當前位置: 首頁>>代碼示例>>C++>>正文


C++ Axpy函數代碼示例

本文整理匯總了C++中Axpy函數的典型用法代碼示例。如果您正苦於以下問題:C++ Axpy函數的具體用法?C++ Axpy怎麽用?C++ Axpy使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了Axpy函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。

示例1: MakeExplicitlyHermitian

void MakeExplicitlyHermitian( UpperOrLower uplo, DistMatrix<F,MC,MR>& A )
{
    const Grid& g = A.Grid();
    DistMatrix<F,MC,MR> ATL(g), ATR(g),  A00(g), A01(g), A02(g),
                        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                                         A20(g), A21(g), A22(g);
    DistMatrix<F,MC,MR> A11Adj(g);
    DistMatrix<F,MR,MC> A11_MR_MC(g);
    DistMatrix<F,MR,MC> A21_MR_MC(g);
    DistMatrix<F,MR,MC> A12_MR_MC(g);

    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        A11Adj.AlignWith( A11 );
        A11_MR_MC.AlignWith( A11 );
        A12_MR_MC.AlignWith( A21 );
        A21_MR_MC.AlignWith( A12 );
        //--------------------------------------------------------------------//
        A11_MR_MC = A11;
        A11Adj.ResizeTo( A11.Height(), A11.Width() );
        Adjoint( A11_MR_MC.LocalMatrix(), A11Adj.LocalMatrix() );

        if( uplo == LOWER )
        {
            MakeTrapezoidal( LEFT, UPPER, 1, A11Adj );
            Axpy( (F)1, A11Adj, A11 );

            A21_MR_MC = A21;
            Adjoint( A21_MR_MC.LocalMatrix(), A12.LocalMatrix() ); 
        }
        else
        {
            MakeTrapezoidal( LEFT, LOWER, -1, A11Adj );
            Axpy( (F)1, A11Adj, A11 );

            A12_MR_MC = A12;
            Adjoint( A12_MR_MC.LocalMatrix(), A21.LocalMatrix() );
        }
        //--------------------------------------------------------------------//
        A21_MR_MC.FreeAlignments();
        A12_MR_MC.FreeAlignments();
        A11_MR_MC.FreeAlignments();
        A11Adj.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );
    }
}
開發者ID:ahmadia,項目名稱:elemental,代碼行數:60,代碼來源:HPSDCholesky.hpp

示例2: a1_like_a2

void Transform2x2
( const Matrix<T>& G,
        AbstractDistMatrix<T>& a1,
        AbstractDistMatrix<T>& a2 )
{
    DEBUG_CSE
    typedef unique_ptr<AbstractDistMatrix<T>> ADMPtr;

    // TODO: Optimize by attempting SendRecv when possible

    ADMPtr a1_like_a2( a2.Construct( a2.Grid(), a2.Root() ) );
    a1_like_a2->AlignWith( DistData(a2) );
    Copy( a1, *a1_like_a2 );

    ADMPtr a2_like_a1( a1.Construct( a1.Grid(), a1.Root() ) );
    a2_like_a1->AlignWith( DistData(a1) );
    Copy( a2, *a2_like_a1 );

    // TODO: Generalized axpy?
    Scale( G(0,0), a1 );
    Axpy( G(0,1), *a2_like_a1, a1 );

    // TODO: Generalized axpy?
    Scale( G(1,1), a2 );
    Axpy( G(1,0), *a1_like_a2, a2 );
}
開發者ID:jeffhammond,項目名稱:Elemental,代碼行數:26,代碼來源:Transform2x2.cpp

示例3: Copy

 /* Prototype implementation for specialized functions */
 void Vector::AddTwoVectorsImpl(Number a, const Vector& v1,
                                Number b, const Vector& v2, Number c)
 {
   if (c==0.) {
     if (a==1.) {
       Copy(v1);
       if (b!=0.) {
         Axpy(b, v2);
       }
     }
     else if (a==0.) {
       if (b==0.) {
         Set(0.);
       }
       else {
         Copy(v2);
         if (b!=1.) {
           Scal(b);
         }
       }
     }
     else {
       if (b==1.) {
         Copy(v2);
         Axpy(a, v1);
       }
       else if (b==0.) {
         Copy(v1);
         Scal(a);
       }
       else {
         Copy(v1);
         Scal(a);
         Axpy(b, v2);
       }
     }
   }
   else { /* c==0. */
     if (c!=1.) {
       Scal(c);
     }
     if (a!=0.) {
       Axpy(a, v1);
     }
     if (b!=0.) {
       Axpy(b, v2);
     }
   }
 }
開發者ID:Gjacquenot,項目名稱:simbody,代碼行數:50,代碼來源:IpVector.cpp

