本文整理匯總了C++中ALIGN函數的典型用法代碼示例。如果您正苦於以下問題:C++ ALIGN函數的具體用法?C++ ALIGN怎麽用?C++ ALIGN使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了ALIGN函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: cvmx_bootmem_phy_alloc
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
uint64_t address_max, uint64_t alignment,
uint32_t flags)
{
uint64_t head_addr;
uint64_t ent_addr;
/* points to previous list entry, NULL current entry is head of list */
uint64_t prev_addr = 0;
uint64_t new_ent_addr = 0;
uint64_t desired_min_addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
"min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
(unsigned long long)req_size,
(unsigned long long)address_min,
(unsigned long long)address_max,
(unsigned long long)alignment);
#endif
if (cvmx_bootmem_desc->major_version > 3) {
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
"version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version,
(int)cvmx_bootmem_desc->minor_version,
cvmx_bootmem_desc);
goto error_out;
}
/*
* Do a variety of checks to validate the arguments. The
* allocator code will later assume that these checks have
* been made. We validate that the requested constraints are
* not self-contradictory before we look through the list of
* available memory.
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
goto error_out;
/* Round req_size up to mult of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/*
* Convert !0 address_min and 0 address_max to special case of
* range that specifies an exact memory block to allocate. Do
* this before other checks and adjustments so that this
* tranformation will be validated.
*/
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max limits */
/*
* Enforce minimum alignment (this also keeps the minimum free block
* req_size the same as the alignment req_size.
*/
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
/*
* Adjust address minimum based on requested alignment (round
* up to meet alignment). Do this here so we can reject
* impossible requests up front. (NOP for address_min == 0)
*/
if (alignment)
address_min = ALIGN(address_min, alignment);
/*
* Reject inconsistent args. We have adjusted these, so this
* may fail due to our internal changes even if this check
* would pass for the values the user supplied.
*/
if (req_size > address_max - address_min)
goto error_out;
/* Walk through the list entries - first fit found is returned */
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_bootmem_lock();
head_addr = cvmx_bootmem_desc->head_addr;
ent_addr = head_addr;
for (; ent_addr;
prev_addr = ent_addr,
ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
uint64_t usable_base, usable_max;
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
if (cvmx_bootmem_phy_get_next(ent_addr)
&& ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
cvmx_dprintf("Internal bootmem_alloc() error: ent: "
"0x%llx, next: 0x%llx\n",
(unsigned long long)ent_addr,
(unsigned long long)
cvmx_bootmem_phy_get_next(ent_addr));
//.........這裏部分代碼省略.........
示例2: intel_compute_size
unsigned int
intel_compute_size(struct intel_screen_private *intel,
int w, int h, int bpp, unsigned usage,
uint32_t *tiling, int *stride)
{
int pitch, size;
if (*tiling != I915_TILING_NONE) {
/* First check whether tiling is necessary. */
pitch = (w * bpp + 7) / 8;
pitch = ALIGN(pitch, 64);
size = pitch * ALIGN (h, 2);
if (INTEL_INFO(intel)->gen < 040) {
/* Gen 2/3 has a maximum stride for tiling of
* 8192 bytes.
*/
if (pitch > KB(8))
*tiling = I915_TILING_NONE;
/* Narrower than half a tile? */
if (pitch < 256)
*tiling = I915_TILING_NONE;
/* Older hardware requires fences to be pot size
* aligned with a minimum of 1 MiB, so causes
* massive overallocation for small textures.
*/
if (size < 1024*1024/2 && !intel->has_relaxed_fencing)
*tiling = I915_TILING_NONE;
} else if (!(usage & INTEL_CREATE_PIXMAP_DRI2) && size <= 4096) {
/* Disable tiling beneath a page size, we will not see
* any benefit from reducing TLB misses and instead
* just incur extra cost when we require a fence.
*/
*tiling = I915_TILING_NONE;
}
}
pitch = (w * bpp + 7) / 8;
if (!(usage & INTEL_CREATE_PIXMAP_DRI2) && pitch <= 256)
*tiling = I915_TILING_NONE;
if (*tiling != I915_TILING_NONE) {
int aligned_h, tile_height;
if (IS_GEN2(intel))
tile_height = 16;
else if (*tiling == I915_TILING_X)
tile_height = 8;
else
tile_height = 32;
aligned_h = ALIGN(h, tile_height);
*stride = intel_get_fence_pitch(intel,
ALIGN(pitch, 512),
*tiling);
/* Round the object up to the size of the fence it will live in
* if necessary. We could potentially make the kernel allocate
* a larger aperture space and just bind the subset of pages in,
* but this is easier and also keeps us out of trouble (as much)
* with drm_intel_bufmgr_check_aperture().
*/
size = intel_get_fence_size(intel, *stride * aligned_h);
if (size > intel->max_tiling_size)
*tiling = I915_TILING_NONE;
}
if (*tiling == I915_TILING_NONE) {
/* We only require a 64 byte alignment for scanouts, but
* a 256 byte alignment for sharing with PRIME.
