本文整理匯總了C++中ALIGNED函數的典型用法代碼示例。如果您正苦於以下問題:C++ ALIGNED函數的具體用法?C++ ALIGNED怎麽用?C++ ALIGNED使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了ALIGNED函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: assert
/*
* new_name creates a new dictionary (name) entry and returns it
*/
static struct dict_name *new_name(
struct dict_name *link, char *name, int length, int hidden)
{
struct dict_name *pnm; /* the new name */
assert(ALIGNED(ph) == (intptr_t)ph, "misaligned (new_name)");
/*
* Since we're using the high bit of the length as a "hidden" or
* "deleted" flag, cap the length at 127.
*/
length = MIN(length, 127);
/* Allot space for name + length byte so that suffix is aligned. */
pnm = (struct dict_name *)ALIGNED((intptr_t)ph + length - SUFFIX_LEN);
/* copy name string */
memcpy(pnm->suffix + SUFFIX_LEN - length, name, length);
pnm->length = length + (hidden ? 128 : 0);
/* set link pointer */
pnm->link = link;
/* Allot entry */
ph = (cell *)(pnm + 1);
#if defined(BEING_DEFINED)
fprintf(stderr, "%p %p %.*s\n", pnm, link, length, name);
#endif
return pnm;
}
示例2: dummy_compact
static long *
dummy_compact (long *r, char *org_stack)
{
memmove (org_stack, r,
ALIGNED (2*sizeof (long)) + ALIGNED ((mpfr_custom_get_size) (p)));
return (long *) org_stack;
}
示例3: dummy_new
/* a[0] is the kind, a[1] is the exponent, &a[2] is the mantissa */
static long *
dummy_new (void)
{
long *r;
r = (long *) new_st (ALIGNED (2 * sizeof (long)) +
ALIGNED (mpfr_custom_get_size (p)));
(mpfr_custom_init) (&r[2], p);
r[0] = (int) MPFR_NAN_KIND;
r[1] = 0;
return r;
}
示例4: strcpy
char *
strcpy (char *to, const char *from)
{
char *return_value = to;
if (to == from)
return to;
else if (ALIGNED (to) && ALIGNED (from))
{
unsigned long *to1 = (unsigned long *) to;
const unsigned long *from1 = (const unsigned long *) from;
unsigned long c;
unsigned long magic = MAGIC;
unsigned long not_magic = ~magic;
/* unsigned long hi_bit = 0x80000000; */
while ((c = *from1) != 0)
{
if (HAS_ZERO(c))
{
to = (char *) to1;
from = (const char *) from1;
goto slow_loop;
}
else
{
*to1 = c;
to1++;
from1++;
}
}
to = (char *) to1;
*to = (char) 0;
return return_value;
}
else
{
char c;
slow_loop:
while ((c = *from) != 0)
{
*to = c;
to++;
from++;
}
*to = (char) 0;
}
return return_value;
}
示例5: while
void *n64_memcpy(void *dst, const void *src, size_t size)
{
uint8_t *bdst = (uint8_t *)dst;
uint8_t *bsrc = (uint8_t *)src;
uint32_t *wdst = (uint32_t *)dst;
uint32_t *wsrc = (uint32_t *)src;
int size_to_copy = size;
if (ALIGNED(bdst) && ALIGNED(bsrc))
{
int words_to_copy = size_to_copy / 4;
int bytes_to_copy = size_to_copy % 4;
while (words_to_copy--)
{
*wdst++ = *wsrc++;
}
bdst = (uint8_t *)wdst;
bsrc = (uint8_t *)wsrc;
while (bytes_to_copy--)
{
*bdst++ = *bsrc++;
}
}
else
{
int w_to_copy = size_to_copy / 4;
int b_to_copy = size_to_copy % 4;
while (w_to_copy > 0)
{
*bdst++ = *bsrc++;
*bdst++ = *bsrc++;
*bdst++ = *bsrc++;
*bdst++ = *bsrc++;
w_to_copy--;
}
while(b_to_copy--)
{
*bdst++ = *bsrc++;
}
}
return dst;
}
示例6: return_mpfr
/* Garbage the stack by keeping only x */
static mpfr_ptr
return_mpfr (mpfr_ptr x, char *old_stack)
{
void *mantissa = mpfr_custom_get_significand (x);
size_t size_mantissa = mpfr_custom_get_size (mpfr_get_prec (x));
mpfr_ptr newx;
memmove (old_stack, x, sizeof (mpfr_t));
memmove (old_stack + ALIGNED (sizeof (mpfr_t)), mantissa, size_mantissa);
newx = (mpfr_ptr) old_stack;
mpfr_custom_move (newx, old_stack + ALIGNED (sizeof (mpfr_t)));
stack = old_stack + ALIGNED (sizeof (mpfr_t)) + ALIGNED (size_mantissa);
return newx;
}
