本文整理匯總了C++中Axpy函數的典型用法代碼示例。如果您正苦於以下問題:C++ Axpy函數的具體用法?C++ Axpy怎麽用?C++ Axpy使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Axpy函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: MakeExplicitlyHermitian
void MakeExplicitlyHermitian( UpperOrLower uplo, DistMatrix<F,MC,MR>& A )
{
const Grid& g = A.Grid();
DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g),
ABL(g), ABR(g), A10(g), A11(g), A12(g),
A20(g), A21(g), A22(g);
DistMatrix<F,MC,MR> A11Adj(g);
DistMatrix<F,MR,MC> A11_MR_MC(g);
DistMatrix<F,MR,MC> A21_MR_MC(g);
DistMatrix<F,MR,MC> A12_MR_MC(g);
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height() < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/
/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22 );
A11Adj.AlignWith( A11 );
A11_MR_MC.AlignWith( A11 );
A12_MR_MC.AlignWith( A21 );
A21_MR_MC.AlignWith( A12 );
//--------------------------------------------------------------------//
A11_MR_MC = A11;
A11Adj.ResizeTo( A11.Height(), A11.Width() );
Adjoint( A11_MR_MC.LocalMatrix(), A11Adj.LocalMatrix() );
if( uplo == LOWER )
{
MakeTrapezoidal( LEFT, UPPER, 1, A11Adj );
Axpy( (F)1, A11Adj, A11 );
A21_MR_MC = A21;
Adjoint( A21_MR_MC.LocalMatrix(), A12.LocalMatrix() );
}
else
{
MakeTrapezoidal( LEFT, LOWER, -1, A11Adj );
Axpy( (F)1, A11Adj, A11 );
A12_MR_MC = A12;
Adjoint( A12_MR_MC.LocalMatrix(), A21.LocalMatrix() );
}
//--------------------------------------------------------------------//
A21_MR_MC.FreeAlignments();
A12_MR_MC.FreeAlignments();
A11_MR_MC.FreeAlignments();
A11Adj.FreeAlignments();
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22 );
}
}
示例2: a1_like_a2
void Transform2x2
( const Matrix<T>& G,
AbstractDistMatrix<T>& a1,
AbstractDistMatrix<T>& a2 )
{
DEBUG_CSE
typedef unique_ptr<AbstractDistMatrix<T>> ADMPtr;
// TODO: Optimize by attempting SendRecv when possible
ADMPtr a1_like_a2( a2.Construct( a2.Grid(), a2.Root() ) );
a1_like_a2->AlignWith( DistData(a2) );
Copy( a1, *a1_like_a2 );
ADMPtr a2_like_a1( a1.Construct( a1.Grid(), a1.Root() ) );
a2_like_a1->AlignWith( DistData(a1) );
Copy( a2, *a2_like_a1 );
// TODO: Generalized axpy?
Scale( G(0,0), a1 );
Axpy( G(0,1), *a2_like_a1, a1 );
// TODO: Generalized axpy?