*/
*stride = ALIGN(pitch, 256);
/* Round the height up so that the GPU's access to a 2x2 aligned
* subspan doesn't address an invalid page offset beyond the
* end of the GTT.
*/
size = *stride * ALIGN(h, 2);
}
return size;
}
示例3: cache
//.........這裏部分代碼省略.........
if( tri->verts[j].xyz[k] > entityDef->localReferenceBounds[1][k] + CHECK_BOUNDS_EPSILON
|| tri->verts[j].xyz[k] < entityDef->localReferenceBounds[0][k] - CHECK_BOUNDS_EPSILON )
{
common->Printf( "bad referenceBounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() );
break;
}
}
if( k != 3 )
{
break;
}
}
}
// view frustum culling for the precise surface bounds, which is tighter
// than the entire entity reference bounds
// If the entire model wasn't visible, there is no need to check the
// individual surfaces.
const bool surfaceDirectlyVisible = modelIsVisible && !idRenderMatrix::CullBoundsToMVP( vEntity->mvp, tri->bounds );
// RB: added check wether GPU skinning is available at all
const bool gpuSkinned = ( tri->staticModelWithJoints != NULL && r_useGPUSkinning.GetBool() && glConfig.gpuSkinningAvailable );
// RB end
//--------------------------
// base drawing surface
//--------------------------
drawSurf_t* baseDrawSurf = NULL;
if( surfaceDirectlyVisible )
{
// make sure we have an ambient cache and all necessary normals / tangents
if( !vertexCache.CacheIsCurrent( tri->indexCache ) )
{
tri->indexCache = vertexCache.AllocIndex( tri->indexes, ALIGN( tri->numIndexes * sizeof( triIndex_t ), INDEX_CACHE_ALIGN ) );
}
if( !vertexCache.CacheIsCurrent( tri->ambientCache ) )
{
// we are going to use it for drawing, so make sure we have the tangents and normals
if( shader->ReceivesLighting() && !tri->tangentsCalculated )
{
assert( tri->staticModelWithJoints == NULL );
R_DeriveTangents( tri );
// RB: this was hit by parametric particle models ..
//assert( false ); // this should no longer be hit
// RB end
}
tri->ambientCache = vertexCache.AllocVertex( tri->verts, ALIGN( tri->numVerts * sizeof( idDrawVert ), VERTEX_CACHE_ALIGN ) );
}
// add the surface for drawing
// we can re-use some of the values for light interaction surfaces
baseDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *baseDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
baseDrawSurf->frontEndGeo = tri;
baseDrawSurf->space = vEntity;
baseDrawSurf->scissorRect = vEntity->scissorRect;
baseDrawSurf->extraGLState = 0;
baseDrawSurf->renderZFail = 0;
R_SetupDrawSurfShader( baseDrawSurf, shader, renderEntity );
// Check for deformations (eyeballs, flares, etc)
const deform_t shaderDeform = shader->Deform();
if( shaderDeform != DFRM_NONE )
{
示例4: zynq_load
int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize)
{
unsigned long ts; /* Timestamp */
u32 partialbit = 0;
u32 i, control, isr_status, status, swap, diff;
u32 *buf_start;
/* Detect if we are going working with partial or full bitstream */
if (bsize != desc->size) {
printf("%s: Working with partial bitstream\n", __func__);
partialbit = 1;
}
buf_start = check_data((u8 *)buf, bsize, &swap);
if (!buf_start)
return FPGA_FAIL;
/* Check if data is postpone from start */
diff = (u32)buf_start - (u32)buf;
if (diff) {
printf("%s: Bitstream is not validated yet (diff %x)\n",
__func__, diff);
return FPGA_FAIL;
}
if ((u32)buf < SZ_1M) {
printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
__func__, (u32)buf);
return FPGA_FAIL;
}
if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
u32 *new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
(u32)buf_start, (u32)new_buf, swap);
for (i = 0; i < (bsize/4); i++)
new_buf[i] = load_word(&buf_start[i], swap);
swap = SWAP_DONE;
buf = new_buf;
} else if (swap != SWAP_DONE) {
/* For bitstream which are aligned */
u32 *new_buf = (u32 *)buf;
printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
swap);
for (i = 0; i < (bsize/4); i++)
new_buf[i] = load_word(&buf_start[i], swap);
swap = SWAP_DONE;
}
/* Clear loopback bit */
clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
if (!partialbit) {
zynq_slcr_devcfg_disable();
/* Setting PCFG_PROG_B signal to high */
control = readl(&devcfg_base->ctrl);
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Setting PCFG_PROG_B signal to low */
writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Polling the PCAP_INIT status for Reset */
ts = get_timer(0);
while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for INIT to clear\n",
__func__);
return FPGA_FAIL;
}
}
/* Setting PCFG_PROG_B signal to high */
writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
/* Polling the PCAP_INIT status for Set */
ts = get_timer(0);
while (!(readl(&devcfg_base->status) &
DEVCFG_STATUS_PCFG_INIT)) {
if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
printf("%s: Timeout wait for INIT to set\n",
__func__);
return FPGA_FAIL;
}
}
}
isr_status = readl(&devcfg_base->int_sts);
/* Clear it all, so if Boot ROM comes back, it can proceed */
writel(0xFFFFFFFF, &devcfg_base->int_sts);
if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
//.........這裏部分代碼省略.........