示例4: entry

inline void
NewtonStep
( const DistMatrix<F>& X, DistMatrix<F>& XNew, Scaling scaling=FROB_NORM )
{
#ifndef RELEASE
    CallStackEntry entry("sign::NewtonStep");
#endif
    typedef BASE(F) Real;

    // Calculate mu while forming B := inv(X)
    Real mu;
    DistMatrix<Int,VC,STAR> p( X.Grid() );
    XNew = X;
    LU( XNew, p );
    if( scaling == DETERMINANT )
    {
        SafeProduct<F> det = determinant::AfterLUPartialPiv( XNew, p );
        mu = Real(1)/Exp(det.kappa);
    }
    inverse::AfterLUPartialPiv( XNew, p );
    if( scaling == FROB_NORM )
        mu = Sqrt( FrobeniusNorm(XNew)/FrobeniusNorm(X) );
    else if( scaling == NONE )
        mu = 1;
    else
        LogicError("Scaling case not handled");

    // Overwrite XNew with the new iterate
    const Real halfMu = mu/Real(2);
    const Real halfMuInv = Real(1)/(2*mu); 
    Scale( halfMuInv, XNew );
    Axpy( halfMu, X, XNew );
}
開發者ID:khalid-hasanov,項目名稱:Elemental,代碼行數:33,代碼來源:Sign.hpp

示例5: P

void
NewtonStep
( const DistMatrix<Field>& X,
        DistMatrix<Field>& XNew,
  SignScaling scaling=SIGN_SCALE_FROB )
{
    EL_DEBUG_CSE
    typedef Base<Field> Real;

    // Calculate mu while forming B := inv(X)
    Real mu=1;
    DistPermutation P( X.Grid() );
    XNew = X;
    LU( XNew, P );
    if( scaling == SIGN_SCALE_DET )
    {
        SafeProduct<Field> det = det::AfterLUPartialPiv( XNew, P );
        mu = Real(1)/Exp(det.kappa);
    }
    inverse::AfterLUPartialPiv( XNew, P );
    if( scaling == SIGN_SCALE_FROB )
        mu = Sqrt( FrobeniusNorm(XNew)/FrobeniusNorm(X) );

    // Overwrite XNew with the new iterate
    const Real halfMu = mu/Real(2);
    const Real halfMuInv = Real(1)/(2*mu);
    XNew *= halfMuInv;
    Axpy( halfMu, X, XNew );
}
開發者ID:elemental,項目名稱:Elemental,代碼行數:29,代碼來源:Sign.cpp

示例6: DEBUG_ONLY

const BlockCyclicMatrix<T>&
BlockCyclicMatrix<T>::operator-=( const BlockCyclicMatrix<T>& A )
{
    DEBUG_ONLY(CSE cse("BCM::operator-="))
    Axpy( T(-1), A, *this );
    return *this;
}
開發者ID:bluehope,項目名稱:Elemental,代碼行數:7,代碼來源:BlockCyclic.cpp

示例7: MakeSymmetric

inline void
MakeSymmetric( UpperOrLower uplo, DistMatrix<T>& A )
{
#ifndef RELEASE
    PushCallStack("MakeSymmetric");
#endif
    if( A.Height() != A.Width() )
        throw std::logic_error("Cannot make non-square matrix symmetric");

    const Grid& g = A.Grid();
    DistMatrix<T,MD,STAR> d(g);
    A.GetDiagonal( d );

    if( uplo == LOWER )
        MakeTrapezoidal( LEFT, LOWER, -1, A );
    else
        MakeTrapezoidal( LEFT, UPPER, +1, A );
    DistMatrix<T> ATrans(g);
    Transpose( A, ATrans );
    Axpy( T(1), ATrans, A );