Scale( G(1,1), a2 );
Axpy( G(1,0), *a1_like_a2, a2 );
}
示例3: Copy
/* Prototype implementation for specialized functions */
void Vector::AddTwoVectorsImpl(Number a, const Vector& v1,
Number b, const Vector& v2, Number c)
{
if (c==0.) {
if (a==1.) {
Copy(v1);
if (b!=0.) {
Axpy(b, v2);
}
}
else if (a==0.) {
if (b==0.) {
Set(0.);
}
else {
Copy(v2);
if (b!=1.) {
Scal(b);
}
}
}
else {
if (b==1.) {
Copy(v2);
Axpy(a, v1);
}
else if (b==0.) {
Copy(v1);
Scal(a);
}
else {
Copy(v1);
Scal(a);
Axpy(b, v2);
}
}
}
else { /* c==0. */
if (c!=1.) {
Scal(c);
}
if (a!=0.) {
Axpy(a, v1);
}
if (b!=0.) {
Axpy(b, v2);
}
}
}
示例4: entry
inline void
NewtonStep
( const DistMatrix<F>& X, DistMatrix<F>& XNew, Scaling scaling=FROB_NORM )
{
#ifndef RELEASE
CallStackEntry entry("sign::NewtonStep");
#endif
typedef BASE(F) Real;
// Calculate mu while forming B := inv(X)
Real mu;
DistMatrix<Int,VC,STAR> p( X.Grid() );
XNew = X;
LU( XNew, p );
if( scaling == DETERMINANT )
{
SafeProduct<F> det = determinant::AfterLUPartialPiv( XNew, p );
mu = Real(1)/Exp(det.kappa);
}
inverse::AfterLUPartialPiv( XNew, p );
if( scaling == FROB_NORM )
mu = Sqrt( FrobeniusNorm(XNew)/FrobeniusNorm(X) );
else if( scaling == NONE )
mu = 1;
else
LogicError("Scaling case not handled");
// Overwrite XNew with the new iterate
const Real halfMu = mu/Real(2);
const Real halfMuInv = Real(1)/(2*mu);
Scale( halfMuInv, XNew );
Axpy( halfMu, X, XNew );
}
示例5: P
void
NewtonStep
( const DistMatrix<Field>& X,
DistMatrix<Field>& XNew,
SignScaling scaling=SIGN_SCALE_FROB )
{
EL_DEBUG_CSE
typedef Base<Field> Real;
// Calculate mu while forming B := inv(X)
Real mu=1;
DistPermutation P( X.Grid() );
XNew = X;
LU( XNew, P );
if( scaling == SIGN_SCALE_DET )
{
SafeProduct<Field> det = det::AfterLUPartialPiv( XNew, P );
mu = Real(1)/Exp(det.kappa);
}
inverse::AfterLUPartialPiv( XNew, P );
if( scaling == SIGN_SCALE_FROB )
mu = Sqrt( FrobeniusNorm(XNew)/FrobeniusNorm(X) );
// Overwrite XNew with the new iterate
const Real halfMu = mu/Real(2);
const Real halfMuInv = Real(1)/(2*mu);
XNew *= halfMuInv;
Axpy( halfMu, X, XNew );
}
示例6: DEBUG_ONLY
const BlockCyclicMatrix<T>&
BlockCyclicMatrix<T>::operator-=( const BlockCyclicMatrix<T>& A )
{
DEBUG_ONLY(CSE cse("BCM::operator-="))
Axpy( T(-1), A, *this );
return *this;
}
示例7: MakeSymmetric
inline void
MakeSymmetric( UpperOrLower uplo, DistMatrix<T>& A )
{
#ifndef RELEASE
PushCallStack("MakeSymmetric");
#endif
if( A.Height() != A.Width() )
throw std::logic_error("Cannot make non-square matrix symmetric");
const Grid& g = A.Grid();
DistMatrix<T,MD,STAR> d(g);
A.GetDiagonal( d );
if( uplo == LOWER )
MakeTrapezoidal( LEFT, LOWER, -1, A );
else
MakeTrapezoidal( LEFT, UPPER, +1, A );
DistMatrix<T> ATrans(g);
Transpose( A, ATrans );
Axpy( T(1), ATrans, A );
A.SetDiagonal( d );
#ifndef RELEASE
PopCallStack();
#endif
}
示例8: HermitianTridiagU
inline void HermitianTridiagU( Matrix<R>& A )
{
#ifndef RELEASE
PushCallStack("HermitianTridiagU");
if( A.Height() != A.Width() )
throw std::logic_error( "A must be square." );