示例5: ubifs_wbuf_sync_nolock
/**
* ubifs_wbuf_sync_nolock - synchronize write-buffer.
* @wbuf: write-buffer to synchronize
*
* This function synchronizes write-buffer @buf and returns zero in case of
* success or a negative error code in case of failure.
*
* Note, although write-buffers are of @c->max_write_size, this function does
* not necessarily writes all @c->max_write_size bytes to the flash. Instead,
* if the write-buffer is only partially filled with data, only the used part
* of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
* This way we waste less space.
*/
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
{
struct ubifs_info *c = wbuf->c;
int err, dirt, sync_len;
cancel_wbuf_timer_nolock(wbuf);
if (!wbuf->used || wbuf->lnum == -1)
/* Write-buffer is empty or not seeked */
return 0;
dbg_io("LEB %d:%d, %d bytes, jhead %s",
wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
ubifs_assert(!(wbuf->avail & 7));
ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
ubifs_assert(wbuf->size >= c->min_io_size);
ubifs_assert(wbuf->size <= c->max_write_size);
ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(!c->ro_media && !c->ro_mount);
if (c->leb_size - wbuf->offs >= c->max_write_size)
ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
if (c->ro_error)
return -EROFS;
/*
* Do not write whole write buffer but write only the minimum necessary
* amount of min. I/O units.
*/
sync_len = ALIGN(wbuf->used, c->min_io_size);
dirt = sync_len - wbuf->used;
if (dirt)
ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
sync_len, wbuf->dtype);
if (err) {
ubifs_err("cannot write %d bytes to LEB %d:%d",
sync_len, wbuf->lnum, wbuf->offs);
dbg_dump_stack();
return err;
}
spin_lock(&wbuf->lock);
wbuf->offs += sync_len;
/*
* Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
* But our goal is to optimize writes and make sure we write in
* @c->max_write_size chunks and to @c->max_write_size-aligned offset.
* Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
* sure that @wbuf->offs + @wbuf->size is aligned to
* @c->max_write_size. This way we make sure that after next
* write-buffer flush we are again at the optimal offset (aligned to
* @c->max_write_size).
*/
if (c->leb_size - wbuf->offs < c->max_write_size)
wbuf->size = c->leb_size - wbuf->offs;
else if (wbuf->offs & (c->max_write_size - 1))
wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
else
wbuf->size = c->max_write_size;
wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
if (wbuf->sync_callback)
err = wbuf->sync_callback(c, wbuf->lnum,
c->leb_size - wbuf->offs, dirt);
return err;
}
示例6: esp6_input
static int esp6_input(struct xfrm_state *x, struct xfrm_decap_state *decap, struct sk_buff *skb)
{
struct ipv6hdr *iph;
struct ipv6_esp_hdr *esph;
struct esp_data *esp = x->data;
struct sk_buff *trailer;
int blksize = ALIGN(crypto_tfm_alg_blocksize(esp->conf.tfm), 4);
int alen = esp->auth.icv_trunc_len;
int elen = skb->len - sizeof(struct ipv6_esp_hdr) - esp->conf.ivlen - alen;
int hdr_len = skb->h.raw - skb->nh.raw;
int nfrags;
unsigned char *tmp_hdr = NULL;
int ret = 0;
if (!pskb_may_pull(skb, sizeof(struct ipv6_esp_hdr))) {
ret = -EINVAL;
goto out_nofree;
}
if (elen <= 0 || (elen & (blksize-1))) {
ret = -EINVAL;
goto out_nofree;
}
tmp_hdr = kmalloc(hdr_len, GFP_ATOMIC);
if (!tmp_hdr) {
ret = -ENOMEM;
goto out_nofree;
}
memcpy(tmp_hdr, skb->nh.raw, hdr_len);
/* If integrity check is required, do this. */
if (esp->auth.icv_full_len) {
u8 sum[esp->auth.icv_full_len];
u8 sum1[alen];
esp->auth.icv(esp, skb, 0, skb->len-alen, sum);
if (skb_copy_bits(skb, skb->len-alen, sum1, alen))
BUG();
if (unlikely(memcmp(sum, sum1, alen))) {
x->stats.integrity_failed++;
ret = -EINVAL;
goto out;
}
}
if ((nfrags = skb_cow_data(skb, 0, &trailer)) < 0) {
ret = -EINVAL;
goto out;
}
skb->ip_summed = CHECKSUM_NONE;
esph = (struct ipv6_esp_hdr*)skb->data;
iph = skb->nh.ipv6h;
/* Get ivec. This can be wrong, check against another impls. */
