVector = ZeroVector( MatSize ); //resetting RHS
}
//reading integration points and local gradients
const GeometryType::IntegrationPointsArrayType& integration_points = GetGeometry().IntegrationPoints( mThisIntegrationMethod );
const GeometryType::ShapeFunctionsGradientsType& DN_De = GetGeometry().ShapeFunctionsLocalGradients( mThisIntegrationMethod );
const Matrix& Ncontainer = GetGeometry().ShapeFunctionsValues( mThisIntegrationMethod );
//calculating actual jacobian
GeometryType::JacobiansType J;
GetGeometry().Jacobian( J );
//KRATOS_WATCH(J)
//auxiliary terms
Vector BodyForce;
for ( unsigned int PointNumber = 0; PointNumber < integration_points.size(); PointNumber++ )
{
//Calculating the cartesian derivatives (it is avoided storing them to minimize storage)
noalias( DN_DX ) = prod( DN_De[PointNumber], mInvJ0[PointNumber] );
//deformation gradient
noalias( F ) = prod( J[PointNumber], mInvJ0[PointNumber] );
//strain calculation
noalias( C ) = prod( trans( F ), F );
CalculateStrain( C, StrainVector );
Comprobate_State_Vector( StrainVector );
mConstitutiveLawVector[PointNumber]->CalculateMaterialResponse(
StrainVector,
F,
StressVector,
D,
rCurrentProcessInfo,
GetProperties(),
GetGeometry(),
row( Ncontainer, PointNumber ),
//.........這裏部分代碼省略.........
示例5: panel_eid_fixup
static void panel_eid_fixup(uint16_t *mfr_name, uint16_t *product_code)
{
B("%s: enter.\n", __func__);
*mfr_name = 0x0101;
*product_code = 0x0;
}
示例6: A
struct A;
struct B
{
operator A();
};
struct A
{
A(A const&){}
};
A a{B()};
示例7: inv
/**
Purpose
-------
CHEGST reduces a complex Hermitian-definite generalized
eigenproblem to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
B must have been previously factorized as U**H*U or L*L**H by CPOTRF.
Arguments
---------
@param[in]
itype INTEGER
= 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
= 2 or 3: compute U*A*U**H or L**H*A*L.
@param[in]
uplo magma_uplo_t
- = MagmaUpper: Upper triangle of A is stored and B is factored as U**H*U;
- = MagmaLower: Lower triangle of A is stored and B is factored as L*L**H.
@param[in]
n INTEGER
The order of the matrices A and B. N >= 0.
@param[in,out]
A COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = MagmaLower, the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
\n
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
@param[in]
lda INTEGER
The leading dimension of the array A. LDA >= max(1,N).
@param[in]
B COMPLEX array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by CPOTRF.
@param[in]
ldb INTEGER
The leading dimension of the array B. LDB >= max(1,N).
@param[out]
info INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
@ingroup magma_cheev_comp
********************************************************************/
extern "C" magma_int_t
magma_chegst(
magma_int_t itype, magma_uplo_t uplo, magma_int_t n,
magmaFloatComplex *A, magma_int_t lda,
magmaFloatComplex *B, magma_int_t ldb,
magma_int_t *info)
{
#define A(i, j) (A + (j)*lda + (i))
#define B(i, j) (B + (j)*ldb + (i))
#define dA(i, j) (dw + (j)*ldda + (i))
#define dB(i, j) (dw + n*ldda + (j)*lddb + (i))
const char* uplo_ = lapack_uplo_const( uplo );
magma_int_t nb;
magma_int_t k, kb, kb2;
magmaFloatComplex c_one = MAGMA_C_ONE;
magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
magmaFloatComplex c_half = MAGMA_C_HALF;
magmaFloatComplex c_neg_half = MAGMA_C_NEG_HALF;
magmaFloatComplex *dw;
magma_int_t ldda = n;
magma_int_t lddb = n;
float d_one = 1.0;
int upper = (uplo == MagmaUpper);
/* Test the input parameters. */
*info = 0;
if (itype < 1 || itype > 3) {
*info = -1;
} else if (! upper && uplo != MagmaLower) {
*info = -2;
} else if (n < 0) {
*info = -3;
} else if (lda < max(1,n)) {
*info = -5;
} else if (ldb < max(1,n)) {
//.........這裏部分代碼省略.........