    A.SetDiagonal( d );
#ifndef RELEASE
    PopCallStack();
#endif
}
開發者ID:jimgoo,項目名稱:Elemental,代碼行數:26,代碼來源:MakeSymmetric.hpp

示例8: HermitianTridiagU

inline void HermitianTridiagU( Matrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("HermitianTridiagU");
    if( A.Height() != A.Width() )
        throw std::logic_error( "A must be square." );
#endif
    // Matrix views 
    Matrix<R>
        ATL, ATR,  A00, a01,     A02,  a01T,
        ABL, ABR,  a10, alpha11, a12,  alpha01B,
                   A20, a21,     A22;

    // Temporary matrices
    Matrix<R> w01;

    PushBlocksizeStack( 1 );
    PartitionUpDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ABR.Height()+1 < A.Height() )
    {
        RepartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        PartitionUp
        ( a01, a01T,
               alpha01B, 1 );

        w01.ResizeTo( a01.Height(), 1 );
        //--------------------------------------------------------------------//
        const R tau = Reflector( alpha01B, a01T );
        const R epsilon1 = alpha01B.Get(0,0);
        alpha01B.Set(0,0,R(1));

        Symv( UPPER, tau, A00, a01, R(0), w01 );
        const R alpha = -tau*Dot( w01, a01 )/R(2);
        Axpy( alpha, a01, w01 );
        Syr2( UPPER, R(-1), a01, w01, A00 );
        alpha01B.Set(0,0,epsilon1);
        //--------------------------------------------------------------------//

        SlidePartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
開發者ID:certik,項目名稱:Elemental,代碼行數:56,代碼來源:Local.hpp

示例9: L

void L( Matrix<F>& A, Matrix<F>& t )
{
#ifndef RELEASE
    CallStackEntry entry("hermitian_tridiag::L");
    if( A.Height() != A.Width() )
        LogicError("A must be square");
#endif
    typedef BASE(F) R;
    const Int tHeight = Max(A.Height()-1,0);
    t.ResizeTo( tHeight, 1 );

    // Matrix views 
    Matrix<F>
        ATL, ATR,  A00, a01,     A02,  alpha21T,
        ABL, ABR,  a10, alpha11, a12,  a21B,
                   A20, a21,     A22;

    // Temporary matrices
    Matrix<F> w21;

    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height()+1 < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22, 1 );

        PartitionDown
        ( a21, alpha21T,
               a21B,     1 );

        //--------------------------------------------------------------------//
        const F tau = Reflector( alpha21T, a21B );
        const R epsilon1 = alpha21T.GetRealPart(0,0);
        t.Set(A00.Height(),0,tau);
        alpha21T.Set(0,0,F(1));

        Zeros( w21, a21.Height(), 1 );
        Hemv( LOWER, tau, A22, a21, F(0), w21 );
        const F alpha = -tau*Dot( w21, a21 )/F(2);
        Axpy( alpha, a21, w21 );
        Her2( LOWER, F(-1), a21, w21, A22 );
        alpha21T.Set(0,0,epsilon1);
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
}
開發者ID:khalid-hasanov,項目名稱:Elemental,代碼行數:56,代碼來源:L.hpp

示例10: RunRoutine

 // Describes how to run the CLBlast routine
 static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
   auto queue_plain = queue();
   auto event = cl_event{};
   auto status = Axpy(args.n, args.alpha,
                      buffers.x_vec(), args.x_offset, args.x_inc,
                      buffers.y_vec(), args.y_offset, args.y_inc,
                      &queue_plain, &event);
   if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
   return status;
 }
開發者ID:dividiti,項目名稱:CLBlast,代碼行數:11,代碼來源:xaxpy.hpp

示例11: entry

inline void
NewtonStep
( const Matrix<F>& A, const Matrix<F>& X, Matrix<F>& XNew, Matrix<F>& XTmp )
{
#ifndef RELEASE
    CallStackEntry entry("square_root::NewtonStep");
#endif
    // XNew := inv(X) A
    XTmp = X;
    Matrix<Int> p;
    LU( XTmp, p );
    XNew = A;
    lu::SolveAfter( NORMAL, XTmp, p, XNew );