if (esp->conf.ivlen)
crypto_cipher_set_iv(esp->conf.tfm, esph->enc_data, crypto_tfm_alg_ivsize(esp->conf.tfm));
{
u8 nexthdr[2];
struct scatterlist *sg = &esp->sgbuf[0];
u8 padlen;
if (unlikely(nfrags > ESP_NUM_FAST_SG)) {
sg = kmalloc(sizeof(struct scatterlist)*nfrags, GFP_ATOMIC);
if (!sg) {
ret = -ENOMEM;
goto out;
}
}
skb_to_sgvec(skb, sg, sizeof(struct ipv6_esp_hdr) + esp->conf.ivlen, elen);
crypto_cipher_decrypt(esp->conf.tfm, sg, sg, elen);
if (unlikely(sg != &esp->sgbuf[0]))
kfree(sg);
if (skb_copy_bits(skb, skb->len-alen-2, nexthdr, 2))
BUG();
padlen = nexthdr[0];
if (padlen+2 >= elen) {
LIMIT_NETDEBUG(KERN_WARNING "ipsec esp packet is garbage padlen=%d, elen=%d\n", padlen+2, elen);
ret = -EINVAL;
goto out;
}
/* ... check padding bits here. Silly. :-) */
pskb_trim(skb, skb->len - alen - padlen - 2);
skb->h.raw = skb_pull(skb, sizeof(struct ipv6_esp_hdr) + esp->conf.ivlen);
skb->nh.raw += sizeof(struct ipv6_esp_hdr) + esp->conf.ivlen;
memcpy(skb->nh.raw, tmp_hdr, hdr_len);
skb->nh.ipv6h->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
ret = nexthdr[1];
}
out:
//.........這裏部分代碼省略.........
示例7: iwl_pcie_get_cmd_index
static struct
iwl_tfh_tfd *iwl_pcie_gen2_build_tx(struct iwl_trans *trans,
struct iwl_txq *txq,
struct iwl_device_cmd *dev_cmd,
struct sk_buff *skb,
struct iwl_cmd_meta *out_meta,
int hdr_len,
int tx_cmd_len,
bool pad)
{
int idx = iwl_pcie_get_cmd_index(txq, txq->write_ptr);
struct iwl_tfh_tfd *tfd = iwl_pcie_get_tfd(trans, txq, idx);
dma_addr_t tb_phys;
int len, tb1_len, tb2_len;
void *tb1_addr;
tb_phys = iwl_pcie_get_first_tb_dma(txq, idx);
/* The first TB points to bi-directional DMA data */
memcpy(&txq->first_tb_bufs[idx], &dev_cmd->hdr, IWL_FIRST_TB_SIZE);
iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE);
/*
* The second TB (tb1) points to the remainder of the TX command
* and the 802.11 header - dword aligned size
* (This calculation modifies the TX command, so do it before the
* setup of the first TB)
*/
len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len -
IWL_FIRST_TB_SIZE;
if (pad)
tb1_len = ALIGN(len, 4);
else
tb1_len = len;
/* map the data for TB1 */
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
goto out_err;
iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb1_len);
trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr,
IWL_FIRST_TB_SIZE + tb1_len, hdr_len);
/* set up TFD's third entry to point to remainder of skb's head */
tb2_len = skb_headlen(skb) - hdr_len;
if (tb2_len > 0) {
tb_phys = dma_map_single(trans->dev, skb->data + hdr_len,
tb2_len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
goto out_err;
iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb2_len);
trace_iwlwifi_dev_tx_tb(trans->dev, skb,
skb->data + hdr_len,
tb2_len);
}
if (iwl_pcie_gen2_tx_add_frags(trans, skb, tfd, out_meta))
goto out_err;
return tfd;
out_err:
iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd);
return NULL;
}
示例8: MSG
h264enc *h264enc_new(const struct h264enc_params *p)
{
h264enc *c;
int i;
/* check parameter validity */
if (!IS_ALIGNED(p->src_width, 16) || !IS_ALIGNED(p->src_height, 16) ||
!IS_ALIGNED(p->width, 2) || !IS_ALIGNED(p->height, 2) ||
p->width > p->src_width || p->height > p->src_height)
{
MSG("invalid picture size");
return NULL;
}
if (p->qp == 0 || p->qp > 47)
{
MSG("invalid QP");
return NULL;
}
if (p->src_format != H264_FMT_NV12 && p->src_format != H264_FMT_NV16)
{
MSG("invalid color format");
return NULL;
}
/* allocate memory for h264enc structure */
c = calloc(1, sizeof(*c));
if (c == NULL)
{
MSG("can't allocate h264enc data");
return NULL;
}
/* copy parameters */
c->mb_width = DIV_ROUND_UP(p->width, 16);
c->mb_height = DIV_ROUND_UP(p->height, 16);
c->mb_stride = p->src_width / 16;
c->crop_right = (c->mb_width * 16 - p->width) / 2;
c->crop_bottom = (c->mb_height * 16 - p->height) / 2;
c->profile_idc = p->profile_idc;
c->level_idc = p->level_idc;
c->entropy_coding_mode_flag = p->entropy_coding_mode ? 1 : 0;