示例8: Int_MPIData
#include "../konoha_mpi.h"
/* ------------------------------------------------------------------------ */
/* TYPEMAP */
TYPEMAP Int_MPIData(CTX ctx, ksfp_t *sfp _RIX)
{
MPID(data, new_O(MPIData, knh_getcid(ctx, B("konoha.mpi.MPIData"))));
MPID_INIT(data, new_Int(ctx, sfp[1].ivalue), MPI_LONG, CLASS_Int, O_cid(sfp[1].o));
RETURN_(data);
}
TYPEMAP int___MPIData(CTX ctx, ksfp_t *sfp _RIX)
{
MPID(data, new_O(MPIData, knh_getcid(ctx, B("konoha.mpi.MPIData"))));
MPID_INIT(data, sfp[1].a, MPI_LONG, CLASS_Array, O_cid(sfp[1].o));
RETURN_(data);
}
TYPEMAP Float_MPIData(CTX ctx, ksfp_t *sfp _RIX)
{
MPID(data, new_O(MPIData, knh_getcid(ctx, B("konoha.mpi.MPIData"))));
MPID_INIT(data, new_Float_(ctx, CLASS_Float, sfp[1].fvalue), MPI_DOUBLE, CLASS_Float, O_cid(sfp[1].o));
RETURN_(data);
}
TYPEMAP float___MPIData(CTX ctx, ksfp_t *sfp _RIX)
{
MPID(data, new_O(MPIData, knh_getcid(ctx, B("konoha.mpi.MPIData"))));
MPID_INIT(data, sfp[1].a, MPI_DOUBLE, CLASS_Array, O_cid(sfp[1].o));
RETURN_(data);
示例9: A
int A(int x)
{
int arr[5];
return B(arr[4]);
}
示例10: main
int main(int argc, char *argv[])
{
int my_ID, myrow, mycol, /* my index and row and column index */
root=0, /* ID of root rank */
Num_procs, /* number of ranks */
nprow, npcol, /* row, column dimensions of rank grid */
order, /* matrix order */
mynrows, myfrow, /* my number of rows and index of first row*/
mylrow, /* and last row */
/*myncols,*/ myfcol,/* my number of cols and index of first row*/
mylcol, /* and last row */
*mm, /* arrays that hold m_i's and n_j's */
*nn,
/*nb,*/ /* block factor for SUMMA */
inner_block_flag, /* flag to select local DGEMM blocking */
error=0, /* error flag */
*ranks, /* work array for row and column ranks */
/*lda, ldb, ldc,*/ /* leading array dimensions of a, b, and c */
iter, iterations;
long lda, ldb, ldc,
nb, myncols; /* make long to avoid integer overflow */
double RESTRICT *a, *b, *c, /* arrays that hold local a, b, c */
*work1, *work2, /* work arrays to pass to dpmmmult */
local_dgemm_time, /* timing parameters */
dgemm_time,
avgtime;
double
forder, nflops, /* float matrix order + total flops */
checksum, /* array checksum for verification test */
checksum_local=0.0,
ref_checksum; /* reference checkcum for verification */
MPI_Group world_group,
temp_group;
MPI_Comm comm_row, /* communicators for row and column ranks */
comm_col; /* of rank grid */
int shortcut; /* true if only doing initialization */
/* initialize */
MPI_Init(&argc,&argv);
MPI_Comm_rank( MPI_COMM_WORLD, &my_ID );
MPI_Comm_size( MPI_COMM_WORLD, &Num_procs );
/*********************************************************************
** process, test and broadcast input parameters
*********************************************************************/
if (my_ID == root) {