示例7: hc2cfv_okp
static int hc2cfv_okp(const R *Rp, const R *Ip, const R *Rm, const R *Im,
INT rs, INT mb, INT me, INT ms,
const planner *plnr)
{
return (1
&& !NO_SIMDP(plnr)
&& SIMD_STRIDE_OK(rs)
&& SIMD_VSTRIDE_OK(ms)
&& ((me - mb) % VL) == 0
&& ((mb - 1) % VL) == 0 /* twiddle factors alignment */
&& ALIGNED(Rp)
&& ALIGNED(Rm)
&& Ip == Rp + 1
&& Im == Rm + 1);
}
示例8: CVMmemDisableWriteNotify
void
CVMmemDisableWriteNotify(CVMMemHandle *h)
{
CVMMemPrivateData *c;
CVMassert(wnlLock != NULL);
CVMmutexLock(wnlLock);
c = writeNotifyList;
while (c != NULL) {
if (d2h(c) == h) {
CVMMemPrivateData *region;
CVMAddr start = c->dataStart.start;
CVMAddr end = c->end;
CVMAddr alignedStart = ALIGNED(start);
CVMAddr alignedEnd = ALIGNEDNEXT(end);
/* Found the region. Unprotect it. */
/* Now traverse the list again to check if part of the
* aligned pages (first page and last page) belong to
* other regions.
*/
region = writeNotifyList;
while (region != NULL) {
if (region->end < start &&
region->end >= alignedStart) {
alignedStart = ALIGNEDNEXT(start);
}
if (region->dataStart.start > end &&
region->dataStart.start <= alignedEnd) {
alignedEnd = ALIGNED(end);
}
region = region->next;
}
/* Unprotect the adjusted aligned region, so the next
* write within the range would not cause a signal.
*/
CVMmprotect((void*)alignedStart, (void*)alignedEnd, CVM_FALSE);
CVMmutexUnlock(wnlLock);
return;
}
c = c->nextWriteNotify;
}
CVMmutexUnlock(wnlLock);
}
示例9: memcpy_no_movs
/* Our fastpath can't handle OP_movs of uninit, which is common
* w/ realloc, so we use a regular OP_mov loop.
* XXX: share w/ drmem's replace_memcpy
*/
DO_NOT_OPTIMIZE
static void *
memcpy_no_movs(void *dst, const void *src, size_t size)
{
register unsigned char *d = (unsigned char *) dst;
register unsigned char *s = (unsigned char *) src;
if (((ptr_uint_t)dst & 3) == ((ptr_uint_t)src & 3)) {
/* same alignment, so we can do 4 aligned bytes at a time and stay
* on fastpath
*/
while (!ALIGNED(d, 4) && size > 0) {
*d++ = *s++;
size--;
}
while (size > 3) {
*((unsigned int *)d) = *((unsigned int *)s);
s += 4;
d += 4;
size -= 4;
}
while (size > 0) {
*d++ = *s++;
size--;
}
} else {
while (size-- > 0) /* loop will terminate before underflow */
*d++ = *s++;
}
return dst;
}
示例10: do_layer1
int do_layer1(mpg123_handle *fr)
{
int clip=0;
int i,stereo = fr->stereo;
unsigned int balloc[2*SBLIMIT];
unsigned int scale_index[2][SBLIMIT];
ALIGNED(16) real fraction[2][SBLIMIT];
int single = fr->single;
fr->jsbound = (fr->mode == MPG_MD_JOINT_STEREO) ? (fr->mode_ext<<2)+4 : 32;
if(stereo == 1 || single == SINGLE_MIX) /* I don't see mixing handled here */
single = SINGLE_LEFT;
I_step_one(balloc,scale_index,fr);
for (i=0;i<SCALE_BLOCK;i++)
{
I_step_two(fraction,balloc,scale_index,fr);
if(single != SINGLE_STEREO)
{
clip += (fr->synth_mono)( (real *) fraction[single], fr);
}
else
{
clip += (fr->synth)( (real *) fraction[0], 0, fr, 0);
clip += (fr->synth)( (real *) fraction[1], 1, fr, 1);
}
}
return clip;
}
示例11: convert_command_line
static void convert_command_line(int argc, char *argv[])
{
char *pline;
/* skip arg[0] */
argc--;
argv++;
pcmd_line = (struct counted_string *)ph;
pline = pcmd_line->data;
while (argc--)
{
pline = str_copy(pline, *argv++);
*pline++ = ' ';
}
pcmd_line->length = pline - pcmd_line->data;
/*
* No need to null-terminate! This string is evaluated by the Forth
* parser, not C code. Any pieces - like filenames - that get passed to
* C are copied out of this string into the dictionary and
* null-terminated first - just like input from _any other_ source.