c->pic_init_qp = p->qp;
c->keyframe_interval = p->keyframe_interval;
c->write_sps_pps = 1;
c->current_frame_num = 0;
/* allocate input buffer */
c->input_color_format = p->src_format;
switch (c->input_color_format)
{
case H264_FMT_NV12:
c->input_buffer_size = p->src_width * (p->src_height + p->src_height / 2);
break;
case H264_FMT_NV16:
c->input_buffer_size = p->src_width * p->src_height * 2;
break;
}
c->luma_buffer = ve_malloc(c->input_buffer_size);
if (c->luma_buffer == NULL)
goto nomem;
c->chroma_buffer = c->luma_buffer + p->src_width * p->src_height;
/* allocate bytestream output buffer */
c->bytestream_buffer_size = 1 * 1024 * 1024;
c->bytestream_buffer = ve_malloc(c->bytestream_buffer_size);
if (c->bytestream_buffer == NULL)
goto nomem;
/* allocate reference picture memory */
unsigned int luma_size = ALIGN(c->mb_width * 16, 32) * ALIGN(c->mb_height * 16, 32);
unsigned int chroma_size = ALIGN(c->mb_width * 16, 32) * ALIGN(c->mb_height * 8, 32);
for (i = 0; i < 2; i++)
{
c->ref_picture[i].luma_buffer = ve_malloc(luma_size + chroma_size);
c->ref_picture[i].chroma_buffer = c->ref_picture[i].luma_buffer + luma_size;
c->ref_picture[i].extra_buffer = ve_malloc(luma_size / 4);
if (c->ref_picture[i].luma_buffer == NULL || c->ref_picture[i].extra_buffer == NULL)
goto nomem;
}
/* allocate unknown purpose buffers */
c->extra_buffer_frame = ve_malloc(ALIGN(c->mb_width, 4) * c->mb_height * 8);
c->extra_buffer_line = ve_malloc(c->mb_width * 32);
if (c->extra_buffer_frame == NULL || c->extra_buffer_line == NULL)
goto nomem;
return c;
nomem:
MSG("can't allocate VE memory");
h264enc_free(c);
return NULL;
//.........這裏部分代碼省略.........
示例9: sdma_v3_0_init_microcode
/**
* sdma_v3_0_init_microcode - load ucode images from disk
*
* @adev: amdgpu_device pointer
*
* Use the firmware interface to load the ucode images into
* the driver (not loaded into hw).
* Returns 0 on success, error on failure.
*/
static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err = 0, i;
struct amdgpu_firmware_info *info = NULL;
const struct common_firmware_header *header = NULL;
const struct sdma_firmware_header_v1_0 *hdr;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_TONGA:
chip_name = "tonga";
break;
case CHIP_FIJI:
chip_name = "fiji";
break;
case CHIP_POLARIS11:
chip_name = "polaris11";
break;
case CHIP_POLARIS10:
chip_name = "polaris10";
break;
case CHIP_CARRIZO:
chip_name = "carrizo";
break;
case CHIP_STONEY:
chip_name = "stoney";
break;
default: BUG();
}
for (i = 0; i < adev->sdma.num_instances; i++) {
if (i == 0)
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
else
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
if (err)
goto out;
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
if (adev->sdma.instance[i].feature_version >= 20)
adev->sdma.instance[i].burst_nop = true;
if (adev->firmware.smu_load) {
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
info->fw = adev->sdma.instance[i].fw;
header = (const struct common_firmware_header *)info->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
}
out:
if (err) {
printk(KERN_ERR
"sdma_v3_0: Failed to load firmware \"%s\"\n",
fw_name);
for (i = 0; i < adev->sdma.num_instances; i++) {
release_firmware(adev->sdma.instance[i].fw);
adev->sdma.instance[i].fw = NULL;
}
}
return err;
}
示例10: wl1271_boot_upload_nvs
static int wl1271_boot_upload_nvs(struct wl1271 *wl)
{
size_t nvs_len, burst_len;
int i;
u32 dest_addr, val;
u8 *nvs_ptr, *nvs, *nvs_aligned;
nvs = wl->nvs;
if (nvs == NULL)
return -ENODEV;
nvs_ptr = nvs;
nvs_len = wl->nvs_len;
/* Update the device MAC address into the nvs */
nvs[11] = wl->mac_addr[0];
nvs[10] = wl->mac_addr[1];
nvs[6] = wl->mac_addr[2];
nvs[5] = wl->mac_addr[3];
nvs[4] = wl->mac_addr[4];
nvs[3] = wl->mac_addr[5];
/*
* Layout before the actual NVS tables:
* 1 byte : burst length.
* 2 bytes: destination address.
* n bytes: data to burst copy.
*
* This is ended by a 0 length, then the NVS tables.