printf("Parallel Research Kernels version %s\n", PRKVERSION);
printf("MPI Dense matrix-matrix multiplication: C = A x B\n");
if (argc != 5) {
printf("Usage: %s <# iterations> <matrix order> <outer block size> ",
*argv);
printf("<local block flag (non-zero=yes, zero=no)>\n");
error = 1;
goto ENDOFTESTS;
}
iterations = atoi(*++argv);
if(iterations < 1){
printf("ERROR: iterations must be positive: %d \n",iterations);
error = 1;
goto ENDOFTESTS;
}
order = atoi(*++argv);
if (order < 0) {
shortcut = 1;
order = -order;
} else shortcut = 0;
if (order < Num_procs) {
printf("ERROR: matrix order too small: %d\n", order);
error = 1;
goto ENDOFTESTS;
}
nb = atol(*++argv);
/* a non-positive tile size means no outer level tiling */
inner_block_flag = atoi(*++argv);
ENDOFTESTS:;
}
bail_out(error);
MPI_Bcast(&order, 1, MPI_INT, root, MPI_COMM_WORLD);
MPI_Bcast(&iterations, 1, MPI_INT, root, MPI_COMM_WORLD);
MPI_Bcast(&nb, 1, MPI_LONG, root, MPI_COMM_WORLD);
MPI_Bcast(&shortcut, 1, MPI_INT, root, MPI_COMM_WORLD);
MPI_Bcast(&inner_block_flag, 1, MPI_INT, root, MPI_COMM_WORLD);
/* compute rank grid to most closely match a square; to do so,
compute largest divisor of Num_procs, using hare-brained method.
The small term epsilon is used to guard against roundoff errors
in case Num_procs is a perfect square */
nprow = (int) (sqrt((double) Num_procs + epsilon));
while (Num_procs%nprow) nprow--;
npcol = Num_procs/nprow;
if (my_ID == root) {
//.........這裏部分代碼省略.........
示例11: fast_inclusion
unsigned int fast_inclusion(const tetra *t, const point *p) {
auto &a = *t->p[0],
&b = *t->p[1],
&c = *t->p[2],
&d = *t->p[3];
Eigen::Matrix<double, 3, 3> A;
A.col(0) << b.x - a.x, b.y - a.y, b.z - a.z;
A.col(1) << c.x - a.x, c.y - a.y, c.z - a.z;
A.col(2) << d.x - a.x, d.y - a.y, d.z - a.z;
if (verbose == 3)
std::cout << A << std::endl;
Eigen::Matrix<double, 3, 1> x, B(p->x - a.x, p->y - a.y, p->z - a.z);
x = A.inverse() * B;
double sum = 0;
for (unsigned int i = 0; i < 3; ++i) {
if (std::abs(x[i]) < 1e-10)
x[i] = 0;
if (x[i] < 0)
return 0; // outside
else
sum += x[i];
}
if (std::abs(sum - 1) < 1e-10)
sum = 1;//return exact_inclusion(t, p);
if (std::abs(sum) < 1e-10)
sum = 0;
if (sum > 1)
return 0; // outside
if (sum == 0)
return 1; // vertex 0
double u(x[0]), v(x[1]), w(x[2]);
if (u == 1) {
return 2; // vertex 1
}
else if (u > 0) {
if (v > 0) {
if (w > 0) {
if (sum == 1)
return 14; // surface 321
else
return 15; // inside
}
else {
if (sum == 1)
return 6; // edge 21
else
return 7; // surface 012
}
}
else {
if (w > 0) {
if (sum == 1)
return 10; // edge 31
else
return 11; // surface 031
}
else {
return 3; // edge 10
}
}
} else {
if (v == 1)
return 4; // vertex 2
else if (v > 0) {
if (w > 0) {
if (sum == 1)
return 12; // edge 32
//.........這裏部分代碼省略.........