#endif
// Matrix views
Matrix<R>
ATL, ATR, A00, a01, A02, a01T,
ABL, ABR, a10, alpha11, a12, alpha01B,
A20, a21, A22;
// Temporary matrices
Matrix<R> w01;
PushBlocksizeStack( 1 );
PartitionUpDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ABR.Height()+1 < A.Height() )
{
RepartitionUpDiagonal
( ATL, /**/ ATR, A00, a01, /**/ A02,
/**/ a10, alpha11, /**/ a12,
/*************/ /**********************/
ABL, /**/ ABR, A20, a21, /**/ A22 );
PartitionUp
( a01, a01T,
alpha01B, 1 );
w01.ResizeTo( a01.Height(), 1 );
//--------------------------------------------------------------------//
const R tau = Reflector( alpha01B, a01T );
const R epsilon1 = alpha01B.Get(0,0);
alpha01B.Set(0,0,R(1));
Symv( UPPER, tau, A00, a01, R(0), w01 );
const R alpha = -tau*Dot( w01, a01 )/R(2);
Axpy( alpha, a01, w01 );
Syr2( UPPER, R(-1), a01, w01, A00 );
alpha01B.Set(0,0,epsilon1);
//--------------------------------------------------------------------//
SlidePartitionUpDiagonal
( ATL, /**/ ATR, A00, /**/ a01, A02,
/*************/ /**********************/
/**/ a10, /**/ alpha11, a12,
ABL, /**/ ABR, A20, /**/ a21, A22 );
}
PopBlocksizeStack();
#ifndef RELEASE
PopCallStack();
#endif
}
示例9: L
void L( Matrix<F>& A, Matrix<F>& t )
{
#ifndef RELEASE
CallStackEntry entry("hermitian_tridiag::L");
if( A.Height() != A.Width() )
LogicError("A must be square");
#endif
typedef BASE(F) R;
const Int tHeight = Max(A.Height()-1,0);
t.ResizeTo( tHeight, 1 );
// Matrix views
Matrix<F>
ATL, ATR, A00, a01, A02, alpha21T,
ABL, ABR, a10, alpha11, a12, a21B,
A20, a21, A22;
// Temporary matrices
Matrix<F> w21;
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height()+1 < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ a01, A02,
/*************/ /**********************/
/**/ a10, /**/ alpha11, a12,
ABL, /**/ ABR, A20, /**/ a21, A22, 1 );
PartitionDown
( a21, alpha21T,
a21B, 1 );
//--------------------------------------------------------------------//
const F tau = Reflector( alpha21T, a21B );
const R epsilon1 = alpha21T.GetRealPart(0,0);
t.Set(A00.Height(),0,tau);
alpha21T.Set(0,0,F(1));
Zeros( w21, a21.Height(), 1 );
Hemv( LOWER, tau, A22, a21, F(0), w21 );
const F alpha = -tau*Dot( w21, a21 )/F(2);
Axpy( alpha, a21, w21 );
Her2( LOWER, F(-1), a21, w21, A22 );
alpha21T.Set(0,0,epsilon1);
//--------------------------------------------------------------------//
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, a01, /**/ A02,
/**/ a10, alpha11, /**/ a12,
/*************/ /**********************/
ABL, /**/ ABR, A20, a21, /**/ A22 );
}
}
示例10: RunRoutine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto queue_plain = queue();
auto event = cl_event{};
auto status = Axpy(args.n, args.alpha,
buffers.x_vec(), args.x_offset, args.x_inc,
buffers.y_vec(), args.y_offset, args.y_inc,
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
return status;
}
示例11: entry
inline void
NewtonStep
( const Matrix<F>& A, const Matrix<F>& X, Matrix<F>& XNew, Matrix<F>& XTmp )
{
#ifndef RELEASE