*/
/* FIXME: Do we need to check here whether the LSB is 1? */
while (nvs_ptr[0]) {
burst_len = nvs_ptr[0];
dest_addr = (nvs_ptr[1] & 0xfe) | ((u32)(nvs_ptr[2] << 8));
/* FIXME: Due to our new wl1271_translate_reg_addr function,
we need to add the REGISTER_BASE to the destination */
dest_addr += REGISTERS_BASE;
/* We move our pointer to the data */
nvs_ptr += 3;
for (i = 0; i < burst_len; i++) {
val = (nvs_ptr[0] | (nvs_ptr[1] << 8)
| (nvs_ptr[2] << 16) | (nvs_ptr[3] << 24));
wl1271_debug(DEBUG_BOOT,
"nvs burst write 0x%x: 0x%x",
dest_addr, val);
wl1271_reg_write32(wl, dest_addr, val);
nvs_ptr += 4;
dest_addr += 4;
}
}
/*
* We've reached the first zero length, the first NVS table
* is 7 bytes further.
*/
nvs_ptr += 7;
nvs_len -= nvs_ptr - nvs;
nvs_len = ALIGN(nvs_len, 4);
/* FIXME: The driver sets the partition here, but this is not needed,
since it sets to the same one as currently in use */
/* Now we must set the partition correctly */
wl1271_set_partition(wl,
part_table[PART_WORK].mem.start,
part_table[PART_WORK].mem.size,
part_table[PART_WORK].reg.start,
part_table[PART_WORK].reg.size);
/* Copy the NVS tables to a new block to ensure alignment */
nvs_aligned = kmemdup(nvs_ptr, nvs_len, GFP_KERNEL);
/* And finally we upload the NVS tables */
/* FIXME: In wl1271, we upload everything at once.
No endianness handling needed here?! The ref driver doesn't do
anything about it at this point */
wl1271_spi_mem_write(wl, CMD_MBOX_ADDRESS, nvs_aligned, nvs_len);
kfree(nvs_aligned);
return 0;
}
示例11: intelfb_create
static int intelfb_create(struct intel_fbdev *ifbdev,
struct drm_fb_helper_surface_size *sizes)
{
struct drm_device *dev = ifbdev->helper.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct fb_info *info;
struct drm_framebuffer *fb;
struct drm_mode_fb_cmd2 mode_cmd = {};
struct drm_i915_gem_object *obj;
struct device *device = &dev->pdev->dev;
int size, ret;
/* we don't do packed 24bpp */
if (sizes->surface_bpp == 24)
sizes->surface_bpp = 32;
mode_cmd.width = sizes->surface_width;
mode_cmd.height = sizes->surface_height;
mode_cmd.pitches[0] = ALIGN(mode_cmd.width * ((sizes->surface_bpp + 7) /
8), 64);
mode_cmd.pixel_format = drm_mode_legacy_fb_format(sizes->surface_bpp,
sizes->surface_depth);
size = mode_cmd.pitches[0] * mode_cmd.height;
size = ALIGN(size, PAGE_SIZE);
obj = i915_gem_alloc_object(dev, size);
if (!obj) {
DRM_ERROR("failed to allocate framebuffer\n");
ret = -ENOMEM;
goto out;
}
mutex_lock(&dev->struct_mutex);
/* Flush everything out, we'll be doing GTT only from now on */
ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
if (ret) {
DRM_ERROR("failed to pin fb: %d\n", ret);
goto out_unref;
}
info = framebuffer_alloc(0, device);
if (!info) {
ret = -ENOMEM;
goto out_unpin;
}
info->par = ifbdev;
ret = intel_framebuffer_init(dev, &ifbdev->ifb, &mode_cmd, obj);
if (ret)
goto out_unpin;
fb = &ifbdev->ifb.base;
ifbdev->helper.fb = fb;
ifbdev->helper.fbdev = info;
strcpy(info->fix.id, "inteldrmfb");
info->flags = FBINFO_DEFAULT | FBINFO_CAN_FORCE_OUTPUT;
info->fbops = &intelfb_ops;
ret = fb_alloc_cmap(&info->cmap, 256, 0);
if (ret) {
ret = -ENOMEM;
goto out_unpin;
}
/* setup aperture base/size for vesafb takeover */
info->aperture_base = dev->mode_config.fb_base;
if (!IS_GEN2(dev))
info->aperture_size = pci_resource_len(dev->pdev, 2);
else
info->aperture_size = pci_resource_len(dev->pdev, 0);
info->fix.smem_start = dev->mode_config.fb_base + obj->gtt_offset;
info->fix.smem_len = size;
info->screen_base =
ioremap_wc(dev_priv->mm.gtt_base_addr + obj->gtt_offset,
size);
if (!info->screen_base) {
ret = -ENOSPC;
goto out_unpin;
}
info->screen_size = size;
// memset(info->screen_base, 0, size);
drm_fb_helper_fill_fix(info, fb->pitches[0], fb->depth);
drm_fb_helper_fill_var(info, &ifbdev->helper, sizes->fb_width, sizes->fb_height);
/* Use default scratch pixmap (info->pixmap.flags = FB_PIXMAP_SYSTEM) */
DRM_DEBUG_KMS("allocated %dx%d fb: 0x%08x, bo %p\n",
fb->width, fb->height,
obj->gtt_offset, obj);
//.........這裏部分代碼省略.........