示例12: magma_zhegst_gpu
extern "C" magma_int_t
magma_zhegst_gpu(magma_int_t itype, char uplo, magma_int_t n,
cuDoubleComplex *da, magma_int_t ldda,
cuDoubleComplex *db, magma_int_t lddb, magma_int_t *info)
{
/*
-- MAGMA (version 1.3.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
November 2012
Purpose
=======
ZHEGST_GPU reduces a complex Hermitian-definite generalized
eigenproblem to standard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
Arguments
=========
ITYPE (input) INTEGER
= 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
= 2 or 3: compute U*A*U**H or L**H*A*L.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**H*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**H.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
DA (device input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
LDDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
DB (device input) COMPLEX*16 array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B,
as returned by ZPOTRF.
LDDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================*/
char uplo_[2] = {uplo, 0};
magma_int_t nb;
magma_int_t k, kb, kb2;
cuDoubleComplex c_one = MAGMA_Z_ONE;
cuDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
cuDoubleComplex c_half = MAGMA_Z_HALF;
cuDoubleComplex c_neg_half = MAGMA_Z_NEG_HALF;
cuDoubleComplex *w;
magma_int_t lda;
magma_int_t ldb;
double d_one = 1.0;
int upper = lapackf77_lsame(uplo_, "U");
/* Test the input parameters. */
*info = 0;
if (itype<1 || itype>3){
*info = -1;
}else if ((! upper) && (! lapackf77_lsame(uplo_, "L"))) {
*info = -2;
} else if (n < 0) {
*info = -3;
} else if (ldda < max(1,n)) {
*info = -5;
}else if (lddb < max(1,n)) {
*info = -7;
}
if (*info != 0) {
magma_xerbla( __func__, -(*info) );
return *info;
}
/* Quick return */
if ( n == 0 )
//.........這裏部分代碼省略.........
示例13: foo
void foo (int) {
struct B { virtual ~B() {} };
B();
}
示例14: PROFILE2
LR::LRSplineSurface* ASMu2D::scRecovery (const IntegrandBase& integrand) const
{
PROFILE2("ASMu2D::scRecovery");
const int m = integrand.derivativeOrder();
const int p1 = lrspline->order(0);
const int p2 = lrspline->order(1);
// Get Gaussian quadrature point coordinates
const int ng1 = p1 - m;
const int ng2 = p2 - m;
const double* xg = GaussQuadrature::getCoord(ng1);
const double* yg = GaussQuadrature::getCoord(ng2);
if (!xg || !yg) return nullptr;
// Compute parameter values of the Greville points
std::array<RealArray,2> gpar;
if (!this->getGrevilleParameters(gpar[0],0)) return nullptr;
if (!this->getGrevilleParameters(gpar[1],1)) return nullptr;
const int n1 = p1 - m + 1; // Patch size in first parameter direction
const int n2 = p2 - m + 1; // Patch size in second parameter direction
const size_t nCmp = integrand.getNoFields(); // Number of result components
const size_t nPol = n1*n2; // Number of terms in polynomial expansion
Matrix sValues(nCmp,gpar[0].size());
Vector P(nPol);
Go::Point X, G;
// Loop over all Greville points (one for each basis function)
size_t k, l, ip = 0;
std::vector<LR::Element*>::const_iterator elStart, elEnd, el;
std::vector<LR::Element*> supportElements;
for (LR::Basisfunction *b : lrspline->getAllBasisfunctions())
{
#if SP_DEBUG > 2
std::cout <<"Basis: "<< *b <<"\n ng1 ="<< ng1 <<"\n ng2 ="<< ng2
<<"\n nPol="<< nPol << std::endl;
#endif
// Special case for basis functions with too many zero knot spans by using
// the extended support
// if(nel*ng1*ng2 < nPol)
if(true)
{
// KMO: Here I'm not sure how this will change when m > 1.