*/
ph = (cell *)ALIGNED(pline);
}
示例12: ksynch_init_var
/* We use volatile int rather than bool since these are used as futexes.
* 0 is unset, 1 is set, and no other value is used.
*/
bool
ksynch_init_var(volatile int *futex)
{
ASSERT(ALIGNED(futex, sizeof(int)));
*futex = 0;
return true;
}
示例13: memset
_CACHED
void *
memset(void *dest_p, int c, size_t n)
{
void *orig_dest = dest_p;
char *dst;
/* fill with longs if applicable */
if (ALIGNED(dest_p) && n > sizeof(uint32_t))
{
uint32_t lc;
uint32_t *dstl = dest_p;
c &= 0xff;
lc = (c<<24)|(c<<16)|(c<<8)|c;
while (n >= sizeof(uint32_t))
{
*dstl++ = lc;
n -= sizeof(uint32_t);
}
dest_p = dstl;
}
dst = dest_p;
while (n > 0) {
*dst++ = c;
--n;
}
return orig_dest;
}
示例14: replace_memcpy
END_DO_NOT_OPTIMIZE
IN_REPLACE_SECTION void *
replace_memcpy(void *dst, const void *src, size_t size)
{
register unsigned char *d = (unsigned char *) dst;
register unsigned char *s = (unsigned char *) src;
if (((ptr_uint_t)dst & 3) == ((ptr_uint_t)src & 3)) {
/* same alignment, so we can do 4 aligned bytes at a time and stay
* on fastpath. when not same alignment, I'm assuming it's faster
* to have all 1-byte moves on fastpath rather than half 4-byte
* (aligned) on fastpath and half 4-byte (unaligned) on slowpath.
*/
while (!ALIGNED(d, 4) && size > 0) {
*d++ = *s++;
size--;
}
while (size > 3) {
*((unsigned int *)d) = *((unsigned int *)s);
s += 4;
d += 4;
size -= 4;
}
while (size > 0) {
*d++ = *s++;
size--;
}
} else {
while (size-- > 0) /* loop will terminate before underflow */
*d++ = *s++;
}
return dst;
}
示例15: CVMmemManagerDumpStats
void
CVMmemManagerDumpStats()
{
CVMMemPrivateData *d = memList;
CVMconsolePrintf("Memory status:\n");
while (d != NULL) {
if (d->map != NULL) {
CVMMemType type = d->type;
int totalPage = (ALIGNEDNEXT(d->end) -
ALIGNED(d->dataStart.start)) / CVMgetPagesize();
CVMMemDirtyPages *dmap = d->map;
if (type < CVM_MEM_NUM_TYPES) {
CVMconsolePrintf("%s: Total Page = %d, Dirty Page = %d\n",
CVMmemType[type].name,
totalPage, dmap->numberOfDirtypages);
if (CVMmemType[type].report != NULL) {
CVMmemType[type].report();
}
} else {
CVMconsolePrintf("%s: Total Page = %d, Dirty Page = %d\n",
CVMcustomMemType[type - CVM_MEM_NUM_TYPES].name,
totalPage, dmap->numberOfDirtypages);
if (CVMcustomMemType[type - CVM_MEM_NUM_TYPES].report != NULL) {
CVMcustomMemType[type - CVM_MEM_NUM_TYPES].report();
}
}
}
d = d->next;
}
}