示例12: do_iommu_domain_map
static int do_iommu_domain_map(struct hisi_iommu_domain *hisi_domain,struct scatterlist *sgl,
struct iommu_map_format *format, struct map_result *result)
{
int ret;
unsigned long phys_len, iova_size;
unsigned long iova_start;
struct gen_pool *pool;
struct iommu_domain *domain;
struct scatterlist *sg;
struct tile_format fmt;
/* calculate whole phys mem length */
for (phys_len = 0, sg = sgl; sg; sg = sg_next(sg)) {
phys_len += (unsigned long)ALIGN(sg->length, PAGE_SIZE);
}
/* get io virtual address size */
if (format->is_tile) {
unsigned long lines;
unsigned long body_size;
body_size = phys_len - format->header_size;
lines = body_size / (format->phys_page_line * PAGE_SIZE);
/*header need more lines virtual space*/
if ( format->header_size ){
unsigned long header_size;
header_size = ALIGN(format->header_size ,format->virt_page_line * PAGE_SIZE);
lines += header_size / (format->virt_page_line * PAGE_SIZE);
}
iova_size = lines * format->virt_page_line * PAGE_SIZE ;
} else {
iova_size = phys_len;
}
/* alloc iova */
pool = hisi_domain->iova_pool;
domain = hisi_domain->domain;
iova_start = hisi_alloc_iova(pool,iova_size,hisi_domain->range.align);
if (!iova_start) {
printk("[%s]hisi_alloc_iova alloc 0x%lx failed!\n", __func__, iova_size);
printk("[%s]dump iova pool begain--------------------------\n", __func__);
printk("iova available: 0x%x\n",(unsigned int)hisi_iommu_iova_available());
printk("alloc count: %d, free count: %d\n",
dbg_inf.alloc_iova_count, dbg_inf.free_iova_count);
printk("[%s]dump iova pool end --------------------------\n", __func__);
return -EINVAL;
}
if (0x100000000 < (iova_start + iova_size)) {
pr_err("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! "
"hisi iommu can not deal with iova 0x%lx size 0x%lx\n",
iova_start, iova_size);
}
/* do map */
if (format->is_tile) {
fmt.is_tile = format->is_tile;
fmt.phys_page_line = format->phys_page_line;
fmt.virt_page_line = format->virt_page_line;
fmt.header_size = format->header_size ;
ret = iommu_map_tile(domain, iova_start, sgl, iova_size, 0,&fmt);
} else {
ret = iommu_map_range(domain, iova_start,sgl,(size_t)iova_size,format->prot);
}
if (ret) {
printk(KERN_ERR "[%s]map failed!\n", __func__);
hisi_free_iova(pool, iova_start, iova_size);
return ret;
}else {
/* out put result */
result->iova_start = iova_start;
result->iova_size = iova_size;
}
return 0;
}
示例13: mdss_mdp_get_plane_sizes
int mdss_mdp_get_plane_sizes(u32 format, u32 w, u32 h,
struct mdss_mdp_plane_sizes *ps, u32 bwc_mode)
{
struct mdss_mdp_format_params *fmt;
int i, rc;
u32 bpp, ystride0_off, ystride1_off;
if (ps == NULL)
return -EINVAL;
if ((w > MAX_IMG_WIDTH) || (h > MAX_IMG_HEIGHT))
return -ERANGE;
fmt = mdss_mdp_get_format_params(format);
if (!fmt)
return -EINVAL;
bpp = fmt->bpp;
memset(ps, 0, sizeof(struct mdss_mdp_plane_sizes));
if (bwc_mode) {
rc = mdss_mdp_get_rau_strides(w, h, fmt, ps);
if (rc)
return rc;
ystride0_off = DIV_ROUND_UP(h, ps->rau_h[0]);
ystride1_off = DIV_ROUND_UP(h, ps->rau_h[1]);
ps->plane_size[0] = (ps->ystride[0] * ystride0_off) +
(ps->ystride[1] * ystride1_off);
ps->ystride[0] += ps->ystride[1];
ps->ystride[1] = 2;
ps->plane_size[1] = ps->rau_cnt * ps->ystride[1] *
(ystride0_off + ystride1_off);
} else {
if (fmt->fetch_planes == MDSS_MDP_PLANE_INTERLEAVED) {
ps->num_planes = 1;
ps->plane_size[0] = w * h * bpp;
ps->ystride[0] = w * bpp;
} else if (format == MDP_Y_CBCR_H2V2_VENUS) {
int cf = COLOR_FMT_NV12;
ps->num_planes = 2;
ps->ystride[0] = VENUS_Y_STRIDE(cf, w);
ps->ystride[1] = VENUS_UV_STRIDE(cf, w);
ps->plane_size[0] = VENUS_Y_SCANLINES(cf, h) *
ps->ystride[0];
ps->plane_size[1] = VENUS_UV_SCANLINES(cf, h) *
ps->ystride[1];
} else {
u8 hmap[] = { 1, 2, 1, 2 };
u8 vmap[] = { 1, 1, 2, 2 };
u8 horiz, vert, stride_align, height_align;
horiz = hmap[fmt->chroma_sample];
vert = vmap[fmt->chroma_sample];
switch (format) {
case MDP_Y_CR_CB_GH2V2:
stride_align = 16;
height_align = 1;
break;
default:
stride_align = 1;
height_align = 1;
break;
}
ps->ystride[0] = ALIGN(w, stride_align);
ps->ystride[1] = ALIGN(w / horiz, stride_align);
ps->plane_size[0] = ps->ystride[0] *
ALIGN(h, height_align);
ps->plane_size[1] = ps->ystride[1] * (h / vert);