// In that case I think we would need smaller patches (as in the tensor
// splines case). But how to do that???
supportElements = b->getExtendedSupport();
elStart = supportElements.begin();
elEnd = supportElements.end();
#if SP_DEBUG > 2
std::cout <<"Extended basis:";
for (el = elStart; el != elEnd; el++)
std::cout <<"\n " << **el;
std::cout << std::endl;
#endif
}
else
{
elStart = b->supportedElementBegin();
elEnd = b->supportedElementEnd();
}
// Physical coordinates of current Greville point
lrspline->point(G,gpar[0][ip],gpar[1][ip]);
// Set up the local projection matrices
DenseMatrix A(nPol,nPol);
Matrix B(nPol,nCmp);
// Loop over all non-zero knot-spans in the support of
// the basis function associated with current Greville point
for (el = elStart; el != elEnd; el++)
{
int iel = (**el).getId()+1;
// evaluate all gauss points for this element
std::array<RealArray,2> gaussPt, unstrGauss;
this->getGaussPointParameters(gaussPt[0],0,ng1,iel,xg);
this->getGaussPointParameters(gaussPt[1],1,ng2,iel,yg);
#if SP_DEBUG > 2
std::cout << "Element " << **el << std::endl;
#endif
// convert to unstructred mesh representation
expandTensorGrid(gaussPt.data(),unstrGauss.data());
// Evaluate the secondary solution at all Gauss points
Matrix sField;
if (!this->evalSolution(sField,integrand,unstrGauss.data()))
return nullptr;
// Loop over the Gauss points in current knot-span
int i, j, ig = 1;
for (j = 0; j < ng2; j++)
for (i = 0; i < ng1; i++, ig++)
{
//.........這裏部分代碼省略.........
示例15: AddDot4x4
void AddDot4x4( int k, double *a, int lda, double *b, int ldb, double *c, int ldc )
{
/* So, this routine computes a 4x4 block of matrix A
C( 0, 0 ), C( 0, 1 ), C( 0, 2 ), C( 0, 3 ).
C( 1, 0 ), C( 1, 1 ), C( 1, 2 ), C( 1, 3 ).
C( 2, 0 ), C( 2, 1 ), C( 2, 2 ), C( 2, 3 ).
C( 3, 0 ), C( 3, 1 ), C( 3, 2 ), C( 3, 3 ).
Notice that this routine is called with c = C( i, j ) in the
previous routine, so these are actually the elements
C( i , j ), C( i , j+1 ), C( i , j+2 ), C( i , j+3 )
C( i+1, j ), C( i+1, j+1 ), C( i+1, j+2 ), C( i+1, j+3 )
C( i+2, j ), C( i+2, j+1 ), C( i+2, j+2 ), C( i+2, j+3 )
C( i+3, j ), C( i+3, j+1 ), C( i+3, j+2 ), C( i+3, j+3 )
in the original matrix C
In this version, we merge each set of four loops, computing four
inner products simultaneously. */
int p;
for ( p=0; p<k; p++ ){
/* First row */
C( 0, 0 ) += A( 0, p ) * B( p, 0 );
C( 0, 1 ) += A( 0, p ) * B( p, 1 );
C( 0, 2 ) += A( 0, p ) * B( p, 2 );
C( 0, 3 ) += A( 0, p ) * B( p, 3 );
/* Second row */
C( 1, 0 ) += A( 1, p ) * B( p, 0 );
C( 1, 1 ) += A( 1, p ) * B( p, 1 );
C( 1, 2 ) += A( 1, p ) * B( p, 2 );
C( 1, 3 ) += A( 1, p ) * B( p, 3 );
/* Third row */
C( 2, 0 ) += A( 2, p ) * B( p, 0 );
C( 2, 1 ) += A( 2, p ) * B( p, 1 );
C( 2, 2 ) += A( 2, p ) * B( p, 2 );
C( 2, 3 ) += A( 2, p ) * B( p, 3 );
/* Fourth row */
C( 3, 0 ) += A( 3, p ) * B( p, 0 );
C( 3, 1 ) += A( 3, p ) * B( p, 1 );
C( 3, 2 ) += A( 3, p ) * B( p, 2 );
C( 3, 3 ) += A( 3, p ) * B( p, 3 );
}
}