在底層 ClusterResolvers 上執行聯合。
繼承自:ClusterResolver
用法
tf.distribute.cluster_resolver.UnionResolver(
*args, **kwargs
)
參數
-
*args
ClusterResolver
要聯合的對象。 -
**kwargs
rpc_layer - (可選)覆蓋 TensorFlow 使用的 RPC 層的值。 task_type - (可選)覆蓋當前任務類型的值。 task_id - (可選)覆蓋當前任務索引的值。
拋出
-
TypeError
如果任何參數不是ClusterResolvers
的子類。 -
ValueError
如果沒有傳遞參數。
屬性
-
environment
返回 TensorFlow 運行的當前環境。有兩個可能的返回值,"google"(當 TensorFlow 在 Google-internal 環境中運行時)或空字符串(當 TensorFlow 在其他地方運行時)。
如果您正在實現一個在 Google 環境和開源世界中都可以工作的 ClusterResolver(例如,TPU ClusterResolver 或類似的),您將必須根據環境返回適當的字符串,您必須檢測到該字符串。
否則,如果您正在實現僅在開源 TensorFlow 中工作的 ClusterResolver,則無需實現此屬性。
-
rpc_layer
-
task_id
返回此任務 IDClusterResolver
表示。在 TensorFlow 分布式環境中,每個作業可能有一個適用的任務 id,它是實例在其任務類型中的索引。當用戶需要根據任務索引運行特定代碼時,這很有用。例如,
cluster_spec = tf.train.ClusterSpec({ "ps":["localhost:2222", "localhost:2223"], "worker":["localhost:2224", "localhost:2225", "localhost:2226"] }) # SimpleClusterResolver is used here for illustration; other cluster # resolvers may be used for other source of task type/id. simple_resolver = SimpleClusterResolver(cluster_spec, task_type="worker", task_id=0) ... if cluster_resolver.task_type == 'worker' and cluster_resolver.task_id == 0: # Perform something that's only applicable on 'worker' type, id 0. This # block will run on this particular instance since we've specified this # task to be a 'worker', id 0 in above cluster resolver. else: # Perform something that's only applicable on other ids. This block will # not run on this particular instance.
如果此類信息不可用或不適用於當前分布式環境(例如使用
tf.distribute.cluster_resolver.TPUClusterResolver
進行訓練),則返回None
。有關詳細信息,請參閱
tf.distribute.cluster_resolver.ClusterResolver
的類文檔字符串。 -
task_type
返回此任務類型ClusterResolver
表示。在 TensorFlow 分布式環境中,每個作業都可能有一個適用的任務類型。 TensorFlow 中的有效任務類型包括 'chief':被指定承擔更多責任的工作人員、'worker':用於訓練/評估的常規工作人員、'ps':參數服務器或 'evaluator':評估檢查點的評估程序用於指標。
有關最常用的'chief' 和'worker' 任務類型的更多信息,請參閱Multi-worker 配置。
當用戶需要根據任務類型運行特定代碼時,訪問此類信息非常有用。例如,
cluster_spec = tf.train.ClusterSpec({ "ps":["localhost:2222", "localhost:2223"], "worker":["localhost:2224", "localhost:2225", "localhost:2226"] }) # SimpleClusterResolver is used here for illustration; other cluster # resolvers may be used for other source of task type/id. simple_resolver = SimpleClusterResolver(cluster_spec, task_type="worker", task_id=1) ... if cluster_resolver.task_type == 'worker': # Perform something that's only applicable on workers. This block # will run on this particular instance since we've specified this task to # be a worker in above cluster resolver. elif cluster_resolver.task_type == 'ps': # Perform something that's only applicable on parameter servers. This # block will not run on this particular instance.
如果此類信息不可用或不適用於當前分布式環境(例如使用
tf.distribute.experimental.TPUStrategy
進行訓練),則返回None
。有關詳細信息,請參閱
tf.distribute.cluster_resolver.ClusterResolver
的課程文檔。
此類在給定兩個或多個現有 ClusterResolver 的情況下執行聯合。它合並底層的ClusterResolver,並在調用cluster_spec時返回一個統一的ClusterSpec。合並函數的詳細信息記錄在cluster_spec 函數中。
對於任務類型、任務索引、rpc 層、環境等其他 ClusterResolver 屬性,我們將從聯合中的第一個 ClusterResolver 返回值。
結合兩個集群解析器的示例:
cluster_0 = tf.train.ClusterSpec({"worker":["worker0.example.com:2222",
"worker1.example.com:2222"]})
cluster_resolver_0 = SimpleClusterResolver(cluster, task_type="worker",
task_id=0,
rpc_layer="grpc")
cluster_1 = tf.train.ClusterSpec({"ps":["ps0.example.com:2222",
"ps1.example.com:2222"]})
cluster_resolver_1 = SimpleClusterResolver(cluster, task_type="ps",
task_id=0,
rpc_layer="grpc")
# Its task type would be "worker".
cluster_resolver = UnionClusterResolver(cluster_resolver_0,
cluster_resolver_1)
在 TFConfigClusterResolver 實例中覆蓋 GPU 數量的示例:
tf_config = TFConfigClusterResolver()
gpu_override = SimpleClusterResolver(tf_config.cluster_spec(),
num_accelerators={"GPU":1})
cluster_resolver = UnionResolver(gpu_override, tf_config)
相關用法
- Python tf.distribute.cluster_resolver.TFConfigClusterResolver用法及代碼示例
- Python tf.distribute.cluster_resolver.GCEClusterResolver用法及代碼示例
- Python tf.distribute.cluster_resolver.SimpleClusterResolver用法及代碼示例
- Python tf.distribute.cluster_resolver.TPUClusterResolver.get_tpu_system_metadata用法及代碼示例
- Python tf.distribute.cluster_resolver.SlurmClusterResolver用法及代碼示例
- Python tf.distribute.cluster_resolver.TPUClusterResolver用法及代碼示例
- Python tf.distribute.cluster_resolver.TPUClusterResolver.connect用法及代碼示例
- Python tf.distribute.cluster_resolver.KubernetesClusterResolver用法及代碼示例
- Python tf.distribute.OneDeviceStrategy.experimental_distribute_values_from_function用法及代碼示例
- Python tf.distribute.TPUStrategy用法及代碼示例
- Python tf.distribute.experimental_set_strategy用法及代碼示例
- Python tf.distribute.experimental.MultiWorkerMirroredStrategy.gather用法及代碼示例
- Python tf.distribute.experimental.MultiWorkerMirroredStrategy用法及代碼示例
- Python tf.distribute.TPUStrategy.experimental_assign_to_logical_device用法及代碼示例
- Python tf.distribute.NcclAllReduce用法及代碼示例
- Python tf.distribute.OneDeviceStrategy.experimental_distribute_dataset用法及代碼示例
- Python tf.distribute.experimental.rpc.Server.create用法及代碼示例
- Python tf.distribute.experimental.MultiWorkerMirroredStrategy.experimental_distribute_dataset用法及代碼示例
- Python tf.distribute.OneDeviceStrategy.gather用法及代碼示例
注:本文由純淨天空篩選整理自tensorflow.org大神的英文原創作品 tf.distribute.cluster_resolver.UnionResolver。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。