CallStackEntry entry("square_root::NewtonStep");
#endif
// XNew := inv(X) A
XTmp = X;
Matrix<Int> p;
LU( XTmp, p );
XNew = A;
lu::SolveAfter( NORMAL, XTmp, p, XNew );
// XNew := 1/2 ( X + XNew )
typedef BASE(F) R;
Axpy( R(1)/R(2), X, XNew );
}
示例12: Blocksize
void SUMMA_NTB
( Orientation orientB,
T alpha,
const AbstractDistMatrix<T>& APre,
const AbstractDistMatrix<T>& BPre,
AbstractDistMatrix<T>& CPre )
{
EL_DEBUG_CSE
const Int m = CPre.Height();
const Int bsize = Blocksize();
const Grid& g = APre.Grid();
DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
auto& A = AProx.GetLocked();
auto& B = BProx.GetLocked();
auto& C = CProx.Get();
// Temporary distributions
DistMatrix<T,MR,STAR> A1Trans_MR_STAR(g);
DistMatrix<T,STAR,MC> D1_STAR_MC(g);
DistMatrix<T,MR,MC> D1_MR_MC(g);
A1Trans_MR_STAR.AlignWith( B );
D1_STAR_MC.AlignWith( B );
for( Int k=0; k<m; k+=bsize )
{
const Int nb = Min(bsize,m-k);
auto A1 = A( IR(k,k+nb), ALL );
auto C1 = C( IR(k,k+nb), ALL );
// D1[*,MC] := alpha A1[*,MR] (B[MC,MR])^T
// = alpha (A1^T)[MR,*] (B^T)[MR,MC]
Transpose( A1, A1Trans_MR_STAR );
LocalGemm( TRANSPOSE, orientB, alpha, A1Trans_MR_STAR, B, D1_STAR_MC );
// C1[MC,MR] += scattered & transposed D1[*,MC] summed over grid rows
Contract( D1_STAR_MC, D1_MR_MC );
Axpy( T(1), D1_MR_MC, C1 );
}
}
示例13: Blocksize
void SUMMA_TNA
( Orientation orientA,
T alpha,
const AbstractDistMatrix<T>& APre,
const AbstractDistMatrix<T>& BPre,
AbstractDistMatrix<T>& CPre )
{
DEBUG_CSE
const Int n = CPre.Width();
const Int bsize = Blocksize();
const Grid& g = APre.Grid();
DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
auto& A = AProx.GetLocked();
auto& B = BProx.GetLocked();
auto& C = CProx.Get();
// Temporary distributions
DistMatrix<T,MC,STAR> B1_MC_STAR(g);
DistMatrix<T,MR,STAR> D1_MR_STAR(g);
DistMatrix<T,MR,MC > D1_MR_MC(g);
B1_MC_STAR.AlignWith( A );
D1_MR_STAR.AlignWith( A );
for( Int k=0; k<n; k+=bsize )
{
const Int nb = Min(bsize,n-k);
auto B1 = B( ALL, IR(k,k+nb) );
auto C1 = C( ALL, IR(k,k+nb) );
// D1[MR,*] := alpha (A1[MC,MR])^T B1[MC,*]
// = alpha (A1^T)[MR,MC] B1[MC,*]
B1_MC_STAR = B1;
LocalGemm( orientA, NORMAL, alpha, A, B1_MC_STAR, D1_MR_STAR );
// C1[MC,MR] += scattered & transposed D1[MR,*] summed over grid cols
Contract( D1_MR_STAR, D1_MR_MC );
Axpy( T(1), D1_MR_MC, C1 );
}
}
示例14: Newton
Int
Newton( DistMatrix<Field>& A, const SignCtrl<Base<Field>>& ctrl )
{
EL_DEBUG_CSE
typedef Base<Field> Real;
Real tol = ctrl.tol;
if( tol == Real(0) )
tol = A.Height()*limits::Epsilon<Real>();
Int numIts=0;
DistMatrix<Field> B( A.Grid() );
DistMatrix<Field> *X=&A, *XNew=&B;
while( numIts < ctrl.maxIts )
{
// Overwrite XNew with the new iterate
NewtonStep( *X, *XNew, ctrl.scaling );
// Use the difference in the iterates to test for convergence
Axpy( Real(-1), *XNew, *X );
const Real oneDiff = OneNorm( *X );
const Real oneNew = OneNorm( *XNew );
// Ensure that X holds the current iterate and break if possible
++numIts;
std::swap( X, XNew );
if( ctrl.progress && A.Grid().Rank() == 0 )