    // XNew := 1/2 ( X + XNew )
    typedef BASE(F) R;
    Axpy( R(1)/R(2), X, XNew );
}
開發者ID:khalid-hasanov,項目名稱:Elemental,代碼行數:18,代碼來源:SquareRoot.hpp

示例12: Blocksize

void SUMMA_NTB
( Orientation orientB,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    EL_DEBUG_CSE
    const Int m = CPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MR,STAR> A1Trans_MR_STAR(g);
    DistMatrix<T,STAR,MC> D1_STAR_MC(g);
    DistMatrix<T,MR,MC> D1_MR_MC(g);

    A1Trans_MR_STAR.AlignWith( B );
    D1_STAR_MC.AlignWith( B );

    for( Int k=0; k<m; k+=bsize )
    {
        const Int nb = Min(bsize,m-k);
        auto A1 = A( IR(k,k+nb), ALL );
        auto C1 = C( IR(k,k+nb), ALL );

        // D1[*,MC] := alpha A1[*,MR] (B[MC,MR])^T
        //           = alpha (A1^T)[MR,*] (B^T)[MR,MC]
        Transpose( A1, A1Trans_MR_STAR );
        LocalGemm( TRANSPOSE, orientB, alpha, A1Trans_MR_STAR, B, D1_STAR_MC );

        // C1[MC,MR] += scattered & transposed D1[*,MC] summed over grid rows
        Contract( D1_STAR_MC, D1_MR_MC );
        Axpy( T(1), D1_MR_MC, C1 );
    }
}
開發者ID:elemental,項目名稱:Elemental,代碼行數:43,代碼來源:NT.hpp

示例13: Blocksize

void SUMMA_TNA
( Orientation orientA,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    DEBUG_CSE
    const Int n = CPre.Width();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MC,STAR> B1_MC_STAR(g);
    DistMatrix<T,MR,STAR> D1_MR_STAR(g);
    DistMatrix<T,MR,MC  > D1_MR_MC(g);

    B1_MC_STAR.AlignWith( A );
    D1_MR_STAR.AlignWith( A );

    for( Int k=0; k<n; k+=bsize )
    {
        const Int nb = Min(bsize,n-k);
        auto B1 = B( ALL, IR(k,k+nb) );
        auto C1 = C( ALL, IR(k,k+nb) );

        // D1[MR,*] := alpha (A1[MC,MR])^T B1[MC,*]
        //           = alpha (A1^T)[MR,MC] B1[MC,*]
        B1_MC_STAR = B1; 
        LocalGemm( orientA, NORMAL, alpha, A, B1_MC_STAR, D1_MR_STAR );

        // C1[MC,MR] += scattered & transposed D1[MR,*] summed over grid cols
        Contract( D1_MR_STAR, D1_MR_MC );
        Axpy( T(1), D1_MR_MC, C1 );
    }
}
開發者ID:YingzhouLi,項目名稱:Elemental,代碼行數:43,代碼來源:TN.hpp

示例14: Newton

Int
Newton( DistMatrix<Field>& A, const SignCtrl<Base<Field>>& ctrl )
{
    EL_DEBUG_CSE
    typedef Base<Field> Real;
    Real tol = ctrl.tol;
    if( tol == Real(0) )
        tol = A.Height()*limits::Epsilon<Real>();

    Int numIts=0;
    DistMatrix<Field> B( A.Grid() );
    DistMatrix<Field> *X=&A, *XNew=&B;
    while( numIts < ctrl.maxIts )
    {
        // Overwrite XNew with the new iterate
        NewtonStep( *X, *XNew, ctrl.scaling );

        // Use the difference in the iterates to test for convergence
        Axpy( Real(-1), *XNew, *X );
        const Real oneDiff = OneNorm( *X );
        const Real oneNew = OneNorm( *XNew );

        // Ensure that X holds the current iterate and break if possible
        ++numIts;
        std::swap( X, XNew );
        if( ctrl.progress && A.Grid().Rank() == 0 )
            cout << "after " << numIts << " Newton iter's: "
                 << "oneDiff=" << oneDiff << ", oneNew=" << oneNew
                 << ", oneDiff/oneNew=" << oneDiff/oneNew << ", tol="
                 << tol << endl;
        if( oneDiff/oneNew <= Pow(oneNew,ctrl.power)*tol )
            break;
    }
    if( X != &A )
        A = *X;
    return numIts;
}
開發者ID:elemental,項目名稱:Elemental,代碼行數:37,代碼來源:Sign.cpp

