LinearOperator
表示另一個運算符的逆。
繼承自:LinearOperator
,Module
用法
tf.linalg.LinearOperatorInversion(
operator, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None,
is_square=None, name=None
)
參數
-
operator
LinearOperator
對象。如果operator.is_non_singular == False
,則會引發異常。我們確實允許operator.is_non_singular == None
,在這種情況下,此運算符將具有is_non_singular == None
。對於is_self_adjoint
和is_positive_definite
也是如此。 -
is_non_singular
期望這個運算符是非奇異的。 -
is_self_adjoint
期望這個算子等於它的厄米轉置。 -
is_positive_definite
期望這個算子是正定的,意思是二次形式x^H A x
對所有非零具有正實部x
.請注意,我們不要求算子自伴是正定的。看:https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices -
is_square
期望此運算符的行為類似於方形 [batch] 矩陣。 -
name
此LinearOperator
的名稱。默認為operator.name + "_inv"
。
拋出
-
ValueError
如果operator.is_non_singular
為假。
屬性
-
H
返回當前的伴隨LinearOperator
.給定
A
表示此LinearOperator
,返回A*
。請注意,調用self.adjoint()
和self.H
是等效的。 -
batch_shape
TensorShape
這批尺寸的LinearOperator
.如果此運算符的作用類似於帶有
A.shape = [B1,...,Bb, M, N]
的批處理矩陣A
,則返回TensorShape([B1,...,Bb])
,相當於A.shape[:-2]
-
domain_dimension
此運算符的域的維度(在向量空間的意義上)。如果此運算符的作用類似於帶有
A.shape = [B1,...,Bb, M, N]
的批處理矩陣A
,則返回N
。 -
dtype
Tensor
的DType
由此LinearOperator
處理。 -
graph_parents
這個的圖依賴列表LinearOperator
. (已棄用)警告:此函數已棄用。它將在未來的版本中刪除。更新說明:請勿調用
graph_parents
。 -
is_non_singular
-
is_positive_definite
-
is_self_adjoint
-
is_square
返回True/False
取決於此運算符是否為正方形。 -
operator
反轉前的運算符。 -
parameters
用於實例化此LinearOperator
的參數字典。 -
range_dimension
此運算符範圍的維度(在向量空間的意義上)。如果此運算符的作用類似於帶有
A.shape = [B1,...,Bb, M, N]
的批處理矩陣A
,則返回M
。 -
shape
TensorShape
這個的LinearOperator
.如果此運算符的作用類似於帶有
A.shape = [B1,...,Bb, M, N]
的批處理矩陣A
,則返回TensorShape([B1,...,Bb, M, N])
,等效於A.shape
。 -
tensor_rank
與此運算符對應的矩陣的秩(在張量的意義上)。如果此運算符的作用類似於帶有
A.shape = [B1,...,Bb, M, N]
的批處理矩陣A
,則返回b + 2
。
該運算符表示另一個運算符的逆。
# Create a 2 x 2 linear operator.
operator = LinearOperatorFullMatrix([[1., 0.], [0., 2.]])
operator_inv = LinearOperatorInversion(operator)
operator_inv.to_dense()
==> [[1., 0.]
[0., 0.5]]
operator_inv.shape
==> [2, 2]
operator_inv.log_abs_determinant()
==> - log(2)
x = ... Shape [2, 4] Tensor
operator_inv.matmul(x)
==> Shape [2, 4] Tensor, equal to operator.solve(x)
性能
LinearOperatorInversion
的性能取決於底層算子的性能:solve
和 matmul
交換,行列式倒置。
矩陣屬性提示
此 LinearOperator
使用 is_X
形式的布爾標誌初始化,用於 X = non_singular, self_adjoint, positive_definite, square
。它們具有以下含義:
- 如果
is_X == True
,調用者應該期望操作符具有屬性X
。這是一個應該實現的承諾,但不是運行時斷言。例如,有限的浮點精度可能會導致違反這些承諾。 - 如果
is_X == False
,調用者應該期望操作符沒有X
。 - 如果
is_X == None
(默認),調用者應該沒有任何期望。
相關用法
- Python tf.linalg.LinearOperatorInversion.solve用法及代碼示例
- Python tf.linalg.LinearOperatorInversion.diag_part用法及代碼示例
- Python tf.linalg.LinearOperatorInversion.solvevec用法及代碼示例
- Python tf.linalg.LinearOperatorInversion.matmul用法及代碼示例
- Python tf.linalg.LinearOperatorInversion.matvec用法及代碼示例
- Python tf.linalg.LinearOperatorInversion.assert_non_singular用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.solvevec用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.diag_part用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.matvec用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.solve用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.matmul用法及代碼示例
- Python tf.linalg.LinearOperatorIdentity.assert_non_singular用法及代碼示例
- Python tf.linalg.LinearOperatorFullMatrix.matvec用法及代碼示例
- Python tf.linalg.LinearOperatorToeplitz.solve用法及代碼示例
- Python tf.linalg.LinearOperatorPermutation.solve用法及代碼示例
- Python tf.linalg.LinearOperatorKronecker.diag_part用法及代碼示例
- Python tf.linalg.LinearOperatorToeplitz.matvec用法及代碼示例
- Python tf.linalg.LinearOperatorBlockLowerTriangular.solvevec用法及代碼示例
- Python tf.linalg.LinearOperatorLowerTriangular.matvec用法及代碼示例
注:本文由純淨天空篩選整理自tensorflow.org大神的英文原創作品 tf.linalg.LinearOperatorInversion。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。