當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python tf.compat.v1.data.experimental.SqlDataset.from_tensor_slices用法及代碼示例


用法

@staticmethod
from_tensor_slices(
    tensors, name=None
)

參數

  • tensors 一個數據集元素,其組件具有相同的第一維。記錄了支持的值這裏.
  • name (可選。) tf.data 操作的名稱。

返回

  • Dataset 一個Dataset

創建一個Dataset,其元素是給定張量的切片。

給定的張量沿它們的第一維進行切片。此操作保留輸入張量的結構,刪除每個張量的第一個維度並將其用作數據集維度。所有輸入張量的第一個維度必須具有相同的大小。

# Slicing a 1D tensor produces scalar tensor elements.
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
list(dataset.as_numpy_iterator())
[1, 2, 3]
# Slicing a 2D tensor produces 1D tensor elements.
dataset = tf.data.Dataset.from_tensor_slices([[1, 2], [3, 4]])
list(dataset.as_numpy_iterator())
[array([1, 2], dtype=int32), array([3, 4], dtype=int32)]
# Slicing a tuple of 1D tensors produces tuple elements containing
# scalar tensors.
dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6]))
list(dataset.as_numpy_iterator())
[(1, 3, 5), (2, 4, 6)]
# Dictionary structure is also preserved.
dataset = tf.data.Dataset.from_tensor_slices({"a":[1, 2], "b":[3, 4]})
list(dataset.as_numpy_iterator()) == [{'a':1, 'b':3},
                                      {'a':2, 'b':4}]
True
# Two tensors can be combined into one Dataset object.
features = tf.constant([[1, 3], [2, 1], [3, 3]]) # ==> 3x2 tensor
labels = tf.constant(['A', 'B', 'A']) # ==> 3x1 tensor
dataset = Dataset.from_tensor_slices((features, labels))
# Both the features and the labels tensors can be converted
# to a Dataset object separately and combined after.
features_dataset = Dataset.from_tensor_slices(features)
labels_dataset = Dataset.from_tensor_slices(labels)
dataset = Dataset.zip((features_dataset, labels_dataset))
# A batched feature and label set can be converted to a Dataset
# in similar fashion.
batched_features = tf.constant([[[1, 3], [2, 3]],
                                [[2, 1], [1, 2]],
                                [[3, 3], [3, 2]]], shape=(3, 2, 2))
batched_labels = tf.constant([['A', 'A'],
                              ['B', 'B'],
                              ['A', 'B']], shape=(3, 2, 1))
dataset = Dataset.from_tensor_slices((batched_features, batched_labels))
for element in dataset.as_numpy_iterator():
  print(element)
(array([[1, 3],
       [2, 3]], dtype=int32), array([[b'A'],
       [b'A']], dtype=object))
(array([[2, 1],
       [1, 2]], dtype=int32), array([[b'B'],
       [b'B']], dtype=object))
(array([[3, 3],
       [3, 2]], dtype=int32), array([[b'A'],
       [b'B']], dtype=object))

請注意,如果 tensors 包含 NumPy 數組,並且未啟用即刻執行,則這些值將作為一個或多個 tf.constant 操作嵌入到圖中。對於大型數據集(> 1 GB),這可能會浪費內存並遇到圖形序列化的字節限製。如果 tensors 包含一個或多個大型 NumPy 數組,請考慮本指南中說明的替代方法。

相關用法


注:本文由純淨天空篩選整理自tensorflow.org大神的英文原創作品 tf.compat.v1.data.experimental.SqlDataset.from_tensor_slices。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。