示例15: entry

inline void
Symv
( UpperOrLower uplo,
  T alpha, const DistMatrix<T>& A,
           const DistMatrix<T>& x,
  T beta,        DistMatrix<T>& y,
  bool conjugate=false )
{
#ifndef RELEASE
    CallStackEntry entry("Symv");
    if( A.Grid() != x.Grid() || x.Grid() != y.Grid() )
        throw std::logic_error
        ("{A,x,y} must be distributed over the same grid");
    if( A.Height() != A.Width() )
        throw std::logic_error("A must be square");
    if( ( x.Width() != 1 && x.Height() != 1 ) ||
        ( y.Width() != 1 && y.Height() != 1 ) )
        throw std::logic_error("x and y are assumed to be vectors");
    const int xLength = ( x.Width()==1 ? x.Height() : x.Width() );
    const int yLength = ( y.Width()==1 ? y.Height() : y.Width() );
    if( A.Height() != xLength || A.Height() != yLength )
    {
        std::ostringstream msg;
        msg << "Nonconformal Symv: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  x ~ " << x.Height() << " x " << x.Width() << "\n"
            << "  y ~ " << y.Height() << " x " << y.Width() << "\n";
        throw std::logic_error( msg.str() );
    }
#endif
    const Grid& g = A.Grid();

    if( x.Width() == 1 && y.Width() == 1 )
    {
        // Temporary distributions
        DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
        DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
        DistMatrix<T,MR,MC  > z_MR_MC(g);
        DistMatrix<T> z(g);

        // Begin the algoritm
        Scale( beta, y );
        x_MC_STAR.AlignWith( A );
        x_MR_STAR.AlignWith( A );
        z_MC_STAR.AlignWith( A );
        z_MR_STAR.AlignWith( A );
        z.AlignWith( y );
        Zeros( z_MC_STAR, y.Height(), 1 );
        Zeros( z_MR_STAR, y.Height(), 1 );
        //--------------------------------------------------------------------//
        x_MC_STAR = x;
        x_MR_STAR = x_MC_STAR;
        if( uplo == LOWER )
        {
            internal::LocalSymvColAccumulateL
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }
        else
        {
            internal::LocalSymvColAccumulateU
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }

        z_MR_MC.SumScatterFrom( z_MR_STAR );
        z = z_MR_MC;
        z.SumScatterUpdate( T(1), z_MC_STAR );
        Axpy( T(1), z, y );
        //--------------------------------------------------------------------//
        x_MC_STAR.FreeAlignments();
        x_MR_STAR.FreeAlignments();
        z_MC_STAR.FreeAlignments();
        z_MR_STAR.FreeAlignments();
        z.FreeAlignments();
    }
    else if( x.Width() == 1 )
    {
        // Temporary distributions
        DistMatrix<T,MC,STAR> x_MC_STAR(g), z_MC_STAR(g);
        DistMatrix<T,MR,STAR> x_MR_STAR(g), z_MR_STAR(g);
        DistMatrix<T,MR,MC  > z_MR_MC(g);
        DistMatrix<T> z(g), zTrans(g);

        // Begin the algoritm
        Scale( beta, y );
        x_MC_STAR.AlignWith( A );
        x_MR_STAR.AlignWith( A );
        z_MC_STAR.AlignWith( A );
        z_MR_STAR.AlignWith( A );
        z.AlignWith( y );
        z_MR_MC.AlignWith( y );
        Zeros( z_MC_STAR, y.Width(), 1 );
        Zeros( z_MR_STAR, y.Width(), 1 );
        //--------------------------------------------------------------------//
        x_MC_STAR = x;
        x_MR_STAR = x_MC_STAR;
        if( uplo == LOWER )
        {
            internal::LocalSymvColAccumulateL
            ( alpha, A, x_MC_STAR, x_MR_STAR, z_MC_STAR, z_MR_STAR, conjugate );
        }
//.........這裏部分代碼省略.........
開發者ID:ahmadia,項目名稱:Elemental-1,代碼行數:101,代碼來源:Symv.hpp


注:本文中的Axpy函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。