cout << "after " << numIts << " Newton iter's: "
<< "oneDiff=" << oneDiff << ", oneNew=" << oneNew
<< ", oneDiff/oneNew=" << oneDiff/oneNew << ", tol="
<< tol << endl;
if( oneDiff/oneNew <= Pow(oneNew,ctrl.power)*tol )
break;
}
if( X != &A )
A = *X;
return numIts;
}
示例15: entry
inline void
Symv
( UpperOrLower uplo,
T alpha, const DistMatrix<T>& A,
const DistMatrix<T>& x,
T beta, DistMatrix<T>& y,
bool conjugate=false )
{
#ifndef RELEASE
CallStackEntry entry("Symv");
if( A.Grid() != x.Grid() || x.Grid() != y.Grid() )
throw std::logic_error
("{A,x,y} must be distributed over the same grid");
if( A.Height() != A.Width() )
throw std::logic_error("A must be square");
if( ( x.Width() != 1 && x.Height() != 1 ) ||
( y.Width() != 1 && y.Height() != 1 ) )
throw std::logic_error("x and y are assumed to be vectors");
const int xLength = ( x.Width()==1 ? x.Height() : x.Width() );
const int yLength = ( y.Width()==1 ? y.Height() : y.Width() );
if( A.Height() != xLength || A.Height() != yLength )
{
std::ostringstream msg;
msg << "Nonconformal Symv: \n"
<< " A ~ " << A.Height() << " x " << A.Width() << "\n"
<< " x ~ " << x.Height() << " x " << x.Width() << "\n"
<< " y ~ " << y.Height() << " x " << y.Width() << "\n";
throw std::logic_error( msg.str() );
}
#endif
const Grid& g = A.Grid();
if( x.Width() == 1 && y.Width() == 1 )
{
// Temporary distributions
DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
DistMatrix<T,MR,MC > z_MR_MC(g);
DistMatrix<T> z(g);
// Begin the algoritm
Scale( beta, y );
x_MC_STAR.AlignWith( A );
x_MR_STAR.AlignWith( A );
z_MC_STAR.AlignWith( A );
z_MR_STAR.AlignWith( A );
z.AlignWith( y );
Zeros( z_MC_STAR, y.Height(), 1 );
Zeros( z_MR_STAR, y.Height(), 1 );
//--------------------------------------------------------------------//
x_MC_STAR = x;
x_MR_STAR = x_MC_STAR;
if( uplo == LOWER )
{
internal::LocalSymvColAccumulateL
( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
}
else
{
internal::LocalSymvColAccumulateU
( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
}
z_MR_MC.SumScatterFrom( z_MR_STAR );
z = z_MR_MC;
z.SumScatterUpdate( T(1), z_MC_STAR );
Axpy( T(1), z, y );
//--------------------------------------------------------------------//
x_MC_STAR.FreeAlignments();
x_MR_STAR.FreeAlignments();
z_MC_STAR.FreeAlignments();
z_MR_STAR.FreeAlignments();
z.FreeAlignments();
}
else if( x.Width() == 1 )
{
// Temporary distributions
DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
DistMatrix<T,MR,MC > z_MR_MC(g);
DistMatrix<T> z(g), zTrans(g);
// Begin the algoritm
Scale( beta, y );
x_MC_STAR.AlignWith( A );
x_MR_STAR.AlignWith( A );
z_MC_STAR.AlignWith( A );
z_MR_STAR.AlignWith( A );
z.AlignWith( y );
z_MR_MC.AlignWith( y );
Zeros( z_MC_STAR, y.Width(), 1 );
Zeros( z_MR_STAR, y.Width(), 1 );
//--------------------------------------------------------------------//
x_MC_STAR = x;
x_MR_STAR = x_MC_STAR;
if( uplo == LOWER )
{
internal::LocalSymvColAccumulateL
( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
}
//.........這裏部分代碼省略.........