if (fmt->fetch_planes == MDSS_MDP_PLANE_PSEUDO_PLANAR) {
ps->num_planes = 2;
ps->plane_size[1] *= 2;
ps->ystride[1] *= 2;
} else { /* planar */
ps->num_planes = 3;
ps->plane_size[2] = ps->plane_size[1];
ps->ystride[2] = ps->ystride[1];
}
}
}
for (i = 0; i < ps->num_planes; i++)
ps->total_size += ps->plane_size[i];
return 0;
}
示例14: cvmx_bootmem_phy_named_block_alloc
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
uint64_t max_addr,
uint64_t alignment,
char *name,
uint32_t flags)
{
int64_t addr_allocated;
struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
"0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
(unsigned long long)size,
(unsigned long long)min_addr,
(unsigned long long)max_addr,
(unsigned long long)alignment,
name);
#endif
if (cvmx_bootmem_desc->major_version != 3) {
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
"%d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version,
(int)cvmx_bootmem_desc->minor_version,
cvmx_bootmem_desc);
return -1;
}
/*
* Take lock here, as name lookup/block alloc/name add need to
* be atomic.
*/
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
/* Get pointer to first available named block descriptor */
named_block_desc_ptr =
cvmx_bootmem_phy_named_block_find(NULL,
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
/*
* Check to see if name already in use, return error if name
* not available or no more room for blocks.
*/
if (cvmx_bootmem_phy_named_block_find(name,
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return -1;
}
/*
* Round size up to mult of minimum alignment bytes We need
* the actual size allocated to allow for blocks to be
* coallesced when they are freed. The alloc routine does the
* same rounding up on all allocations.
*/
size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
alignment,
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0) {
named_block_desc_ptr->base_addr = addr_allocated;
named_block_desc_ptr->size = size;
strncpy(named_block_desc_ptr->name, name,
cvmx_bootmem_desc->named_block_name_len);
named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
}
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return addr_allocated;
}
示例15: big_key_preparse
/*
* Preparse a big key
*/
int big_key_preparse(struct key_preparsed_payload *prep)
{
struct path *path = (struct path *)&prep->payload.data[big_key_path];
struct file *file;
u8 *enckey;
u8 *data = NULL;
ssize_t written;
size_t datalen = prep->datalen;
int ret;
ret = -EINVAL;
if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
goto error;
/* Set an arbitrary quota */
prep->quotalen = 16;
prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
if (datalen > BIG_KEY_FILE_THRESHOLD) {
/* Create a shmem file to store the data in. This will permit the data
* to be swapped out if needed.
*
* File content is stored encrypted with randomly generated key.
*/
size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher));
/* prepare aligned data to encrypt */
data = kmalloc(enclen, GFP_KERNEL);
if (!data)
return -ENOMEM;
memcpy(data, prep->data, datalen);
memset(data + datalen, 0x00, enclen - datalen);
/* generate random key */
enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
if (!enckey) {
ret = -ENOMEM;
goto error;
}
ret = big_key_gen_enckey(enckey);
if (ret)
goto err_enckey;
/* encrypt aligned data */
ret = big_key_crypt(BIG_KEY_ENC, data, enclen, enckey);
if (ret)
goto err_enckey;
/* save aligned data to file */
file = shmem_kernel_file_setup("", enclen, 0);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto err_enckey;
}
written = kernel_write(file, data, enclen, 0);
if (written != enclen) {
ret = written;
if (written >= 0)
ret = -ENOMEM;
goto err_fput;
}
/* Pin the mount and dentry to the key so that we can open it again
* later
*/
prep->payload.data[big_key_data] = enckey;
*path = file->f_path;
path_get(path);
fput(file);
kfree(data);
} else {
/* Just store the data in a buffer */
void *data = kmalloc(datalen, GFP_KERNEL);
if (!data)
return -ENOMEM;
prep->payload.data[big_key_data] = data;
memcpy(data, prep->data, prep->datalen);
}
return 0;
err_fput:
fput(file);
err_enckey:
kfree(enckey);
error:
kfree(data);
return ret;
}